
1.1 INTRODUCTION TO NUMBER SYSTEM
A number system is a system of writing for expressing num-

bers. It is the mathematical notation for representing numbers
of a given set by using digits or other symbols in a consistent
manner. It provides a unique representation to every number
and represents the arithmetic and algebraic structure of the

gures. It also allows us to operate arithmetic operations like
addition, subtraction, and division.

Different number systems are mentioned below.
1. Decimal number system (Base- 10)
2. Binary number system (Base- 2)
3. Octal number system (Base- 8)
4. Hexadecimal number system (Base- 16)

Computer numeral system
When we type any letter or word, the computer translates

them into numbers since computers can understand only num-
bers. A computer can understand only a few symbols called
digits, and these symbols describe different values depending
on the position they hold in the number.

The value of any digit in a number can be determined by
• The digit
• Its position in the number
• The base of the number system

Decimal Number System
Decimal number system has base 10 because it uses ten

digits from 0 to 9. In decimal number system, the positions
successive to the left of the decimal point represent units, tens,
hundreds, thousands and so on.

Every position shows a particular power of the base (10).
For example, the decimal number 1457 consists of the digit 7

CHATER-1

Basics of C

Basics of C Programming2

in the units position, 5 in the tens place, 4 in the hundreds posi-
tion, and 1 in the thousands place whose value can be written as

(1 × 1000) + (4 × 100) + (5 × 10) + (7 × 1) = (1 × 103) +
(4 × 102) + (5×101) + (7×1)

=1000 + 400 + 50 + 7= 1457
Base 2 Number System

Base 2 number systems are also known as Binary number
system wherein, only two binary digits exist, i.e., 0 and 1. Spe-
ci cally, the usual base-2 is a radix of 2. The gures described
under this system are known as binary numbers which are the
combination of 0 and 1. For example, 110101 is a binary number.

We can convert any system into binary and vice versa.
For Example, to write (14)10 as binary number
Solution:

2

2

2

14

7

3

1 1

1

0

Fig: 1.1
(14)10 = (1110)2

Base 10 Number System
This system is expressed in decimal numbers. The base to

the decimal is 10. This shows that there are ten symbols, 0 to
9. Similarly, the system using the symbols 0, 1, two will be of
base 3, four symbols will be of base 4 and so on.

(1) Binary Number System
A Binary number system has only two digits that are 0 and

1. Every number (value) represents with 0 and 1 in this number
system. The base of binary number system is 2, because it has
only two digits.

(2) Octal number system
Octal number system has only eight (8) digits from 0 to 7.

Every number (value) represents with 0, 1, 2, 3, 4, 5, 6 and 7

3

in this number system. The base of octal number system is 8,
because it has only 8 digits.

(3) Decimal number system
Decimal number system has only ten (10) digits from 0 to 9.

Every number (value) represents with 0, 1, 2, 3, 4, 5, 6, 7, 8 and
9 in this number system. The base of decimal number system
is 10, because it has only 10 digits.

(4) Hexadecimal number system
A Hexadecimal number system has sixteen (16) alpha-

numeric values from 0 to 9 and A to F. Every number (value)
represents with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F in
this number system. The base of hexadecimal number system
is 16, because it has 16 alphanumeric values. Here A is 10, B
is 11, C is 12, D is 13, E is 14and F is 15.

Natural Numbers – All positive or non-negative counting
numbers. The set of natural numbers are commonly denoted
as N.

Example – (1, 2, 3, 4…..∞).

1 2 3 4 5 6 7 8 9 10

Natural Numbers

Whole Numbers – If we add zero in natural numbers set
then it becomes whole numbers set.

Example – (0, 1, 2, 3, 4…..∞).

–4 –3 –2 –1 0 1 2 3 4 5

Whole Numbers

Integers – Integers are all whole numbers which include
negative numbers as well as positive numbers.

Example – (∞……–4, –3, –2, –1, 0, 1, 2, 3, 4, 5….∞).

–4 –3 –2 –1 0 1 2 3 4 5

Integers

Even & Odd Numbers – If the number is divided by 2
then it is called even number and if it is not then the numbers
are called odd numbers.

Basics of C Programming4

0 2 4 6 8

Even and Odd numbers

Even

1 3 5 7 9

Odd

Example – (0, 2, 4, 6, 8, 10, 12…..∞) are even numbers and
(1, 3, 5, 7, 9, 11, 13, 15, 17, 19….∞) are odd numbers.

Prime Numbers – If a number is divided by itself only
then it is called prime number. Prime Numbers can be positive
or negative except 1.

2 3 5 7 11 13 17 19 23 25

Prime Numbers

Example – (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61….∞)

Composite Numbers – Natural numbers which are not
prime are called composite numbers.

Example – (4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22,
……….. ∞)

4 6 8 9 12 14 15 16 18

Composite Numbers

1.2 INTRODUCTION TO FLOWCHART AND ALGORITHM
A owchart is a type of diagram that represents an algo-

rithm, work ow or process. The owchart shows the steps as
boxes of various kinds, and their order by connecting the boxes
with arrows. This diagrammatic representation illustrates a
solution model to a given problem.

Flowcharts are used in analyzing, designing, documenting
or managing a process or program in various elds.

5

Lamp does

not work

Lamp

plugged

in

Bulb

burned

out?

Repair

lamp

Plug in lamp

Repair bulb

No

No

Yes

Yes

Fig. 1.2
A simple owchart representing a process for dealing with

a non-functioning lamp.
ANSI/ISO Shape Name Description

Flow line
(Arrow-

head)[15]

Shows the process’s order
of operation. A line com-
ing from one symbol and
pointing at another.[14]
Arrowheads are added if the

ow is not the standard top-
to-bottom left-to right.[15]

Termi-
nal[14]

Indicates the beginning
and ending of a program or
sub-process. Represented
as a stadium [14] oval or
rounded (fillet) rectangle.
They usually contain the
word “Start” or “End” or
another phrase signaling
the start or end of a process
such as “submit inquiry” or
“receive product”.

Basics of C Programming6

 Process[15] Represents a set of oper-
ations that changes value
form or location of data.
Represented as a rectangle.
[15]

 Deci-
sion[15]

 Shows a conditional op-
eration that determines
which one of the two paths
the program will take.[14]
The operation is commonly
a yes/no question or true/
false test. Represented as a
diamond (rhombus).[15]

Input/
Output[15]

Indicates the process of in-
putting and outputting data
[15] as in entering data or
displaying results. Repre-
sented as a parallelogram.
[14]

Annota-
tion[14]

(Comment)
[15]

Indicating additional in-
formation about a step the
program. Represented as
an open rectangle with a
dashed or solid line connect-
ing it to the corresponding
symbol in the owchart.[15]

 Prede ned
Process[14]

Shows named process which
is de ned elsewhere. Repre-
sented as a rectangle with
double-struck vertical edg-
es.[14]

On-page
Connec-
tor[14]

 Pairs of labeled connectors
replace long or confusing
lines on a owchart page.
Represented by a small
circle with a letter inside.
[14][18]

7

 Off-page
Connec-
tor[14]

A labeled connector for use
when the target is on an-
other page. Represented as
a home plate shaped penta-
gon.[14][18]

Example 1. The system has one input and one output. An
event should be recognized when the input goes from 0 to 1 and
back to 0 again. The output is initially 0, but should go 1 after
four events are detected. After this point, the output should
remain 1. Design a owchart to solve this problem.

Solution: This example also illustrates the concept of a
subroutine. We break a complex system into smaller components
so that the system is easier to understand and easier to test.
In particular, once we know how to detect an event, we will
encapsulate that process into a subroutine, called Event. In this
example, the main program rst sets the output to zero, calls

Main

Output 0

to port

w = 4

Event

w = w - 1

w

Output 1

to port

A

B

C

D

E

F

Event

Input n

from port

n

n

Event

G

0

1

1

> 0

0

0

Input n

from port

Basics of C Programming8

the function Event four times, then it sets the output to one. To
detect the 0 to 1 to 0 edges in the input, it rst waits for 1, and
then it waits for 0 again. The letters A through H in Figure 5.4
specify the software activities in this simple example. In this
example, execution is sequential and predictable.

Algorithm - An algorithm is a set of instructions designed
to perform a speci c task. In computer programming, algo-
rithms are often created as functions. These functions serve
as small programs that can be referenced by a larger program.
For example:-

1. Step 1 is really just a reminder that this is a procedure
with a beginning and an end.

2. In step 2, we make a place in the computer to store what
the user types in, also called a variable

3. In step 3, we clear this variable because we might need
to use it again and don’t want the old contents mixed in with
the new.

4. In step 4, we prompt the user for an email address
5. In step 5, we stick it in our nifty variable.
6. In step 6, we tell our computer to take a close look at

this email address—is it really an email address?
1.3 HISTORY OF C, WHERE C STANDS

History of ‘C’
The root of all modern languages is ALGOL, introduced in

the early 1960s.
ALGOL was the rst computer language to use a block

structure. Although it never become popular in USA, it was
widely used in Europe. ALGOL gave the concept of structured
programming to the computer science community.

In 1967, Martin Richards developed a language called
BCPL (Basic combined programming language). In 1970, Ken
Thompson created a language using many features of

BCPL and called it simply B. B was used to create early
versions of UNIX operating system at Bell laboratories.

‘C’ was evolved from ALGOL, BCPL and by Dennis M.
Ritchic at the Bell laboratories in 1972. The language became
more popular after publication of the book “The C programming
language” by Brian W. Kernighan and Dennis M. Ritchic in
1978. The book was so popular that the language came to be

9

known as “K & RC”.
The technical committee approved a version of C in decem-

ber 1989 which is now known as ANSI C. (American National
Standards)

1960 - ALGOL (International Group)
1967 - BCPL (Martin Richards)
1970 - B (Ken Thompson)
1972 - Traditional C (Dennis Ritchic)
1978 - K&RC (Kernighan and Ritchic)
1989 - ANSI C (ANS committee)
1990 - ANSI / ISO C (ISO Committee)
1999 - C 99 (Standardization Committee)

WHERE C STANDS
Let us now see how C compares with other programming

languages. All the programming languages can be divided into
two categories:

• Problem oriented languages or High level languages:
These languages have been designed to give a better pro-

gramming ef ciency, i.e., faster program development. Exam-
ples of language falling in this category are FORTRAN, BASIC,
and PASCAL…………..

• Machine oriented languages or Low level languages:
These languages have been designed to give a better ma-

chine ef ciency, i.e., faster program execution. Examples of
languages falling in this category are Assembly language and
Machine language.

C stands between these two categories. That’s why it is often
called a Middle level language, since it was designed to have
both: a relatively good programming ef ciency (as compared
to Machine oriented languages) and relatively good machine
ef ciency (as compared to Problem oriented languages).
C is a High-level Language

C is often called a high level language. This does not mean
that C is less powerful, harder to use, or less developed than a
high level language such as BASIC or Pascal, nor does it im-
ply that C has the cumbersome nature of assembly language.
Rather, C is thought of as middle – level language because it

Basics of C Programming10

combines the best elements of high level languages with the
control and exibility of assembly languages.

As high level language, C allows the manipulation of bits,
bytes and addresses. Despite this fact, C code is also very porta-
ble. Portability means that it is easy to adapt software written
for one type of computer or operation system to another type.

High Level Languages are: C, Ada, Modula-2, Pascal,
COBOL, FORTRAN, and BASIC.

Middle Level Languages are: Forth and
Low Level Languages are: Macro-assembler machine lan-

guage.
Language Translators

Computers can understand only machine language instruc-
tions. Therefore, the program written in any other language
should be translated into machine language.

There are two types of translators.
1. Compiler
2. Interpreter
Difference between Compiler and Interpreter
A compiler checks the entire program at a time and if it is

error free then it produces the machine language instruction.
The interpreter translates one statement at a time and if

it is error free it produces the machine language instruction.
Executing a program written in a high level language is a two-
step process.

• The code (source program) should be compiled (i.e., by
either compiler or interpreter) to produce machine lan-
guage instructions.

• Then the machine instructions are loaded into memory
and it gets executed.

COMPILERS vs. INTERPRETERS
It is important to understand that a computer language de-

nes the nature of a program and not the way that the program
will be executed. There are two general methods by which a pro-
gram can be executed. It can be compiled, or it can be interpreted.
Although programs written in any computer language can be
compiled or interpreted, some languages are designed more for
one form or execution than the other. For example, Java was

11

designed to be interpreted, and C was designed to be compiled.
However, in the case of C, it is important to understand that it
was speci cally optimized as a compiled language.

In its simplest form, an interpreter reads the source code
of your program one line at a time, performing the speci c
instructions contained in that line. This is the way earlier ver-
sion of BASIC worked. In languages such as Java, a program’s
source code is rst converted into an intermediary form that is
then interpreted. In either case, a run-time interpreter is still
required to be present to execute the program.

A compiler reads the entire program and converts it into
object code, which is a translation of the program’s source code
into a form that the computer can execute directly. Object code
is also referred to as binary code or machine code. Once the pro-
gram is compiled, a line of source code is no longer meaningful
in the execution of your program.

In general, an interpreted program runs, slower than a
compiled program. Hence a compiler converts a program’s source
code into object code that a computer can execute directly.

Therefore, compilation is a one-time cost, while interpreta-
tion incurs an overhead each time a program is run.
1.4 C CHARACTER SET, TOKENS, CONSTANTS, VARIABLES,

KEYWORDS
Character Set : The characters in C are grouped into the

following categories:
1. Letters 2. Digits
3. Special characters 4. White Spaces

C Tokens: The individual words and punctuation marks
are called tokens. C has six types of tokens.

C Tokens

Keywords Constants Strings Operators

Identifiers Special symbols

Float, While -15.5,100 "ABC", "Year" +,*

Main ?~#&[]!

Basics of C Programming12

Constants: C refers to xed values that do not change
during the execution of a program.

C supports several types of Constants.
• Numeric constants – Integer and real constants
• Character constants – singe character & string constants
Variable: - A variable is a data name that may be sheet to

store a data value. e.g. : Total, Average etc.
Keywords and Identi ers: Every C word is classi ed

as either a keyword or an identi er. All keywords have xed
meanings and these meanings cannot be changed. All keywords
must be written in lower case.

Like: int, break, else, long, switch, case, char, oat, for,
void, goto, do, if, while.
1.5. C OPERATORS

(Arithmetic, Logical, assignment, relational, increment and
decrement, conditional, bit wise, special, operator precedence),
C expressions data types.

C supports a rich set of built in operators.
C operators can be classi ed into a number of categories.

They includes:-

(1) Arithmetic operators: - C provides all the basic
arithmetic.

Operator Meaning
+ Addition or unary plus
– Subtraction or unary minus
* Multiplication
/ Division
% Modulo division

(2) Relational operators: - C supports six relational
operators in all.

Operator Meaning
< is less than
<= is less than or equal to
> is greater than
>= is greater than or equal to
= = is equal to
! = is not equal to

13

(3) Logical operator: - C has the following three logical
operators.

&& meaning logical AND
|| meaning logical OR
! meaning logical NOT

TRUTH TABLE
Table-1.1

Op-1 Op-2 Value of the expression
 Op-1&& op-2 Op-1 || op-2

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

(4) Assignment operators: - They are used to assign the
result of an expression to a variable. Symbol ‘ – ‘

V% = exp;

e.g. V = 5 or V = V + 1

(5) Increment and decrement operators: C allows two
very useful operators not generally found in other languages.

[++ and --]

Like + + x or x + +

(6) Conditional operator : A binary operator pair “ ? : “
is available in C to construct conditional expression of the from
exp1? exp2 : exp3

e.g. a=10; b= 15
x= (a>b)? a : b;

Sol. b i.e., 15

(7) Bitwise operator: - C has a distinction of supporting
special operators known as bitwise operators for manipulation
of data at bit level. Bitwise operators may not be applied to

oat or double.

Basics of C Programming14

Operators Meaning
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive OR

<< Shift left
>> Shift right

(8) Special Operators: C Supports some special operators
of interest such as comma operators, size of operators, pointer
operators (. and ->). The comma and size of operators.

Data types: C language is rich in its data type. C supports
three classes of data types:

• Primary data type
• Derived data type
• User-de ned data type
All C compilers support five fundamental data types,

namely
• Integer- int -% d
V%= exp;
• Character – Char-% c
• Floating point- oat-% f
• Double-precision oating point- %lf
• Long integer – long int -%ld

1.6 FORMATTED INPUT, FORMATTED OUTPUT
Formatted output : The use of print of function for print-

ing captions and numerical result. The general form of printf
statement is:-

Printf (“Control String”, arg1, arg2... argn);
e.g.:

Printf (“Programming in C”);
Printf (“%d”, x);

Formatted input : It refers to an input data that has been
arranged in a particular format. The general form of Scanf is

15

Scanf (“Control String”, arg1, arg2... argn);
e.g.,
Scanf(“%d”, & x);
--

QUESTION
1. Convert hexadecimal value 16 to decimal.
A. 2210 B. 1610 C. 1010 D. 2010

16 = 6*16^0 + 1*16^1
= 6+16
= 22(Ans)

Printf (“Control String”, arg1, arg2… argn);
Scanf (“Control String”, arg1, arg2… argn);

2. Convert the following decimal number to 8-bit binary.187
A. 101110112 B.110111012
C.101111012 D.101111002

2|187| 1

2|93 | 1

2|46 | 0

2|23 | 1

2|11 | 1

2|5 | 1

2|2 | 0

|1 | 1
Answer = 10111011.

3. Convert binary 111111110010 to hexadecimal.
A. EE216 B. FF216
C. 2FE16 D. FD216

Basics of C Programming16

111111110010
A=10, B =11, C=12, D=13, E=14, F=15.

Select 4-4 pair group
1111 1111 0010
8421 8421 8421

15 15 2
F F 2

Ans:(B).(FF2)16.
4. Convert the following binary number to decimal. (01011)2
A. 11 B. 35
C. 15 D. 10

(1*2^0)+(1*2^1)+(0*2^2)+(1*2^3)+(0*2^4)
=1+2+0+8
=11(Ans)

5. Convert the binary number 1001.00102 to decimal.
A. 90.125 B. 9.125
C. 125 D. 12.5

Draw a owchart to add two numbers entered by
user.

Read num1

and num2

Event

Declare variables num1, num2 and sum

sum a + b

Display sum

Event

17

Draw owchart to nd the largest among three dif-
ferent numbers entered by user.

Read a, b

and c

Start

Declare variables a, b and c

is

a > b

?

is

a > c

?

is

b > c

?

Print c Print aPrint c

End

Draw a owchart to nd the Fibonacci series till
term ≤ 1000.

Start

Declare variables

fterm, sterm and temp

fterm 0,

sterm 1

�

�

is

sterm <

1000?

Display sterm

temp sterm�

sterm sterm+fterm�

fterm temp�

Stop

Basics of C Programming18

Finding Prime Numbers Flow Chart -
Start

Is the input

number an

integer?

Is the input

number < or =

1 ?

i = 2

Is i > or =

input

number?

Divide the input

number 1

Is there a

remainder?

i = i + 1

Prime numbers

are integers > 1

Return No

No

Yes

Yes

No

The input number

is a prime number

Return Yes

Yes

The input number

was evenly divided by i

so it is not a prime

Return No

No

The input number

is not a prime number

19

Flowchart for nding Armstrong number C program
Start

n = num

Read num,

sum = 0

n>=1

return mode 10

sum=sum+{rem"resn"rem}

n=n/10

if

num=sum

Print

number of

armstrong

Print

number of

armstrong

Stop

False

FalseTrue

Basics of C Programming20

Problem 1: An algorithm to calculate even numbers be-
tween 0 and 99

Step 1. Start
Step 2. I ← 0
Step 3. Write I in standard output
Step 4. I ← I + 2
Step 5. If (I <= 98) then go to line 3
Step 6. End

Problem 2: Design an algorithm which gets a natural
value, n, as its input and 8 calculates odd numbers equal or less
than n. Then write them in the standard output

Step 1. Start
Step 2. Read n
Step 3. I ← 1
Step 4. Write I
Step 5. I ← I + 2
Step 6. If (I<= n) then go to line 4
Step 7. End

Problem3: Design an algorithm which generates even
numbers between 1000 and 2000 and then prints them in the
standard output. It should also print total sum:

Step 1. Start
Step 2. I ← 1000 and S ← 0
Step 3. Write I
Step 4. S ← S + I
Step 5. I ← I + 2
Step 6. If (I <= 2000) then go to line 3 else go to line 7
Step 7. Write S
Step 8. End

Problem4: Design an algorithm with a natural number, n,
as its input which calculates the following formula and writes
the result in the standard output: S = ½ + ¼ + … +1/n

Step 1. Start
Step 2. Read n
Step 3. I ← 2 and S ← 0

21

Step 4. S= S + 1/I
Step 5. I ← I + 2
Step 6. If (I <= n) then go to line 4 else write S in standard

output
Step 7. End

Problem 5: A algorithm to nd the largest value of any
three numbers.

Step1: Start
Step2: Read/input A, B and C
Step3: If (A>=B) and (A>=C) then Max=A
Step4: If (B>=A) and (B>=C) then Max=B
Step5: If (C>=A) and (C>=B) then Max=C
Step6: Print Max 7
Step7: End

Qus.1 write a C programming for display “Hello World”
#include <stdio.h>
int main()
{

// printf() displays the string inside quotation
printf(“Hello, World!”);
return 0;
}

Qus. 2. write a C programming for Print the integer.
#include<stdio.h>
int main()
{
int number;

// printf() dislpays the formatted output
printf(“Enter an integer: “);

// scanf() reads the formatted input and stores them
scanf(“%d”, &number);

Basics of C Programming22

// printf() displays the formatted output
printf(“You entered: %d”, number);
return0;
}

Qus. 3 write a C programming for add two no.
#include<stdio.h>
int main()
{
int rst number, secondNumber, sumOfTwoNumbers;
printf(“Enter two integers: “);

// Two integers entered by user is stored using scanf()
function

scanf(“%d %d”, & rstNumber, &secondNumber);

// sum of two numbers in stored in variable sumOfTwoNum-
bers

sumOfTwoNumbers= rstNumber+secondNumber;

// Displays sum
printf(“%d + %d = %d”, rstNumber, secondNumber, su-

mOfTwoNumbers);
return0;
}

Qus. 4. Write a C programming for Multiplication two no.
#include<stdio.h>
int main()
{
int rst number, secondNumber, multOfTwoNumbers;

printf(“Enter two integers: “);

// Two integers entered by user is stored using scanf()
function

scanf(“%d %d”, & rstNumber, &secondNumber);

23

// sum of two numbers in stored in variable sumOfTwoNum-
bers

multOfTwoNumbers= rstNumber*secondNumber;

// Displays sum
printf(“%d x %d = %d”, rstNumber, secondNumber, mul-

tOfTwoNumbers);
return0;
}

REVIEW EXERCISE

Q.1. Who invented C Language?
Q.2. De ne what is C Token?
Q.3. De ne what is a Keyword?
Q.4. De ne what is data types?
Q.5. Explain the types of operators.
Q.6. Write a C program to display “Welcome to C”.

	basic of C Programming

