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1.1. INTRODUCTION
The science of field astronomy offers to surveyors a means of

determining the absolute location of any point or absolute location
and direction of any line-on the surface of the earth, by making
astronomical observations to celestial bodies. The celestial bodies
i.e., stars, sun, planets and moon appear to lie on the surface of a
very large sphere which appears to move around the earth. To
understand the real and apparent motions of these celestial bodies,
surveyors must be familiar with the geometry of a sphere and
spherical triangle.

Field astronomy has a wide scope in geodetic surveying for
determination of true meridian, latitude, longitude and time.

1.2. PURPOSE OF FIELD ASTRONOMY
The application of field astronomy is usually done for the

following purposes :
1. To determine the azimuth of the starting base of a

triangulation series.
2. To determine the azimuth of starting and closing sides of

precise traverses.
3. To determine the latitude and longitude of at least one of

the triangulation stations so as to locate its position on
the earth surface.

4. To check the accuracy of triangulation series at suitable
intervals independently.
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5. To carry out exploratory triangulations.
6. To demarcate the international  boundaries.

1.3. GEOMETRY OF A SPHERE
A sphere is a solid bounded by a surface whose every point is

equidistant from a fixed point called the Centre of the sphere. A
sphere may be formed by revolving a semi-circle about its diameter.

The important properties of a sphere are as under :
1. A section of a sphere by any plane is a circle whose

radius is inversely proportional to the perpendicular
distance of the plane from the centre of the sphere. (Fig. 1.1)

Let O and O´ be the centres of the great circle and any circle
PQS respectively. The perpendicular distance OO´ be x.

If R is the radius of the sphere, the radius of the circle PQS

O´P = 2 2 .R x− ...(1.1)

In equation (1.1), the value of O´P depends upon the value of x.
When x = R, the circle reduces to a point and if x = 0, the circle
attains maximum radius equal to R and its area equals πR2.
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Fig.  1.1. A sphere.
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2. Great circle. A section of a sphere is called a great circle
if the section plane passes through the centre of the sphere.

Let MLNH be one of the great circles which can be obtained by
different planes passing through the centre of the sphere O. The
radius of great circle is equal to the radius of the sphere.

3. Small circle. A section of a sphere is called a small circle
when the plane cutting the sphere does not pass through
the centre of the sphere.

Let PQS is a small circle. The radius of a small circle is always
less than the radius of the sphere.

4. A diameter of a sphere perpendicular to a great circle
is called the axis of the great circle.

The ends A and A´ are called the poles of the axis of the great
circle.

5. The area of small circles of the same sphere are
proportional to the angle they subtend at the centre of the
sphere.

6. The great circles which pass through the poles of any
other great circle, are called secondaries and the given great
circle is called the primary.

7. The angle between the planes of two secondaries to
another great circle, is equal to the arc they intercept on
their primary.

8. If the poles of a great circle lie on another great circle,
the poles of the latter will lie on the former. The two circles
are mutual secondaries.

9. The shortest distance between any two points on the
surface of a sphere is along the arc of a great circle passing
through the given points.

It may be noted that there can be one and only one such arc.
10. The distance of any point on a small circle from its

nearer pole, is called the angular radius or the polar distance
of the small circle.

11. The length of an arc of a great circle is equal to the
angle it subtends at the centre of the sphere of a unit radius.

Proof (Fig. 1.1.)
Let LN be an arc of the great circle MLNHM
A, A´ be the poles of its axis AOA´.
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R be the radius of the sphere
θ be the angle subtended by the arc LN at the centre of the

sphere, expressed in circular measure.
Then, arc LN = Rθ = θ if R is equal to unity.
12. The angular distance from the pole of a great circle

to any point on that great circle, is a right angle.
13. The arc of a small circle is equal to the corresponding

arc of the great circle multiplied by either the cosine of the
distance between the two circles, or the sine of the angular
radius of the small circle.

Proof. (Fig. 1.2)
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Fig. 1.2. Arcs of small and great circles.

Let  S be a great circle whose poles are A and A´.
S´ be a parallel small circle.
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AL and AN are two secondaries to the great circle S cutting the
small circle at S´ at L´ and N´ respectively.

Join L´O´ and N´O´, O´ being the centre of the small circle S´.
Join LO and NO.

As L´O´ and N´O´ are parallel to LO and NO respectively, the
angles L´O´N´ and LON are equal.

Let the radius of the small circle S´ be r, and that of the great
circle be R.

Join L´ and O and denote the angle L´OO´ as θ
From the right angled triangle L´O´O at O´, we get
Sin L´OO´ = L´O´/L´O = r/R (OL´ being radius of the sphere)
Similarly, it can be shown that

sin  N´OO´ =
´ ´
´

N O
N O = 

r
R

i.e. the angle subtended by the radial distance of any point on a
small circle is constant.

Again,
arc ´ ´
arc 

L N
LN =

r
R = sin L´OO´ = sin θ

or L´N´ = LN sin θ = LN sin AL´ ...(1.2)

But L´L = N´N (distance between the two circles)
∴ L´L = 90° � θ
Substituting the values in eqn. (1.2) we get

L´N´ = LN cos LL´ ...(1.3)

1.4. ARC  OF A SMALL CIRCLE
To compare the arc of a small circle on a sphere subtending any

angle at the centre of the circle within the arc of a great circle sub-
tending the same angle at its centre.

Let ab be the ac of a small circle having its centre C and pole P.
Let O be the centre of the sphere.

Construction (Fig. 1.3)
Joint Ca, Cb, OA and OB.
Since, OP is perpendicular to the plane Cab and OAB, it is

perpendicular to OA, OB, Ca and Cb.
Hence, the angle aCb or AOB measures the angle between the

plane POA and POB.



ADVANCED SURVEYING6

∴ ∠ aCb = ∠ AOB

Hence,
arc 

radius 
ab

Ca =
arc 

radius 
AB

OA ...(i)

From eqn. (i), we get
P

b

B
O

a

A

c

Fig. 1.3.

arc 
radius 

ab
AB =

Ca
OA = 

Ca
Oa = sin COa = cos AOa

i.e.,
arc 

radius 
ab

AB = AB cos Aa or ab = AB sin Pa

Also, angle bPa = arc AB is given by
Angle bPa = ab sec Aa or ab cosec Pa

1.5. A LUNE
The portion of the surface of a sphere enclosed by two great

semi-circles is called the lune. In the adjoining figure ABC and ADC
are two semicircles. The enclosed area ABCDA is a lune shown
shaded. (Fig. 1.4).

The angle BAD is called the angle of the lune. The two triangles
such as ABD and CBD which divide the lune in two portions are
called the colunar triangles.

The area of Lune.
Let r be the radius of the sphere.
A be the circular measure of the angle BAC (Fig.1.4)
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Area of lune
Area of sphere =

Angle of the lune
2π

where 2π is the circumference of the great circle.

∴ Area of lune = 4πr2 × 2
A
π = 2Ar2 ...(1.4)

1.6. ANTI-PODAL TRIANGLES
The triangles whose vertices are diametrically opposite to each

other are called the antipodal triangles. In (Fig. 1.5) the triangle
ABC and DEF are apparently antipodal.

Congruent triangles. When two spherical triangles can be
superimposed one over the other, they are called the congruent (or
identically congruent).
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Fig. 1.4. A lune Fig. 1.5. Anti podal triangles

Symmetrical equal triangles. The triangles say ABC and DEC
whose six elements of the one are equal to the corresponding elements
of the other, but can not be superimposed on each other due to their
convexity, are called symmetrical equal (Fig.1.5).

1.7. SPHERICAL TRIANGLE
The triangle which is formed upon the surface of a sphere by the

intersections of three great circles, is called a spherical triangle.
Let AB, BC and CA be the arcs of three great circles of the same

sphere having its centre at O. (Fig. 1.6)
The portion of the surface of the sphere bounded by these three

arcs (shown shaded) is a spherical triangle ABC.
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Fig. 1.6. A spherical triangle.

1.8. ELEMENTS OF A SPHERICAL TRIANGLE
A spherical triangle consists of six elements, i.e. three arc sides

and three spherical angles. The sides of the triangle are the arcs
AB, BC and CA which are generally represented by small letters a,
b and c respectively.

All the six elements of the spherical triangle ABC, i.e. three arc
sides and three angles, are expressed as angles.

1.9. SPHERICAL ANGLES
A spherical angle is formed by the intersection of two great

circles. It may be defined
by the plane angle between
tangents to the circles at
the point of intersection.

The spherical angles of
the triangle ABC are the
angles between the planes
CAO, AOB and BOC, and
are generally represented
by capital letters A, B and
C. (Fig. 1.7). Fig. 1.7. A spherical angle.
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1.10. PROPERTIES OF A SPHERICAL TRIANGLE
The important properties of any spherical triangle are as under:

1. Angles opposite to equal sides are equal and vice versa.
2. Any angle is less than two right angles.
3. The sum of any two sides is greater than the third.
4. The difference between two sides is less than the third.
5. The greater angle is opposite the greater side and vice versa
6. The sum of the three angles is always greater than two

right angles but less than six right angles.

Proof. Let ABC be spherical triangle having A, B, C as its angles.
Let a´, b´, c´ be the sides of the polar triangle.
Since, each of the angles A, B, C of triangle ABC is less than, π

A + B + C = ∠ 3π
and a´ + b´ + c´ = ∠ 2π

i.e., π−A + π−B + π−C < 2π
∴ A + B + C > π
Hence, π < A + B + C < 3π Proved.

1.11.    SOLUTION OF A SPHERICAL TRIANGLE
Knowing any three of six

elements a, b, c, A, B and C of a
spherical triangle ABC, the
remaining three elements may
be computed by the following
formulae:

Let A, B and C be the
spherical angles and a, b, c the
sides opposite them in the
spherical triangle ABC (Fig. 1.8).

1. Sine formulae :

sin
sin

a
A =

sin
sin

b
B = 

sin
sin

c
C ...(1.5)

Proof.

We know that cos A =
cos cos cos

sin . sin
a b c

b c
−

Fig. 1.8.

C
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B

c
A

b
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∴ sin2A =1 � cos2A = 1 � 
2

2 2
(cos cos cos )

sin . sin
a b c

b c
−

or sin2A =
2 2 2

2 2
sin .sin (cos cos cos )

sin . sin
b c a b c

b c

− −

or sin2A  =
2 2 2 2 2

2 2
(1 cos )(1 cos ) (cos cos cos 2cos cos cos )

sin . sin
b c a b c a b c

b c
− − − + −

or sin2A  = 

2 2 2 2

2 2 2

2 2

(1 cos cos (cos .cos )
(2cos cos cos 2cos cos cos )

sin . sin

b c b c
a b c a b c

b c

− − + −
+ −

or sinA  = 
− − − +2 2 2 1/2(1 cos cos cos 2cos cos cos )

sin . sin
a b c a b c

b c ...(i)

Considering the fact that the sides of a spherical triangle are
each less than two right angles, we may assume positive values of
sin A, sin b, and sin c.

Dividing the eqn. (i) by sin a, we get,

sin
sin

A
a

= 
2 2 2 1/2(1 cos cos cos 2cos cos cos )

sin sin sin
a b c a b c

a b c
− − − +

= 
2 2 2 1/2[1 (cos cos cos ) 2cos cos cos )]

sin . sin . sin
a b c a b c

a b c
− + + + ...(A)

The symmetry of eqn (A) suggests that

sin
sin

A
a

= 
sin
sin

B
b

= 
sin
sin

C
c

= 
2 2 2[1 (cos cos cos ) 2cos cos cos )]

sin . sin . sin
a b c a b c

a b c
− + + +

Hence, sin
sin

A
a

. sin
sin

B
b

. sin
sin

C
c

Proved.

2. Cosine formula
cos a = cosb.cosc + sin b sin c cos A ...(1.6)

Proof. Let AB, BC, CA represent the arcs of a great circle having
O as its centre.

ABC is a spherical triangle.
∴ ∠ BOC = a, ∠ AOB = c and ∠ COA = b
We know that the angle between two curves is equal to the angle

between the tangents to them at their common point of intersection.
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Construction. Draw AE and AD tangents to the great circle
arcs AC and AB containing the angle A and meeting OC and OB
produced respectively at E and D.

c

A

C

0

A

a

B
D

b
c

a

E
Fig. 1.9.

Assuming the sides containing the angle A, each less than π/2,
we get

∠ DAE = ∠ A
∴ ∠ EOD = ∠ BOC = a

∠ AOD = ∠ AOB = c
∠ AOE = ∠ AOC = b

By applying the cosine rule to plane triangles EOD and EAD,
we get,

a2 = b2 + c2 + 2bc cos A
Thus, from ∆EOD, we get

DE2 = OD2 + OE2 � 2OD. OE cosa ...(i)
and DE2 = AD2 + AE2 � 2AD. AE cosA ...(ii)
We also know that an angle between the tangent and the radius

is a right angle
∴ ∠ OAD = π/2 and ∠ OAE = π/2
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By applying the pythagorus theorem to ∆s OAD and OAE, we
get

OD2 = OA2 + AD2 ...(iii)
OE2 = OA2 + AE2 ...(iv)

By subtracting eqn (i) from eqn (ii), we get

O = (OD2 � AD2) + (OE2 � AE2) �
2OD . OE cos a + 2AD . AE cos A

By using the eqns (iii) and (iv), we get

or 2OD . OE cos a = OA2 + OA2 + 2 ADAE cos A.

or OD . OE cos a = OA2 + AD . AE cos A

Dividing by OD . OE, we get

cos a =
OA
OD . 

OA
OE + 

AD
OD . 

AE
OE . cos A ...(v)

From right angled triangle OAD, Fig. 1.9, we get

OA
OD = cos c,

AD
OD = sin c,

OA
OE = cos b,

AE
OE = sin b,

Substituting these values in eqn. (v), we get
cos a = cos c cos b + sin c sin b . cos A (A)

Similalry, the other formulae are :
cos b = cos c cos a + sin c sin a . cos B (B)
cos b = cos a cos b + sin a sin b . cos C (C)

Formulae A, B and C are very widely used both in spherical
trigonometry and astronomy.

cos A =
cos cos . cos

sin . sin
a b c

b c
−

...(1.7)

cos A = � cos B cos C + sin B sin C cos a...(1.8)

Fig. 1.10.
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sin 
2
A

=
sin( )sin( )

sin . sin
S b S c

b c
− −

...(1.9)

cos 
2
A

=
sin sin( )

sin . sin
s S a

b c
−

...(1.10)

tan 
2
A

=
sin( )sin( )

sin sin( )
S b S c

s S a
− −

− ...(1.11)

where a + b + c = 2S
If two spherical angles A and B and the side c opposite to the

third angle C are known, then

tan 
1
2

(a + b) =
1
2
1
2

cos ( )

cos ( )

A B

A B

−

+ tan 
2
c

...(1.12)

tan 
1
2

(a � b) =
1
2
1
2

sin ( )

sin ( )

A B

A B

−

+ tan 
2
c

...(1.13)

If two sides a and b and the spherical angle opposite the third
side c are known, then

tan 
( )

2
A B+

=
1
2
1
2

cos ( )

cos ( )

a b

a b

−

+ cot 
2
C

...(1.14)

tan 
( )

2
A B−

=
1
2
1
2

sin ( )

sin ( )

a b

a b

−

+ cot 
2
C

...(1.15)

If c, B, a and C are any four elements of a spherical triangle, the
side a which lies between B and C is called the inner side, and c is
called the other side. Similarly, B is called the inner angle and C is
called the other angle. The relation between four adjacent elements
may be stated as under :

(cosine of inner side) × (cosine of inner angle)
= (sine of inner side) × (cotangent of other side)
� (sine of inner angle) × (cotangent of other angle)

i.e. cos a cos B = sin a cot c � sin B cot c. ...(1.16)

1.12. SOLUTION OF A RIGHT ANGLED SPHERICAL
  TRIANGLE BY NAPIER´S RULE

Solution of a right angled spherical triangle by Napier´s Rule,
may be made as under :
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(i) Draw a circle and divide it into five parts.
(ii) Enter two sides containing the right angle, i.e. c and a

where B is a right angle.

(iii) Enter the complements of the remaining three elements,
i.e. (90°� C), (90°� b), (90°� A) either clockwise or anti-clockwise.

C

B

A

b

a

c

90°–b

90°–c90°–A

c a

90°

Fig. 1.11. Napier´s rule.

Considering any part as a middle part, the two parts adjacent to
it, are called, adjacent parts and the remaining two parts are called,
opposite parts. (Fig. 1.11)

Napier´s Rules of Circular Parts may be stated as under :
1. Sine of the middle part  = Product of the tangents of

     adjacent parts.
2. Sine of the middle part  = Product of the cosines of opposite

 parts.

i.e. sin a = tan c . tan (90° � C)
= tan c . cot C ...(1.17)

and sin a = cos (90°� A) cos (90°� b)
= sin A sin b ...(1.18)

Note. The following points may be noted :
(i) By convention, each side of a spherical triangle is taken to

be less than 90°.
(ii) The value of the sine or cosine of a side or of an angle

obtained from the given data, must be less than unity to
achieve a solution.

1.13. SPHERICAL EXCESS
The three angles of a spherical triangle do not sum up exactly

180°, their sum always exceeds two right angles by an amount which
is known as the spherical excess. The magnitude of the spherical
excess of any spherical triangle, is directly proportional to its area.
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Proof. Let ABA´DA and ACA´EA be two intersecting great circles
which are intersected by a third great circle BCDEB orthogonally
(Fig. 1.12).

Then, the arc BC is a measure of the spherical angles at A and
A´.

If R is the radius of the sphere, the total surface area S´ of the
sphere is 4πR2.

Area of the portion ABA´CA = 
´
2

S BC
Rπ

×
= 

´ .
2

S R A
Rπ

×

= ´
2
A

S
π

if angle A is in radians

= ´
360

A
S

°
if angle A is in degrees.

Again, let three great circles BCEDB, ABFEA and ACFDA
intersect each other to form a spherical triangle ABC (Fig. 1.13).

A

B

C

A´

D

E

C

A

B

E

D

F

Fig. 1.12 Fig. 1.13

From the symmetry of the Fig. 1.13,
Surface area of the triangle ABC = Surface area of the triangle

DEF = S
Surface area of the portion   ABD = Surface area of the portion

EFC = β
Surface area of the portion   BCF = Surface area of the portion

DEA = γ
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Surface area of the portion   BDF = Surface area of the portion
EAC = δ

Total surface area of the portion CADBC

= S + β = ´
360

C
S×

°
...(1.19)

Total surface area of the portion ACFBA

= S + γ = ´
360

A
S×

°
...(1.20)

Total surface are of the portion BAECB

= S + δ = ´
360

B
S×

°
...(1.21)

By adding equations (1.19), (1.20) and (1.21), we get

3S + β + γ + δ =
´

360
S

°  (A + B + C)

or 2S + (S + β + γ + δ) =
´

360
S

°  (A + B + C)

But, S + β + γ + δ = surface area of the hemisphere ACFDA = 
´

2
S

∴ 2S + 
´

2
S

=
´

360
S

° (A + B + C)

or 2S = 
´

360
S

° (A + B + C � 180°)

But, by definition A + B + C � 180° = spherical excess (e) of the
spherical triangle ABC.

∴ e =
2 360

´S
× °

= 1
4

180
´

S
S

× °

=
Area of spherical triangle
One-fourth area of sphere ×180°

or e = 2
Area of triangle

Rπ
× 180° ...(1.22)

1.14. THE AREA OF A SPHERICAL TRIANGLE
If A, B and C be the spherical angles of a triangle, the area of

the spherical triangle ABC from eqn. (1.22)
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i.e. Area ∆ =
2( � 180 )

180
R A B Cπ + + °

°

=
2

180
R eπ

°
...(1.23)

where e is the spherical excess.

1.15. CELESTIAL SPHERE AND RELATED
  ASTRONOMICAL TERMS (FIG. 1.14)

The following technical terms may be clearly understood :
1. The Celestial Sphere. The imaginary sphere on which

heavenly bodies, i.e. stars, sun, moon, etc. appear to lie, is known as
the celestial sphere. As stars are at vast distances attached to the
surface of the imaginary celestial sphere, the centre of the earth
may be assumed as the centre of the celestial sphere.

2. The Zenith. The point on the celestial sphere, exactly above
the observer�s head, is known as the zenith. It may be obtained by
the prolongation of the plumb line upward up to the celestial sphere.

Zenith
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C
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-N
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S
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Declination circle

HorizonObserver's

East

Fig. 1.14. Celestial sphere.
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3. The Nadir. The point on the celestial sphere exactly below
the observer´s station, is known as the Nadir. It may be obtained by
the prolongation of the plumb line downward through the earth up
to the celestial sphere.

4. The Zenith-Nadir Line. The zenith, the observer�s station,
the centre of the earth and the Nadir, all lie on a line which is known
as Zenith-Nadir line.

5. The Celestial Horizon. The great circle of the celestial
sphere obtained by a plane passing through the centre of the earth
and perpendicular to the Zenith-Nadir line, is known as the celestial
horizon. The celestial horizon is also sometimes known as true,
rational or geocentric horizon.

6. The Visible Horizon. The small circle of the earth which is
obtained by visual rays passing through the point of observation, is
known as the visible horizon. Its radius depends on the altitude of
the point of observation.

7. The Sensible Horizon. The small circle which is obtained
by a plane passing through the observer´s station and being
tangential to the earth´s surface and perpendicular to the Zenith-
Nadir line at the point of observation, is known as the sensible
horizon.

8.   The Terrestrial Equator. The great circle of the earth,
the plane of which is perpendicular to its axis of rotation, is known
as the terrestrial equator.

9. The celestial equator. The great circle of the celestial sphere,
the plane of which is perpendicular to the axis of rotation of the
earth and its continuation, is known as the celestial equator. It may
be obtained by projecting the terrestrial equator on the celestial
sphere.

10. The terrestrial poles. The points at which the earth�s axis
of rotation meets the earth�s surface, are known as the terrestrial
poles.

11. The celestial poles. The points at which the earth�s axis of
rotation, on prolongation on either side, meets the surface of the
celestial sphere, are known as celestial poles.

12. Vertical circles. The great circles of the celestial sphere,
which pass through the Zenith and Nadir, are known as vertical
circles.

13. The observer´s Meridian. The vertical circle which passes
through the Zenith and Nadir of the station of observation as well
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as through the poles, is known as observer�s meridian or celestial
meridian.

14. The prime vertical. The vertical circle which is perpen-
dicular to the observer�s meridian and which passes through the
east and west points of the horizon, is known as the prime vertical.

15. North and South Points. The projected points of the
elevated north pole and depressed south poles, on the observer�s
horizon, are known as north and south points respectively.

16. East and West points. The points at which the prime
vertical meets the horizon, are known as east and west points. These
points may also be obtained by the intersection of the equator and
horizon.

17. Ecliptic. The great circle of the celestial sphere which the
sun appears to describe with earth as centre during a period of one
year, is known as ecliptic. The angle between the plane of ecliptic
and the plane of the equator, is known at obliquity and its value is
23° 27´.

18. First Points of Aries and Libra. The first point of Aries
(γ) is the point where the sun crosses the equator from south to
north on or about 21st March, when day and night are of equal
duration. The first point of Libra ( ) is the point where the sun
crosses the equator from north to south.

19. Equinoxes. The first point of Aries and the first point of
Libra, which are six months apart in time, are generally known as
vernal Equinox and Autumnal Equinox respectively.

20. Solstices. The points on the ecliptic at which the north or
south declination is maximum, are known as the solstices.

21. Summer Solstice. The time at which the sun is farthest
from the equator is called the summer solstice.

22. Winter Solstice. The time at which the sun is farthest south
from the equator is called winter solstice.

The traces of ecliptic and equators are shown by two great circles
in (Fig. 1.15).

AB is the trace of the equator
CD is the trace of the ecliptic
γ is the first point of Aeries

is the first point of Libra.
D  is   summer  solstice  for northern hemisphere.
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C is winter solstice for northern hemisphere.

P

P´

A B

D

C
γ

Equator

Fig. 1.15. Ecliptic and Equator

23. Motion of sun. The motion of sun during a year is as under:
On 21st March, the sun is at First point of Aries (vernal equinix)

and its right ascension and declination both are zero.
On 21st June, the sun is at its summer solstice and its right

ascension is 90° (6h) and declination is 23°27´ N.
On 21st/22nd September, the sun is at First point of Libra

(Autumnal Equinox) and its right ascension is 180° (12h) and
declination is zero.

On 22nd/21st December, the sun is at its winter solstice and its
right ascension is 270° (18h) and declination is 23° 27´ S.

From March 21 to September 22, the sun�s declination is north
whereas from September 22 to March 21, sun�s declination is South.

Days and nights are of equal duration on March 21 and
September 22 all over the world.

1.16. DIURNAL MOTION AND SIDEREAL DAY
Due to earth�s rotation about its axis PP´ from west to east, the

whole celestial sphere appears to rotate about PP´ in the opposite
direction and all the celestial objects, the stars, the sun, the moon
and the planets appears to go round the earth, in the direction of
the rotation. That is why, they seem to go round the axis PP´, all in
the same direction which is opposite to that of the earth�s rotation
and thus the time taken to go once round the earth is the same for
all of them namely the period of the earth�s rotation once about its
axis. This fixed period is called a sidereal day. And the apparent
motion of the stars is called their diurnal motion. The angular
distances of the stars from each other remains unaltered and the
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distances of any star S from the poles P and P´ will remain constant
for all times. This constant distance of a star from P is called its
north polar distance and the diurnal (or daily) path of the star in
the sky is therefore a small circle having P,  P´  as poles, and hence
remain parallel to the celestial equator. The equator defines itself
as a diurnal path of a star having its polar distance as 90°.

Q

Z

P

N

N´

R

Z´

P´

S´

S
A

q

r

B

S1

S2

Fig. 1.16. Diurnal motion of a celestial body.

In the above discussion, the poles P and P´ are imaginary points,
but this position of the north pole P is indicated by a star called pole
star which is very near to it. It has been observed that any star seen
in the eastern horizon the sun rises gradually up to the observer�s
meridian and thereafter descends to the western horizon and
disappears. It is seen again in the eastern horizon, the next night.
Moreover the interval between two consecutive risings of a star on
the eastern horizon is found to be the same for all stars at all time.
This interval is defined as a sidereal day. Moreover, the distance of
any star from the pole star remains unaltered, and thus, it shows
that star�s polar distance is constant.

Considering the diurnal path of a star S to be a small circle,
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S1A, S2B parallel to the equator QR cutting the horizon at S1 and S2
and meridian at A and B. The transit at A above the pole P is called
upper transit and the other at B is called lower transit. the sidereal
day can be defined as the interval between two consecutive transits
of a star across the same meridian, transits being either both upper
or both lower. A sidereal day is further divided into 24 sidereal hours,
each hour into 60 minutes and each minute divided into 60 seconds.
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Fig. 1.17.

1.17. ASTRONOMICAL CO-ORDINATE SYSTEMS
In order to locate the position of heavenly bodies on the celes-´

tial sphere, at any moment, the following system of co-ordinates �
are used :

1. Right ascension and declination system
2. Altitude and Azimuth system
3. Declination and hour angle system
4. Celestial latitude and longitude system.
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1. The right ascension and declination system. (Fig. 1.18).
This system is generally used for publication of the star almanacs in
which location of heavenly bodies is referred to by spherical co-
ordinates i.e. Right Ascension and Declination. These coordinates
are independent of the observer�s position.

Z P

N

E´S

E

γ

M´
O

M

Declination
circle ( )γ

Declination
circle (M)

Fig. 1.18. Right ascension and declination.

(i) Declination (δ). The angular distance of the celestial body
from the celestial equator along the great circle passing through the
celestial poles and the celestial body, is known as the declination of
the celestial body. Declination varies from 0° to + 90° if the heavenly
body is north of the equator and 0° to � 90° if it is south of the
equator. The great circle is called the declination circle and the
angular distance of the celestial body from the nearer pole is known
as the co-declination or polar distance of the celestial body.

Declination and polar distance of any celestial body are
complementary to each other.

(ii) Right Ascension. The equatorial angular distance measured
eastward from the declination circle of the First Point of Aries to
the declination circle of the celestial body, is called Right Ascension

The spherical co-ordinates of the celestial body M are :
Right ascension γM´ measured along the equator eastward.
Declination M´M is measured along declination circle of the
celestial body from the equator.
2. Altitude and Azimuth system (Fig. 1.19). This system of

coordinates is necessiated to make direct observations with the help
of a theodolite. In this system, the horizon is the plane of reference
of spherical co-ordinates. The location of the heavenly body is referred



ADVANCED SURVEYING24

to by the azimuth (A) and the altitude (α) of the celestial body.
(i) The Azimuth (A). The angle between the observer´s meridian

and the vertical circle passing through the celestial body and the
zenith, is known as the azimuth.

(ii) The Altitude (α). The angular distance of a heavenly body
above the horizon, measured on the vertical circle passing through
it, is called its altitude.

P (Star)

N

P´
E

S

Z (Zenith)

0 α
A

Azimuth

RA
P (Pole)

Fig. 1.19. Azimuth and altitude system.

Let P be a heavenly body and P´ be the point where the vertical
circle passing through P and Z meets the horizon. The first
coordinate of P is the azimuth (A), the angle between the observer�s
meridian and the vertical circle through it. The other co-ordinate of
P is the altitude (α), the angular distance measured above or below
the horizon along the vertical circle through the body. The azimuth
is always measured from north either eastward or westward in
northern hemisphere and from south eastward or westward in
southern hemisphere The angular distance between the body and
the zenith along the vertical circle is known as zenith distance or co-
altitude of the body. If α is the altitude, the co-ordinates of body are:
(i) Azimuth (A) and Zenith distance Z = 90°- α.

3. Declination and hour angle system (Fig. 1.20).
In this system the location of the heavenly body is referred to by

spherical co-ordinates i.e. the hour angle and declination of the body.
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(i) Hour angle (HA). The angular distance along the arc of the
horizon measured from the observer�s meridian westward to the
declination circle of the body, is known as the hour angle.

Or
The angle between the observer�s meridian and the declination

circle of the body, is known as the hour angle of the body.
The hour angles of the celestial bodies in the northern

hemisphere are always measured from the south along horizon and
towards west. Its value varies from 0° to 360°. If the hour angle is
either zero or 180°, the body lies on the observer´s meridian, if its
value varies from 0° to 180°, the body is in the western hemisphere
and if its value varies from 180° to 360°, the body is in the eastern
hemisphere.

The spherical co-ordinates of the celestial body M on the celestial
sphere are : Hour angle EPM´ measured from the south westward ;
Declination M´M measured from the equator upward.

Z

P

N

E´S

E

M´
O

M

Observer
meridian

HA

Horizon Equator

Fig. 1.20. Declination and hour angle System.

In Fig. 1.20 celestial body M is seen in the eastern hemisphere.
4. The celestial latitude and longitude system (Fig. 1.21).

In this system location of a heavenly body is referred to by spherical
the co-ordinates : celestial latitude and celestial longitude.

(i) The celestial latitude. The arc of a great circle perpendicular
to the ecliptic, intercepted between the celestial body and the ecliptic,
is known as the celestial latitude of the body. Its value varies from
zero to 90°.
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(ii) The celestial longitude. The arc of an ecliptic intercepted
between the great circle passing through the First point of Aries (γ)
and the circle of the celestial latitude passing through the body. Its
value varies from 0° to 360°.

Pole of ecliptic

M

0

M´γ E´

E

θ
φ

Sun

Ecliptic

Equator

Pole

Fig. 1.21. Celestial latitude and longitude System.

In Fig. 1.21 MM´ is the celestial latitude and γM´ is the celestial
longitude of the heavenly body M .

1.18. THE RELATIVE ADVANTAGES OF DIFFERENT
  SYSTEMS OF CO-ORDINATES

The horizon, meridian, zenith, north and south points for a
station of observation do not vary whereas the altitude, zenith
distance, and azimuth of celestial bodies change from place to place
and from time to time. The equator, ecliptic, the First point of Aries
(γ) and the poles of the equator are common to all observers. The
pole P in the northern hemisphere can be easily fixed by knowing
the latitude of station of observation and consequently the equator
can be imagined with a fair accuracy. But, it is difficult to imagine
the positions of the First point of Aries and First point of Libra at
any instant as they move on the equator due to diurnal motion. It is
comparatively more difficult to imagine the ecliptic and the path
traverses by the sun on the celestial sphere.
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From the above discussion, it is evident that it is not easy to
identify celestial bodies (particularly stars) in the sky by their Right
Ascension and Declination or by their Latitudes and Longitudes.
The latitude of the sun is always zero. The latitude and longitude
co-ordinates are therefore very useful to fix the positions of the sun.
As the right ascension and the declination of heavenly bodies do not
vary, these are very useful to prepare star almanacs. Though,
azimuth and altitude vary from place to place and time to time,
these co-ordinates can be directly measured with the help of a
theodolite.

1.19. TERRESTRIAL CO-ORDINATES OF POINTS ON THE
  EARTH’S SURFACE (Fig. 1.22)

P´

Equator

Horizon
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Fig. 1.22. Terrestrial latitude and longitude System.

To locate the position of various points on the surface of the
earth, a system of terrestrial latitudes and longitudes is used.

(1) The terrestrial meridian. The great circle whose plane
passes through the axis of earth i.e. through the north and south
poles of the earth, is known as terrestrial meridian.
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(2) The terrestrial equator. The trace of the great circle whose
plane is perpendicular to the axis of earth�s rotation, is known as
the terrestrial equator.

(3) The terrestrial latitude. The angle subtended at the centre
of the earth by the arc of meridian intercepted between the station
and the equator, is known as the terrestrial latitude. Its value varies
from 0° to 90°. It is said to be positive if measured above the equator
and negative if measured below the equator. The latitude of the
equator is zero and that of north and south poles are + 90° and � 90°
respectively. The complement of the latitude which is the angular
distance between the station and the nearer pole measured along
the meridian, is termed co-latitude.

(4) The terrestrial longitude. The arc of the equator
intercepted between the meridian plane of the observer�s station
and some other arbitrarily chosen fixed meridian plane is known as
the terrestrial longitude of the place. The standard meridian
universally adopted is that of Greenwich, a place west of London in
United Kingdom. The value of longitudes varies from 0° to 180° and
is said to be east or west of Greenwich. The points on any meridian,
have the same longitude.

In Fig. 1.22 if NS and EE´ are the great circles of the horizon
and the equator, respectively P is the north pole, and ZE´SP´ENPZ
is the great circle representing the standard meridian. The terrestrial
co-ordinates of the place M are :

Latitude (θ) = angular distance M´M measured along M´P above
the equator E´E.

Longitude (φ) = angular distance E´M´ measured along the
equator from the standad meridian.

1.20. FIXING A CELESTIAL BODY ON THE CELESTIAL
SPHERE

The celestial bodies remain relatively fixed on the celestial
sphere. A diagram illustrating their relative positions on the celestial
sphere may be drawn as explained below :

1. Assume the plane of the paper to represent the plane of
the observer�s meridian.

2. Draw a circle of suitable radius to represent the observer�s
meridian NZSZ´ where NS is its horizontal diameter and
ZZ´ is vertical diameter. NS therefore presents the horizon
and ZZ´ as the Zenith-Nadir line. Let O be the centre of
the circle.
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3. Draw OP making angle PON = latitude of the place.
Produce PO to cut the circle at P´. P and P´ are the elevated
and depressed poles.

4. Draw a line EE´ passing through the centre of the circle
and perpendicular to PP´. EE´ is the trace of the celestial
equator.

5. Draw a line w´w making an angle 23° 27´. ww´ represents
the ecliptic of the sun´s path. The points of intersection of
ecliptic and equator are First points of Aeries and Libra.
The points where sun crosses the equator from south to
north is called the First point of Aeries (γ) and the point
where sun crosses the equator from north to south, is called
the First point of Libra ( ).

6. Measure EM on the equator equal to the given right
ascension of the star along the equator, taking γ as zero
and measuring eastward.

7. Draw a great circle PM through P and M to represent the
declination circle of the given celestial body if it is north of
equator otherwise join P´M for the south declination. To
locate the celestial body on the declination circle, measure
an arc along the declination circle equal to the given
declination with proper sign.

8. If the given celestial body is sun, its position on the celes
tial sphere will be at the point of intersection of declination
and ecliptic already fixed.

Example 1.1. Draw a diagram of the celestial sphere as seen at
a place Latitude 28° 42´ on 15th April at 4 p.m., showing therein the
positions of the sun and a star, RA is 6° 36´ and declination 24° 24´
N.

Solution. (Fig. 1.23).
Draw the celestial sphere as explained here under :

1. Draw a circle to prepresent the observer�s meridian.
2. Assume Z, N as the zenith and nadir, H and H´ as the

North and South points on the horizon.
3. Mark off HP and H´P equal to 28° 42´ to fix the poistions

of north and south poles P and P´ respectively.
4. Locate Q and Q´ to define the equator such that PQ = P´Q

= 90°.
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Fig. 1.23.

5. The points of intersection of the horizon and the equator
give the locations of the east and west points.

6. As the sun is west of maridian, its hour angle is evidently
equal to 4 × 15 = 60°. Mark off C´M on the ecliptic equal to
60° measured from the meridian westward. Thus, PM is
the sun´s declination circle.

7. On 15th April, the sun�s RA is about 25° so that sun is 25°
west of M on the equator or 90° � (60° + 25°) from west
point. Similarly E is 5° from ( ) where ( ) is the First
point of Libra.

8. Draw a great circle so that it makes an angle 6° 36´ with
meridian on the eastern side, to define the declination
circle. Plot an arc equal to 24° 24´ above the equator to
locate the star.

1.21. THE PARALLEL OF LATITUDE
A small circle through a point perpendicular to the axis of rotation

of the earth, is known as the parallel of the point. The latitudes of



FIELD ASTRONOMY 31

different points on a parallel are the same. As the latitude of various
parallels increases, the radius of the parallels decreases. The
parallels of the poles having + 90° or � 90° latitudes are circles of
zero radius.

1.22. THE VALUE OF ONE DEGREE LATITUDE
The circles of various parallels are parallel to each other. The

entire meridian of a place, which is a great circle, is divided into 4 ×
90° equal parts. The value of one degree of latitude is, therefore,
equal to the circumference of the earth divided by 360°.

i.e. 
2 6370

360
π ×

= 111.12 km if the mean radius of the earth is assumed

as 6370 km. The value of a degree of latitude is a constant value
every where.

1.23. THE VALUE OF ONE DEGREE LONGITUDE
The meridians of different places are the great circles which

converage to the poles. Due to this reason, the value of a degree of
longitude has different values at different latitudes. At the equator
the value of a degree of longitude is maximum, i.e. 111.12 km. This
value decreases as the latitude increases and finally its value becomes
zero at the north and south poles.

1.24. THE NAUTICAL MILE
The angular distance along the great circle corresponding to an

angle of one minute arc subtended at the centre of the earth, is
known as the Nautical Mile. Its value is equal to total circumference
of the great circle divided by number of minutes subtended by the
total circumference at the centre of the earth.

∴ Nautical Mile = 
2 6370
360 60
π ×

× = 1.853 km, assuming the mean

radius of earth as 6370 km.
Departure. The distance between two points in nautical miles

measured along the parallel of latitude is called the departure.
∴ Departure = difference of longitude in minutes × cos latitude.
The shortest distance measured along the surface of the earth

between two places is the length of the arc of the great circle passing
through them
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Note. The following points may be noted.
(i) Write the two points lie in the same hemisphere either

western or eastern, the difference between their longitudes
is obtained by subtracting one longitude from the other.

(ii) When the two points are in different hemisphere, the
difference between their longitudes is obtained by the sum
of their longitudes.

(iii) When the sum of longitudes of two points lying in different
hemispheres exceeds 180° it should be subtracted from
360° to obtain the required difference of longitude of the
two points.

Example 1.2. Find the difference of longitude between two places
A and B when their longitudes are as under :

(i) Longitude of A = 45°30´W; Longitude of B = 67°35´E
(ii) Longitude of A = 63°25´E; Longitude of B = 127°46´W;

Solution. (i) The difference of longitude between A and B
= 45°30´ + 67°35´ = 113°05´ Ans.

(ii) The sum of the longitudes of two stations.
= 63°25´ + 127°06´ = 190°31´ Ans.

Since the sum of the two longitudes is greater than 180°, the
difference of longitude beween A and B.

= 360° � the sum = 360° � 190°31´
= 169°29´ Ans.

Example 1.3. Determine the distance in nautical miles between
Hazaribagh (Jharkhand) and Bahrampur (West Bengal) along the
parallel of latitude 24° and having longitude 85°16´ E and 88°22´E
respectively.

Solution.
Distance in nautical miles between two points along the parallel

of latitude = departure = difference of longitudes in mintues × cos
latitudes.

Here, the difference of longitude between Hazaribagh and
Bahrampur

= 88°22´ � 85°16´ = 3°06´
= 3 × 60 + 6 = 186 minutes

∴ Departure = 186 cos 24° = 169.92 nautical miles. Ans.
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1.25. THE SHORTEST DISTANCE BETWEEN TWO POINTS
  ON THE EARTH (FIG. 1.24)
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Fig. 1.24

The shortest distance between two points on the surface of the
earth is the angular distance measured along the great circle passing
through the given points. The value of the shortest distance may be
obtained by multiplying the radius of the earth by the angle
subtended by the arc of the great circle passing through the points
at the centre of the earth in radians.

Let A and B be the given points.
θ1 and θ2 be the latitudes (θ1 > θ2)
φ1 and φ2 be longitudes (φ2 > φ1)
R is the radius of earth whose centre is at O.
In spherical triangle ABP, side AP = 90° � θ1 ; side BP = 90° � θ2

Angle APB = φ2 � φ1 = difference in longitudes of the points
Applying cosine rule to the triangle ABP, we get
cos AB = cos AP . cos BP + sin AP . sin BP . cos APB ...(1.24)
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Knowing the value of the angle AB, the value of the arc AB is
equal to R × central angle AOB in radians.

∴ The shortest distance AB = 
angle 

180
R AOB π× ×

° ...(1.25)

Example 1.4. Determine the shortest distance between Nasik
(Maharashtra) having coordinates latitude 20°00´N, Long. 73°45´ E
and Warangal (Andhra Pradesh) having coordinates latitude 18°00´
Langitude 79°34´E.

Solution. (1.25)
Pole

Nasik

Warangal
W

P

N

λ = 20°00´
long. = 73°45´

λ = 18°00´
long. = 79°34´

Fig. 1.25.

In spherical triangle PNW, we have
PN = 90° �  Latitude of N

= 90° � 20°00´ = 70°00´
PW = 90° � Latitude of W

= 90° � 18°00´ = 72°00´
The spherical angle NPW = difference of longitudes of Narangal

and Nasik
= 79°34´ � 73°45´ = 5°49´

Using the cosine formula for spherical triangle NPW, we get
cos NW = cos PN cos PW + sin PN sin PW cos N PW
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= cos 70°00´ cos 72°00´ + sin 70°00´ sin 72°00´ cos 5°49´
= 0.34202 × 0.309017 × 0.939693 × 0.951057 × 0.994851

NW = 0.10569 + 0.8891 = 0.99479
NW = cos�1 0.99479 = 5.851204 = 5°51´33´´
Arc = R × central angle

where R is the earth radius = 6372 km

∴ NW =
6372 5.851204

180
× × π

°
Hence, = 650.30 km Ans.

1.26. RELATIONSHIPS BETWEEN VARIOUS
  CO-ORDINATES

The following relationships are very important in field
astronomy.

(1) Latitude of a place and altitude of the pole (Fig. 1.26)
Let NS be the horizontal plane passing through the centre of

the earth and EE´ be the equatorial plane.
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Fig. 1.26. Latitude and altitude of pole.
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Now ZESP´Z´E´NPZ represents the observer�s meridian on the
surface of the earth with Z as the observer�s position.

By definition EZ = latitude = θ
NP = altitude of the elevated pole = α

∠ EOZ + ∠ ZOP = ∠ ZOP + ∠ PON = 90°
But, ∠ EOZ = θ and ∠ PON = α
∴ θ + ∠ ZOP = ∠ ZOP + α

or θ = α
i.e. the altitude of the pole is always equal to the latitude of the

observer´s position.
(2) Latitude of the place, the declination and altitude of

a celestial body on the observer�s meridian. (Fig. 1.27)

P´
E´

S

Z
R2 R3

R1 R4

N

Horizontal
plane

Equatorial
plane

E

Fig. 1.27. Latitude, declination and altitude of star.

The celestial body may occupy the positions on the observer�s
meridian as under :

(i) The celestial body south of the equator, i.e. R1

(ii) The celestial body south of zenith but north of the equator
i.e. R2.
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(iii) The celestial body north of zenith but above the pole, i.e.
R3.

(iv) The celestial body below the pole but above the horizon,
i.e. R4.

The above four positions of the celestial body R are shown in
Fig. 1.19.

Let θ be the latitude of the observer�s station.
   δ and α be the declination and altitude of the celestial body
  respectively
  z be meridian zenith distance.

Evidently EZ = ER2 + R2Z in case opposition (ii)
But, by definition EZ is the latitude, ER2 is the declination and

R2Z is the zenith distance of the celestial body.
By giving proper signs to the declinations and the zenith

distances, the above equation holds good for all the four positions. If
the celestial body is south of the equator, its declination value is
negative. Similarly, if the celestial body is north of zenith, the zenith
ordinate is negative.

Again, for the position of the celestial body shown at R3, we get
ZP = ZR3 + R3P.

But, from definition, ZP = colatitude (90° � θ), ZR3 is the
coaltitude (90° � α) and R3P is the co-declination (90° � δ), the polar
distance p.

∴ (90° � θ) = (90° � α) + p
or θ = α � p                                                 ...(1.26)

Similarly, for the position of celestial body shown at R4, we get
ZR4 = ZP + PR4.

But, from definition ZR4 in the co-altitude ; ZP is the colatitude
and PR4 is the polar distance = p

∴ (90° � α) = (90° � α) + p
or θ = α + p                                               ...(1.27)

From equations (1.25) and (1.26) if the altitudes of a circumpolar
star on the observer�s meridian when it is north of the pole and south
of the pole are known, the latitude of the observer�s position may be
computed by taking the mean of the altitudes of the star.
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1.27. GEOMETRY OF AN ASTRONOMICAL TRIANGLE
  (Fig. 1.28)
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Fig. 1.28. Astronomical triangle.

The spherical triangle obtained by joining the pole, the zenith
and the celestial body on the celestial sphere by three great circles,
is known as an astronomical triangle.

Let α = Altitude of the celestial body
δ = Declination of the celestial body
θ = Latitude of the observer.

Then ZP = Co-latitude of the observer
= 90° � θ = ζ

ZR = Zenith distance or co-altitude
= 90° � α = z

PR = Polar distance or co-declination
= 90° � δ = p

The angle ZPR = hour angle (H.A.) of the celestial body.
The angle PZR = azimuth (A) of the celestial body.
The angle ZRP = the parallactic angle.
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By making astronomical observations, if the three sides ZR, RP
and PZ of the astronomical triangle ZPR are known, the hour angle
(H) and the azimuth (A) of the celestial body, may be computed
from the formulae of the spherical trigonometry given in article 1.8.

1.28. DIFFERENT POSITIONS OF THE STAR WITH RESPECT
 TO THE OBSERVER´S MERIDIAN

Every star appears to move from east to west about the axis of
the earth, whose elevated end is known as the north pole or simply
a pole. For the calculation of the azimuth of the star at the time of
observation, the following positions of every star in the heaven are
important to a surveyor,

(i) Star at elongation (ii) Star at culmination
(iii) Star at prime vertical (iv) Star at horizon.

1. Star at Elongation (Fig. 1.29)

R´

Z

NE

WS

R´ P

90°

90°

Horizon

Pole

Fig. 1.29. A star at elongation.

A star is said to be at elongation when its distance east or west
of the observer´s meridian is the greatest. At elongation, the star
does not move in azimuth, its motion being entirely in altitude and
as such the azimuth of the star is a maximum. At elongation, the
diurnal circle, the path of star and the vertical circle through the
star are tangential to each other. The spherical triangles PRZ and
PR´Z are thus right angled triangles at R and R´.
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(i) Star at eastern elongation. A star is said to be at eastern
elongation when it is at its greatest distance to the east of the
observer´s meridian, such as R´ in Fig. 1.21.

(ii) Star at western elongation. A star is said to be at western
elongation when it is at its greatest distance to the west of the
observer�s meridian, such as R in Fig. 1.21.

Knowing the declination (δ) of the star and the latitude (θ) of
the place of observation, the azimuth (A), the hour angle (H) and
the altitude (α) of the star, may be easily calculated by applying
Napier´s rule as under :

In a right angled triangle PRZ [Fig. 1.30].

90°

90°–θ

Z

H

90
°–

α

A

P P

90°–α 90°–A

90°–δ
θ

90°–H

90°–δ

Fig. 1.30.

Let RP = 90° � δ where δ is declination of star
PZ = 90° � θ where δ is latitude of place
ZR = 90° � α where α is altitude of star

The five parts of the Napier�s circle are entered as 90° � α, 90° �
δ, 90° � H, 90° � (90° � θ) and 90° � A in Fig. 1.22(b).

(i) Calculation of the hour angle (H)
Sine of middle part= Product of tangents of adjacent parts

i.e., sin (90° � H) = tan (90° � δ) . tan θ
or cos H = tan θ . cot δ.                                     ...(1.28)

(ii) Calculation of the altitude (α	)
Sine of middle part= Product of cosine of opposite parts.

i.e., sin θ = cos (90° � δ) cos (90° � α)
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or sin θ = sin δ . sin α
or sin α = sin θ . cosec δ. ...(1.29)

(iii) Calculation of the azimuth (A)
Sine of middle part = Product of cosine of opposite parts

sin (90° � δ) = cos (90° � A) cos θ
or cos δ = sin A cos θ
or                              sin A= cos δ . sec θ. ...(1.30)

2. Star at Culmination (Fig. 1.31)
The diurnal circle or the path of the star crosses the observer�s

meridian twice during one revolution around the pole.
A star is said to be at culmination, when it crosses the observer�s

meridian. At culmination, the astronomical triangle reduces to an
arc of the meridian. There are two culminations of a star.

Fig. 1.31. Star at culmination.

(i) Star at upper culmination. A star is said to be at upper
culmination when it crosses the observer�s meridian above the
celestial pole. At upper culmination the star attains the maximum
altitude. In Fig. 1.23, Au and Bu are the positions of upper culmination
of the stars A and B respectively. Their paths of revolution are
indicated by arrow heads. At upper culmination, the star moves
from east to west in azimuth only.

(ii) Star at lower culmination. A star is said to be at lower
culmination when it crosses the observer�s meridian below the
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celestial pole. At lower culmination the star attains the. minimum
altitude. In Fig. 1.31. AL and BL are the positions of the lower
culmination of the stars A and B respectively. At lower culmination,
the star moves from west to east in azimuth only.

The upper culmination of a star may occur to the north or south
of the zenith, depending upon the declination of the star and the
latitude of the observer�s position.

(iii) Upper culmination of star A.
The zenith distance (z) = ZAU = ZP � PAU

= (90° � θ) � (90° � δ)
= (δ � θ) ...(1.31)

At culmination the declination circle of the star coincides with
the meridian of the observer

(iv) Upper culmination of star B.
The zenith distance (z) = ZBU = PBU � ZP

= (90° � δ) � (90° � θ)
= (θ � δ) ...(1.32)

(v) Lower culmination of star A.
The zenith distance (z) = ZAL = ZP + PAL

= (90° � θ) + (90° � δ) = 180° � (δ + θ)
(vi) Lower culmination of star B.
The zenith distance (z) = ZBL = ZP + PBL

= (90° � θ) + (90° � δ) = 180° � (θ + δ)
Note. The following points may be noted :

(i) The upper culmination occurs on the north side of the zenith
if declination (δ) is greater than altitude (θ)

(ii) The upper culmination occurs on the south side of the zenith
if declination (δ) of the star is less than latitude (θ)

(iii) If declination of the star is equal to the latitude of the
observer, the culmination of the star is in the zenith.

(iv) Hour angle of the star at upper culmination is zero hour
(v) Hour angle of the star at western elongation is 6 hours

(vi) Hour angle of the star at lower culmination is 12 hours
(vii) Hour angle of the star at eastern elongation is 18 hours.

3. Star at prime vertical (Fig. 1.32)
A star is �said to be at prime vertical when it occupies a position
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on the prime vertical. When the star is on prime vertical, the
astronomical triangle PZR becomes a right angled triangle at Z.

Z

Horizon

R
P

E

N

E

S

E

90°

Equator

Fig. 1.32. Star at prime vertical.

Knowing the declination (δ) of the star and the latitude (θ) of
the observer, the altitude (α) of the star and hour angle (H) of the
star may be easily calculated by applying the Napier�s rule as under:

In the right angled spherical triangle RZP, shown in Fig. 1.33,
Let RP = 90° � δ = co-decliriatipn

RZ = 90° � α = zenith distance
PZ = 90° � θ = co-latitude.

Z

R

90°

H

P

90°–θ90
°–

α

90°–δ

90°–θ

90°–R

90°–α

90°–H

δ

Fig. 1.33.
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The five parts of the Napier circle are entered as 90° � θ, 90° �
α, 90° � R, 90° � (90° � δ), (90° � H) as shown in Fig. 1.25(b).

(i) Calculation of the hour angle (H)
The sine of the middle part,

= product of the tangents of the adja-
cent parts

or sin (90° � H) = tan (90° - θ) . tan δ
or cos H = tan δ . cot θ ...(1.33)

(ii) Calculation of the altitude (α	)
The sine of middle part = product of the cosine of the opposite

parts
i.e., sin δ = cos (90° � α) cos (90° � θ)

= sin α . sin θ
∴ sin α = sin δ cosec θ. ...(1.34)
4. Star at horizon (Fig. 1.34)
A star is said to be at horizon when its altitude is zero. Hence

star�s zenith distance at horizon is 90°. Knowing the declination (δ)
of the star and the latitude (θ) of the observer, the azimuth (A) and
the hour angle (H) of the star, may be calculated by applying the
formula

cos A = 
cos cos cos

sin sin
a b c

b c
−

Here a = (90° � δ)
b = (90° � α)
c = (90° � θ)

cos A = 
cos(90 ) cos(90 ) cos(90 )

sin(90 ) sin (90 )
δ α θ

α θ
° − − ° − − ° −

° − ° −

∴ cos A =
sin

cos cos
δ

α θ � tan α . tan θ

But, when the star is at horizon, α = 0°

cos A = 
sin
cos

δ
θ  = sin δ sec θ ...(1.35)

Similarly the value of hour angle H may be calculated.

∴ cos H = 
cos(90 � )

sin(90 � )sin(90 � )
α

δ θ
°

° ° � 
cos(90 � )cos(90 � )
sin(90 � )sin(90 � )

δ θ
δ θ

° °
° °
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Horizon

N

E

S

E

Equator

A
H

Z
P (Pole)

90°–θ

θ b=90°–α

a=90°–δ

R

Fig. 1.34. Star at horizon.

cos H = 
sin

cos cos
α

δ θ = tan δ tan θ

Putting α = 0, we get
i.e. cos H = � tan δ tan θ.                                    ...(1.36)

5. Circumpolar Stars (Fig. 1.35.)
Z

L2

L1

Z´

P

P´

NS

E

E´

R2

R1

Horizon

Equator

δ

Fig. 1.35. Circumpolar stars.
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The stars which remain always above the horizon of the
observer�s position and do not set at any time, are known as
circumpolar stars. Such stars appear to the observer to describe
circles about the pole. The number of circumpolar stars increases
with the increase of latitude of the observer�s position. For an
observer at the equator the number of circumpolar stars, is zero
whereas for an observer at the north pole all stars in the northern
hemisphere are circumpolar. Similarly, for an observer at south pole
all the stars in the southern hemisphere, are circumpolar.

R1 and R2 are the circumpolar stars in the northern and southern
hemispheres where Z and Z´ represent Zenith and Nadir respectively.
The path of the circumpolar star R1 is along L1R1L2.

Here PL1 < PN
i.e. (90° � δ) < PN

But, altitude of the pole star = latitude of the observer�s position
∴ (90° � δ) < θ

i.e. δ > (90° � θ) ...(1.37)
i.e. a star will be circumpolar star if its declination is greater

than the co-latitude of the observer�s position.

Example 1.5. Calculate the shortest distance between two places
A and B, given that the latitudes of A and B are 28° 30´ N and 32°
42´ N and their longitudes are 76°18´ and 82°54´ E respectively.
(Assume the radius of the earth as 6370 km.)

Solution. (Fig. 1.36.)
In the spherical triangle ABP we get

AP = 90° � 28° 30´ = 61° 30´
BP = 90° � 32°42´ = 57°18´

Angle APB = Longitude of B � Longitude of A
= 82°54´ � 76°18´ = 6°36´

Applying the cosine rule to the spherical triangle ABP, we get
cos AB = cos AP . cos BP + sin AP . sin BP cos APB

= cos 61°30´ . cos 57°18´ + sin 61°30´. sin 57°18´ × cos 6° 36´
= 0.47716 × 0.54024 + 0.87882 × 0-841511 × 0.993373
= 0.25778037 + 0.73463327 = 0.99241357

∴ AB = 7°03´43´´.3
and arc  AB = R × central angle θ
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θ

A B P (Pole)
E´

P´

O

Fig. 1.36

=
6370 7.0620277

180
π× ×

°

= 785.138 km. Ans.

Example 1.6. Determine the hour angle and declination of a
star from the following data :

Latitude of the place = 48°30´ N
Azimuth of the star = 50° W
Altitude of the star = 28°24´
Solution.
In the astronomical triangle PSZ, we have
Colatitude PZ = 90° � 48°30´ = 41°30´
Coaltitude SZ = 90° � 28°24´ = 61°36´
Azimuth A = 50°00´
(1) Calculation of the declination
Applying cosine formula (1.5) to ∆PSZ, we get

cos PS = cosSZ . cosPZ + sin SZ . sin PZ . cos A
∴ cos (90° � δ) = cos 61°36´ cos 41°30´ + sin 61°36´

sin 41°30´ cos 50°
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= 0.475624 × 0.748956 + 0.479649 ×
0.662620 × 0.642788

= 0.35622144 + 0.37466378
= 0.73088522

90° � δ = 43°02´ 21´´.5
Declination δ � 90° � 43° 02´ 21´´.5 = 46° 57´ 38´´.5. Ans.
(2) Calculation of the hour angle (H)
Applying sine rule to ∆PSZ, we get

sin H = 
sin sin

sin
A SZ

PS

=
sin 50 sin61 36´
sin43 02´21́ ´.5

° °
°

= 
0.766044 0.879646

0.682500
×

= 0.98732575

∴   Hour angle (H) = 80° 52´ 05´´.5. Ans.

Example 1.7. Find
the azimuth and the hour
angle of the sun at sunset
at a place of latitude 49°,
its declination being
given to be 19° S.

Solution. (Fig. 1.37)
In the spherical

triangle PZS,
PZ = colatitude = 90°

� 49° = 41°
ZS = colatitude = 90°

� 0° = 90°
PS = codeclination 90° � (� 19°) = 109°
Applying cosine formula

cosA =
cos cos cos

sin sin
PS PZ ZS

PZ SZ
−

=
cos109 cos41 cos cos90

sin 41 sin90
° − ° °

° °

Fig. 1.37.
Z

P

S

90°–δ=∆

90
°–

T
δ=

90°–
Zα= A

H
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=
0.325568 0.754710 0

0.656059 1
− − ×

×

or cosA =
0.325568

0.656059
−

= � 0.49624805

As the value of cos A is negative, it lies between 90° and 180°,
180° � A = 60° 14´52.8´´

or A = 180° � 60°14´ 52´´.8 = 119° 45´ 07´´.2
Azimuth of the Sun at sunset = 119°45´ 07´´.2 w Ans.
Again, applying the cosine formula we get

cos H =
cos � cos cos

sin . sin
SZ PZ PS

PZ PS

=
cos90 � cos41 cos109

sin41 . sin109
° ° °

° °

=
0 0.754710 0.395568

0.656059 0.944519
+ ×

×
∴ Hour angle H = 66° 39´ 54´´ Ans.

Example 1.8. Find the shortest distance between two places K
and L, given that the latitudes at K and L are 19°00´ N and 13°04´ N
and their longitudes are 72°30´ E and 80°12´ E respectively.

Take radius of earth = 6370 km.
Solution. (Fig. 1.38)

E

E´

13°04´N

18°N

PK

θ
L

72
°3

0´
E

80°30´E

P´

O

Fig. 1.38
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Let K and L be the given places.
θ be the angle subtended by the arc KL at the centre of

earth. In the spherical triangle KPL, we get
KP = 90° � 19° = 71°
PL = 90° � 13° 04´ = 76° 56´

Angle KPL = 80° 12´ � 72° 30´ = 7° 42´
Applying the cosine rule to spherical triangle PKL, we get

cos KL = cos KP cos PL + sin KP sin PL cos KPL.
Substituting the values we get

= cos 71° cos 76° 56´ + sin 71° sin 76° 56´ cos 7° 42´
= 0.073606041 + 0.91273165

or cos KL = 0-986313805
or KL = 9° 28´ 54´´.4

∴ Shortest distance between the places K and L

= 
6370 9 .4818

180
π× ° ×

°
or = 1054.16 km.    Ans.

Example 1.9. If the latitude of the observer�s station is 28° 30´
N and declination of the star is 62° 35´ N, calculate the zenith
distances of the star at its upper and lower culminations.

Solution.
Here θ = 28° 30´ N

δ = 62° 35´ N.
The star�s declination δ being greater than latitude (θ), its upper

culmination is on the north side of the zenith.
∴ Zenith distance of star at its upper culmination

= δ � θ
= 62° 35´ � 28° 30´ = 34° 05´ Ans.

The zenith distance of star at its lower culmination
= 180° � (θ + δ)
= 180° � (28°30´ + 62°35´)
= 88° 55´ Ans.

As the declination of the star is greater than 90° � θ, it is a
circumpolar star.
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Example 1.10. Both culminations of a star occur on the north-
side of the zenith and its observed altitudes at a place at upper and
lower culminations are 56°30´ and 10°30´ respectively. Find the
latitude of the place and declination of the star.

Solution.
Given : Both culminations are on the north side of the zenith.

Zenith distance of the star at its upper culmination
= δ � θ = 90° � altitude

Zenith distance of the star at its lower culmination
= 180° � (θ + δ) = 90° � altitude

δ � θ = 90° � 56°30´ = 33° 30´ ...(i)
180° � (θ + δ) = 90° � 10° 30´ = 79° 30´

or δ + θ = 180° � 79° 30´ = 100° 30´                    ...(ii)
Solving eqns. (i) and (ii) we get

δ = 67° 00´
and θ = 333° 0´ Ans.

Example 1.11. If the upper culmination of a star (declination
48°38´ N) is in the zenith of the observer�s place, find the latitude of
the place and altitude of the star at its lower culmination.

Solution. As the star culminates in the zenith, polar distance
of the star = Co-latitude.
i.e. 90° � δ = 90° � θ
or δ = θ

∴ Latitude (θ) = 48° 38´ N. Ans.
The zenith distance at lower culmination

= 180° � (θ + δ)
= 180° � (48° 38´ + 48° 38´)
= 180° � 97° 16´ = 82° 44´

∴ Altitude of star = 90° � 82° 44´
= 7° 16´. Ans.

Example 1.12. Calculate the declination of the sun at a place of
latitude 28° 30´ if it rises on prime vertical.

Solution.
Let P be the celestial pole

Z be the zenith of the place
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S be the sun at rise.
Apparently PZS is a right angled triangle at Z, the sun being on

prime vertical at sunrise.
Here, colatitude PZ = 90° � 28° 30´ = 61° 30´
Coaltitude ZS = 90°
Azimuth = 90°

cos PS = cos 61° 30´ cos 90° + sin 61° 30´ sin 90°
cos 90°

cos PS = 0
PS = 90°

i.e. Declination of sun = 90° � 90°
= 0°.   Ans.

Example 1.13. Find the azimuth and hour angle of the sun at
sun rise at a place of latitude 28° 30´ N, its declination being given
as 23° 27´ N.

Solution. In astronomical triangle PZS we have
PZ = 90° � 28° 30´ = 61° 30´
PS = 93° � 23° 27´ = 66° 33´
ZS = 90°, at sun rise.

Let A be the azimuth and H be the hour angle of the sun.
Applying the cosine formula we get

cos ZS = cos PZ cos PS + sin PZ sin PS cos H.

or cos H = 
cos cos cos

sin sin
ZS PZ PS

PZ PS
−

=
0 cos61 30´ cos66 33´

sin61 30´sin66 33´
− ° °

° °

=
0 0.477159 0.397949

0.878817 0.917408
− ×

×

=
0.18988494

0.80623374
−

= � 0.23552094

H = 76° 22´ 40´´ Ans.
Applying the sine rule to ∆PZS we get

sin A = 
sin76 22´40´´ sin66 33´

sin90´
° °

= 0.89160131

180° � A = 63°04´30´´.7
A = 180° � 63° 04´´ 30´´.7
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or Azimuth A = 116° 55´ 29´´.3 Ans.

Example 1.14. Determine the hour
angle and declination of a star from the
following data :

Altitude = 22° 36´
Azimuth = 42° W
Latitude of the place = 40° N.
Solution. (Fig. 1.39)
Given :  Altitude = 22° 36´
Azimuth = 42° W
Latitude = 40° N
∴ Colatitude ZS = 90° � 22° 36´

= 67° 24´
Colatitude PZ = 90° � 40° = 50°
Azimuth SZP = 42° W.
Let δ be the declination and H be the hour angle of the star.
From the astronomical triangle SZP, we get

cos (90° � 6) = cos 67° 24´ cos 50° + sin 67° 24´ sin 50° cos 42° ...(i)
Substituting the values in Eqn. (i) we get
cos (90° � δ) = 0.384296 × 0.642788 + 0.923210 × 0.766044

× 0.743145
= 0.24702085 + 0.52556662
= 0.77258742

∴ 90° � δ = 39°.4132
= 39° 24´ 47´´.52

∴ Declination δ = 90° � 39° 24´ 47´´.52
= 50° 35´ 12´´.48 Ans.

Again, applying sine rule to the spherical triangle, we get

sin
sin67 24´

H
° =

sin42
sin39 .4132

°
°

sin H =
sin42 sin67 24´

sin39 .4132
° °

° = 0.9729716

∴ Hour angle H = 76° 38´ 54´´.6. Ans.

Fig. 1.39.

90°–δ
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50°
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Example 1.15. Find the azimuth and the hour angle of the sun
at sun set for a place of latitude 49°, its declination being given to be
19° S.

Solution.
Given : Altitude α = 0

or zenith distance z = 90°
declination δ = 19° S

or Co-declination = 109°
Latitude θ = 49° N

or Co-latitude = 41°
Let H  be the hour angle and A be the azimuth
From the astronomical triangle PZS we get
Applying cosine formula to ∆PZS we get

cos H = 
cos90 cos109 cos41

sin109 sin41
° − ° °

°

=
0.325568 0.754710
0.945519 0.656059

×
× = 0.39610343

H = 66° 39´ 55´´
Hour angle H = 66° 39´ 55´´ Ans.

cos A =
cos109 � cos90 cos41

sin90 sin41
° ° °

° °

=
cos109
sin 41

°
° = 

�0.325568
0.656059 = � 0.49624805

or A = 119°45´7´´.2 Ans.
Alternately, applying the sine formula to ∆PZS we get

sin
sin109

A
° =

sin66 39´55´´
sin90

°
°

or sin A = sin 66° 39´ 55´´ sin 109°
= 0.918206 × 0.945519 = 0.86818121

A = 60°14´52´´.8 or 119°45´ 7´´.2
i.e. A = 119° 45´ 7´´.2. Ans.

Example 1.16. Calculate the latitude of the place where a given
star at its lower culmination remains at the horizon and its upper
culmination occurs in zenith.
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Solution. As the upper culmination of the star occurs in zenith,
the latitude of the place is equal to the declination of the star
i.e. θ = δ.

Zenith distance at lower transit
= 180° � (θ + δ) = 90°

or 90° = 180° � (θ + δ)
or 90° = 180° � 2θ ...(∴ θ = δ)

2θ = 90°
θ = 45°

∴ Latitude of the place = 45° N. Ans.

Example 1.17. What is the geodetic area enclosed by the spherical
triangle ABP on the earth�s surface when the coordinates of the stations
are as follows ?

Coordinate of A = 30° N, 45° E
Coordinate of B = 50° N, 60° E
Coordinate of P = Pole
Assume radius of the earth
   = 6378 km and π = 3.1415927

Solution. (Fig. 1.40)
In spherical triangle APB,
Side AP = 90° � 30° = 60°
Side BP = 90° � 50° = 40°
Cos AB = cos60° cos 40° + sin 60°

sin 40° cos 15°
= 0.5 × 0.7660444 + 0.8660254 ×

0.6427876 × 0-9659258
= 0.3830222 + 0.5377023 = 0.9207245

AB = 22°.967768.
Applying sine rule to ∆APB we get

sin A = 
sin15 sin40
sin22.967768

°× °
= 

0.258819 0.6427876
0.3902132

×
= 0.4263455

∴ Angle A =25.235863
Applying sin rule to ∆APB we get

Fig. 1.40.
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°
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sin B = 
sin15 sin60
sin22 .967768

°× °
° = 

0.258819 0.8660254
0.3902132

×
= 0.5744138

∴ Angle B = 35.058592  or   144°.941408
∴ Sum of angles of spherical triangle APB

= 25.235863 + 144°.941408 + 15° = 185.177271
∴    Spherical excess, E = 185.177271 � 180° = 5°.177271
And         Area of spherical triangle APB

=
2

180
R eπ ×

°
= 

23.1415927 6378 5 .177271
180

× × °
°

= 36,87,461.6 sq. km.   Ans.

1.29. CORRECTIONS TO THE OBSERVED ALTITUDE OF A
  CELESTIAL BODY

The following corrections are generally applied to the observed
altitudes of the celestial bodies for deducing their true altitudes at
the time of observation.

(i) Refraction correction. (ii) Dip correction.
(iii) Parallax correction. (iv) Semi-diameter correction.
(v) Index error correction. (vi) Bubble error correction.

(vii) Azimuth correction.

Correction nos. (i) to (iv) are observational corrections whereas
correction Nos. (v) to (vii) are instrumental corrections.

1. Refraction correction (Fig. 1.41.)
It is a well established fact that the density of the air decreases

as the distance from the earth surface increases. We also know that
rays of light passing through
layers of air of different
densities get bent and thus
their path is along a curve. To
an observer A, the star S
appears to be situated at S´,
higher than its real position.
Due to refraction, the observed
altitude of a heavenly body
appears greater than what it
really is.

The angle S´AS is known
Fig. 1.41. Refraction Correction.
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A
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Earth
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as the correction for refraction. Correction for refraction is always
subtracted from the observed altitude.

Let S be the actual position of the celestial body.
S´ be the apparent position of the celestial body due to refraction.
A is the observer�s position.
α is the apparent altitude of the celestial body.
The angle S´AS is the required refraction correction.
∴ The true altitude = ∠ SAB = ∠ S´AB � ∠ S´AS

= observed altitude�refraction correction
The magnitude of refraction correction depends upon the

following factors :
(i) Density of the air.

(ii) Temperature of the air.
(iii) Barometric pressure of the air.
(iv) Altitude of the celestial body.

For apparent altitudes greater than 20°, the value of correction
for refraction, may be calculated from the following formula.

Correction for refraction in seconds    = 58´´ cot α ...(1.38)
or �                �                         = 58´´ tan z ...(1.39)
where α and z are the apparent altitude and zenith distance of the
celestial body.

1. Tangent formula for refraction correction (Fig. 1.42).
The effective atmosphere extends only upto about 160 km from the

Z

S´
S

i

Surface of the earth

A

NA´
r

Fig. 1.42. Tangent formula.
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surface of the earth. The curvature of the earth if neglected, its
surface may be assumed flat.

Let ZAN be Zenith-Nadir line.
S be the actual position of the star.
S´ be its apparent position as seen by the observer A on the

surface of the earth.
The ray of light SA is curved whereas the ray S´A and its

continuity is straight.
S´A is a tangent to the curved line SA at A.
SA, S´A, ZA and A´A all lie in one plane.
∠ ZAS and ∠ A´AN may be assumed as the angles of incidence

and refraction respectively.

Hence,
sin

sin ´
ZAS

A AN = µ = coefficient of refraction

But, ∠ ZAS´ = ∠ A´AN, being opposite angles
∴ µ sin ZAS´ = sin ZAS = sin (ZAS´ + S´AS)

= sin ZAS´ cos S´AS + cos ZAS´ sin S´AS
But, ∠ S´AS being very small, cos S´AS = 1 and sin S´AS =

S´AS in radian measure.
∴ µ sin ZAS´ = sin ZAS´ + cos ZAS´ . S´AS

or sin ZAS´ (µ � 1) = cos ZAS´ . S´AS
or S´AS = (µ � 1) tan ZAS´ = (µ � 1) tan z
where z is apparent zenith distance.

i.e. the refraction is proportional to the tangent of the apparent
zenith distance.

2. Effect of astronomical refraction on the Coordinates
of Celestial bodies. (Fig. 1.43)

Let S be the actual position of the celestial body on the celestial
sphere.

Z be the zenith of observer.
S´ be the displaced position of the celestial body S due to

refraction towards the zenith on the great circle ZS.
1. Effect on observed altitude (Fig. 1.43)
The actual observed zenith distance ZS´ = z
∴ SS´ is the refraction correction = K tan z.
i.e. effect of refraction is to decrease the zenith distance of a
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celestial body or to increase the observed altitude of the body.

Z

P

QS´
S

NorthSouth

P´

Z´

Fig. 1.43.

(2) Effect on declination :
Construction : Drop a perpendicular S´Q to PS where PS is the

declination circle of the celestial body S.
As the sides of the triangle SS´Q are small, it can be assumed a

plane triangle.
Let angle S´SQ be θ

SQ = SS´ cos θ ...(i)
= K tan z . cos θ.

From Fig. (1.43) we note
PS = PQ + QS = PS´ + QS

i.e.     True co-declination = 90° � δ + K tan z cos θ.
or      True declination             = 90° � (90° � δ + K tan z cos θ)

= δ � K tan z cos θ.
i.e. effect of the refraction is to decrease the declination of the body.

(3) Effect on the hour angle
Let PS be the hour circle for true position of the body.

PS´ is the hour circle for the displaced position of the body.
S´Q is the decrease in the body�s hour angle.

Now S´Q = SS´ sin θ = k tan z sin θ
i.e. the decrease in the hour angle is S´PQ equal to k tan z sin θ sec δ.

Note. The following points may be noted :
(i) Astronomical refraction is large and not reliable, if the

altitude of the body is less than 20°.
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(ii) Astronomical refraction decreases as the altitude of the star
increases.

(iii) Astronomical refraction is zero for celestial bodies exactly
over the head of the observer, whereas for a star at horizon
its value is 33°.

(iv) Astronomical refraction is same for all bodies for a
particular altitude irrespective of their distances from the
earth�s surface.

(v) For accurate work, the astronomical refraction may be
obtained from Bessal�s Refraction Tables.

(vi) The astronomical refraction is always subtracted from
observed altitude.

2. Dip Correction. Altitudes of celestial bodies are observed
either by a theodolite or by an astronomical sextant. In case of
theodolite, the horizontal line passing through the trunnion axis is
defined and the observed altitude does not require any correction
for dip. But in case of a sextant, the vertical angle is observed between
the visible horizon and the celestial body in vertical plane.

Apparently, the observed altitude by sextant is always more
than true altitude. The angle between the sensible horizon and the
visible horizon is called and angle of dip. Magnitude of dip depends
upon the altitude of the observer�s position above M.S.L.

Derivation of Dip correction
(Fig. 1.44).

Let S be the position of the body
AH be the sensible horizon of the

observer�s place
AB be the visible horizon of the

observer�s place
SAB be the observed altitude duly

corrected for refraction by a sextant
h be the height of the observer�s

position in metres above M.S.L.
R be the radius of the earth in

metres.
Hence, α is the corrected altitude

of the body.
β is the angle of the dip.

Fig. 1.44. Dip correction.
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From the Fig. 1.36
∠ AOB = 90° � ∠ AOB = β

and AB = 2 2( )R h R+ −

Again, tan β = 
AB
OB

=
2 2( )R h R

R
+ −

= 2
(2 )h R h

R
+

...(1.40)

or tan β =
2h
R

 (Appx.) ...(1.41)

∴  The true altitude = observed altitude � dip correction
i.e. ∠ SAH = ∠ SAB � ∠ HAB

Note. The following points may be noted :
(i) The correction for dip is always negative. It is subtracted from

the observed altitude duly corrected for refraction.
(ii) The magnitude of the dip correction varies with height of the

observer� station above M.S.L.
3. Parallax Correction. (Applicable to sun only). As the stars

are assumed to be projected on a celestial sphere of infinite radius,
their altitudes above the sensible horizon and above the horizon
passing through the centre of the earth, are practically the same.
The sun being comparatively nearer to earth, its altitude when
measured at any point on the surface of the earth, considerably differs
from that deduced at the centre of the earth.

The difference of altitudes of the sun at a point on the surface of
the earth and at the centre of the earth, is known as sun�s Parallax
in altitude.

Hence, the sun�s parallax in altitude may be defined as the angle
subtended at the centre of the sun by the line joning the centre of
the earth to the place of observation (Fig. 1.45).

Let S be the position of the sun.
Angle SAH be the apparent altitude above the sensible horizontal

AH.
The angle SOB is the altitude of the sun deduced at the centre

of the earth where OB is the true horizon.
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S

A

H

R
O

r

α
S´

Horizontal
parallax

Earth

Fig. 1.45. Sun’s parallax correction.

When the sun is on the sensible horizon, the apparent altitude
of the sun S´ is zero and then the angle of parallax AS´O, is known
as the sun�s horizontal parallax. The horizontal parallax varies
inversely to the distance of the sun from the earth.

The maximum horizontal parallax is 8´´.95 on 31st December.
The minimum horizontal parallax is 8´´.66 on 1st July.

The average value of the horizontal parallax to be used for
computation is assumed to be 8´´.8.

Derivation of sun�s parallax formula.
From Fig. (1.45) we know that

∠ ASO = parallax in altitude
∠ AS�O = horizontal parallax.

∵ AS´ and OB are parallel, being sensible and true horizons.
∴ ∠ SOB = ∠ SHS´ = ∠ HAS + ∠ ASH

or True altitude = observed altitude +
parallax in altitude.

In ∠ ASO, ∠ ASO = parallax in altitude
∠ SAO = 90° + α

where α is the observed altitude
Hence, applying the sine rule, we get
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sin ASO
AO =

sinOAS
OS

or sin ASO =
sinAO OAS
OS = 

cosAO
OS

α

But
OA
OS = ´

OA
OS = sin AS´O

∴ sin ASO =
.sin ´OS AS O

OS
. cos α

or ∠ ASO = ∠ AS´O cos α         (sin θ = θ)
or     Parallax in altitude = horizontal parallax × cos α           ...(1.42)

= 8´´.8 cos θ. ...(1.43)
Note. The correction for parallax is always positive.

4. Sun�s semi-diameter Correction. (Fig. 1.46).

Earth

Sun

α1

α2α

D

O

Fig. 1.46. Semi-diameter correction.

While making observations to the sun, it is very difficult to set
the cross hairs at its centre. To overcome this difficulty, the
observations are generally made either to its upper limb or lower
limb. The altitude of the sun�s centre may then be obtained by
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applying the correction for the semi-diameter to the observed altitude
algebriacally. The correction for semi-diameter is positive if the lower
limb is observed and negative if the upper limb is observed.

If D is the angle subtended by the sun at the centre of the earth,

the correction for semi-diameter is 
2
D

.   The altitude of the sun at

the centre is   α1 + 
2
D

 and α2 � 
2
D

where α1 and α2 are the observed

altitudes to the lower and upper limbs of the sun respectively.
The semi-diameter correction varies from about 15´ 46´´ in July

to about 16´ 18´´ in January. For rough calculation, its average value
may be taken as 16´.

Derivation of Sun�s semi-diameter correction (Fig. 1.47.)

β

C
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D
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r

B

δ
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( ) Planii

( ) Elevationii

Horizon

α

Fig. 1.47.
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Let A be the observer�s position
D be the sun�s position on the horizon
C be the sun at, an altitude d
r be the radius of the sun
δ be the semi-diameter correction when the sun is at horizon
β be the semi-diameter correction when the sun is at C.

Evidently, r = AD1 . δ = AC1 . β

β =
1

1

.AD
AC

δ
...(1.44)

But, from the elevation (Fig. 1.39) we get

AD = AC = AD1 and 
AC
AB

= sec α =
1

AC
AC

where AB and AC1 are the projections of AC.
AC = AC1 sec . α ...(1.45)

Substituting the value of AC = AD1 in equation (1.43), we get

β =
1

1

AC
AC δ sec α = δ . sec α ...(1.46)

i.e. semi-diameter correction for horizontal angles is equal to the
sun�s semidiameter correction multiplied by the secant of the altitude.

Note. The following points may be noted :
(i) The correction to the horizontal angles for the sun at horizon

is 16´ approximately.
(ii) The correction to the horizontal angles for the sun at zenith

is infinite.
(iii) To avoid semi-diameter correction for azimuth, an equal

number of sights are taken to opposite limbs of the sun.
The mean of the horizontal angles and the mean of the
vertical angles at the mean of the times, is used for
calculation.

5. Index error Correction.
In a perfectly adjusted theodolite with the line of sight

horizontal, the verniers of the vertical circle should read zero. If
they do not, the vertical angles measured with such a theodolite,
will be incorrect. The reading on the vertical circle with horizontal
line of sight, is known as the Index Error. Though, the index error
can be eliminated completely by making observations on both faces,
but due to rapid change of the altitude of celestial bodies, it becomes
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difficult to make observations on both faces. This is why it becomes
necessary to ascertain the magnitude of the index error of the transit
before hand so that the observations made on one face only, can be
corrected.

Determination of index error
To determine the index error the following steps are followed :

1. Set up the theodolite on firm ground and level it accurately
by using the altitude bubble.

2. On face left with telescope normal, bisect a well defined
point (say a church spire) and observe its vertical angle α1
after bringing the altitude bubble central of its run.

3. On face right with telescope inverted, bisect the same point
and observe its vertical angle α2  after bringing the altitude
bubble central of its run.

Let the index error of the vertical circle be e
Correct vertical angle (α) on face left = α1  + e
Correct vertical angle (α) on face right = α2 � e

a = 1 2 1 2( ) ( )
2 2

e eα α α α+ + + +
=

i.e. the correct vertical angle (α) of a point is the mean of its
observed angles α1 and α2 observed on both faces.

Index error e = α � α1 = α2 � α
Illustration. Let α1 = 5°18´ 35´´ on face left

α2 = 5° 18´ 55´´ on face right

∴ Correct vertical angle α = 
5 18´35´´ 5 18´55´´

2
° + °

= 5° 18´ 45´´

∴ The index error correction for face left observations
= 5° 18´ 45´´ � 5° 18´ 35´´ = + 10´´

Similarly, index error correction for face right observations
= 5° 18´ 55´´ � 5° 18´ 45´´ = � 10´´

Note. The index error correction is positive for any face obser-
vation if the observed apparent vertical angle is less than the true
vertical angle, otherwise it is negative.

6. Bubble Error correction. If the altitude bubble does not
occupy its central position while making observation of vertical
angles, a correction known as bubble correction is found necessary.
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If ΣE = the sum of readings of the end of the
bubble towards the eye piece.

Σ0 = the sum of readings of the end of the
bubble towards the objective.

n = the number of ends of the bubble read-
ings.

v = the angular value of one division of the
bubble in seconds.

then C = correction for the bubble error

= + 
0 E

n
Σ − Σ

 × v seconds ...(1.48)

Note. The following points may be noted :
(i) If Σ0 is greater than ΣE, the bubble error correction is

positive.
(ii) If ΣE is greater than Σ0, the bubble error correction is

negative.
(iii) If single face observations are taken, the value of n is 2

and if both face
observations are
made, the value of
n is 4.

7. Azimuth Correc-
tion. In astronomical obser-
vations, vertical angles are
generally large. It is, there-
fore, very important that the
instrument must be in per-
fect adjustment, i.e.

(1) the transit is accu-
rately levelled to make its
vertical axis truly vertical

(2) the horizontal axis
(trunnion axis) is exactly
perpendicular to the vertical
axis. The altitude bubble
may be accurately adjusted
and hence error due to this,
can be eliminated. However,
the error due to inclination Fig. 1.48. Azimuth correction

A

h
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α c D

0

Elevated
point β
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of the trunnion axis with horizontal cannot be eliminated. How-
ever, Inclination of the trunnion axis can be determined by means
of a striding level fitted with a very sensitive level tube.

If β is the inclination of the horizontal axis of the transit with
respect to horizontal in seconds and α is the vertical angle of the
object sighted, the azimuth correction in seconds

C = β tan α seconds ...(1.48)
Derivation of the formula (Fig. 1.48).
Let the elevated point sighted be A, the angle of elevation be α,

height of point A above horizontal plane be h. Let, the horizontal
axis be inclined through an angle β to the horizontal.

When the telescope is transited, the inclination of the horizon-
tal axis to the horizontal will cause the line of sight to move in an
inclined plane. Let the trace of such an inclined plane be Aa´. The
error in the azimuth is the angle a´oa. Again, the angle of inclina-
tion β is equal to the angle a´Aa.

From ∆a´Aa, we get, aa´= h tan β = hβ
Again aa´= D tan c = D.c.

or C =
´aa h

D D
β

=

where D is the horizontal distance between transit station and the
point sighted.

But h = D tan α

∴ c =
tan .Dh

D D
α ββ

= = β tan α

i.e. azimuth correction is proportional to the tangent of the altitude.
Determination of the value of β
.�Let l1 and r1 be the read-

ings of the left hand end and right hand end of the striding bubble
in first position ; l2 and r2 be the readings of the left hand end and
right hand end of the striding bubble in second position.

First position. Deviation of the centre of the bubble from the

centre of the striding level = 1 1

2
l r−

Second Position. Deviation of the centre of the bubble from

the centre of the striding level = 2 2

2
l r−

i.e. The mean deviation = 
1 1 2 21

2 2 2
l r l r− − +  
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= 1 2 1 2( ) ( )
4

l l r r+ − +

=
4

l rΣ − Σ

∴ Inclination of the trunnion axis

β = 
4

l rΣ − Σ
× v in seconds

where v is the angular value of one division of the striding level
Σl = the sum of the readings of the left hand end of the bubble in
both positions,
Σr = the sum of the readings of the right hand end of the bubble in
both positions.

Note. The following points may be noted :
(i) If Σl is greater than Σr, left hand end of the horizontal axis

is higher.
(ii) If Σr is greater than Σl, right hand end of the horizontal

axis is higher.
(iii) For angles of elevation, the correction is positive if the left

hand end of the horizontal axis is higher and negative if
the right hand end is higher.

(iv) For angles of depression, correction is positive if the right
hand end of the horizontal axis is higher and negative if
the left hand end is higher.

(v) Horizontal reading to each direction is corrected separately
and the required corrected angle, is obtained by subtrac-
tion thereafter.

Example 1.18. Find the true altitude of the sun�s centre which
gave an apparent altitude of 55°34´23´´to the sun�s lower limb.

Given : The sun´s horizontal parallax is 9´´and sun�s diameter is
31´46´´.

Solution.
1. Correction for refraction

r = 58´´cot α = 58´´× cot 55°34´23´´
= 58 × 0.68540565 = 39´´.8. (� ve)

2. Correction for parallax
P = 9´´cos α

= 9 cos 55°34´23´´= 9 × 0.565355
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= 5.1´´ (+ve)
3. Correction for semi-diameter = 1/2 (31´46´´)

D = 15´53´´ (+ve)
∴  Total correction = � r + p + D

= � 0´39´´.8
+ 0.05´´.1
+ 15´53´´.0

∴  Effective correction = 15´18´´.3
Observed altitude of the sun = 55°34´23´´
Effective correction = + 15´18´´-3
∴ True altitude of the sun

= 55°49´41´´.3 Ans.

Example 1.19. The following readings were taken on a refer-
ence mark (R.M.) and on a star :

  Striding level on Horizontal Circle
 turnnion aixs

 Object Altitude Average

Direct Reversed Vernier

L R L R A B

R.M. 12.2 2.4 8.8 5.8 3º14´00´´ 66º14´10´´ 246º14´20´´ 66º14´15´´

Star 1.0  2.7 9.4 6.1 60º46´50´´ 112º31´50´´ 292º32´00´´ 112º31´55´´

The value of the bubble division is 12´´. The altitude has been
corrected for the altitude level. Find the corrected horizontal angle
between the reference mark and the star.

Solution.
Observations to reference mark (R.M.) :

Σl = 12.2 + 8.8 = 21.0
Σr = 2.4 + 5.8   = 8.2

∴ β = 
4

l rΣ − Σ
× d = 

21.0 8.2
4
−

×12´´= + 38´´.4

As Σl is greater than Σr, the left hand end of axis is higher.
∴ The correction c = β tan α = 38´´.4 × tan 3°14´0´´

= 2´´.2 (positive)
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Correction is positive because left hand end is higher and the
vertical angle is angle of elevation.

∴  Corrected azimuth = 66°14´15´´+ 2´´.2 = 66°14´17´´.2
Observation to the star :

Σl = 1.0 + 9.4 = 10.4
Σr = 2.7 + 6.1 = 8.8

∴ β = 
4

l rΣ − Σ
× d = 

10.4 8.8
4
−

×12´´ = 
1.6
4

×12´´= 4´´.8

As Σl is greater than Σr, the left hand end is higher
∴   The correction c = β tan α

= 4.8 × tan 60°46´50´´
= 4.8 × 0.178786 = 8´´.58

Corrected azimuth = 112°31´55´´+ 8´´.6 = 112°32´03´´.6
∴ Corrected horizontal angle between R.M. and star

= 112°32´03´´.6 � 66°14´17´´.2
= 46°17´46´´.4 Ans.

1.30. TIME
The interval which lapses between any two instants, is termed

as time. The earth revolves about its axis in 24 hours and the mea-
surement of time is based upon the apparent motion of the celestial
bodies by their rotation.

1.31. APPARENT MOTION OF THE HEAVENLY BODIES
Due to rotation of the earth about its axis from the west to the

east, the celestial bodies i.e. stars and sun appear to revolve from
the east to the west around the earth. All celestial bodies appear to
cross the observer´s meridian twice in 24 hours, i.e. once at its up-
per culmination and again at its lower culmination.

In addition to the rotation of the earth about its own axis, the
earth also moves in an eclliptic orbit round the sun and makes one
complete revolution in the duration of one year. The apparent move-
ment of the sun relatively to the stars, therefore, appears to be from
the west to east.

1.32. CLASSIFICATION OF TIME
The following times are generally used by astronomers :
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1. The sidereal time 2. The apparent solar time
3. The mean solar time 4. The standard time.

1. The sidereal time. The hour angle of the First point of Ae-
ries (γ) measured west-ward 0 to 24 hours at any instant, is the
sidereal time of that instant. The interval of time between two succes-
sive upper transits of the First point of Aeries (γ) is called the side-
real day. The sidereal time is generally used by astronomers. The
sidereal day is one of the principal units of time for astronomers.
Further sub-divisions of a side real day are :

A sidereal day is divided into 24 sidereal hours.
A sidereal hour is divided into 60 sidereal minutes.
A sidereal minute is divided into 60 sidereal seconds.
The position of the Vernal Equinox is not at a fixed point. Due

to precessional movement of the axis, it moves westward. The ac-
tual interval between two culminations of the Equinox differs by
about 0.01 second of time.

The Local sidereal Time (L.S.T.). The interval of time which
elapses since the upper transit of the First point of Aeries (γ) over
observer�s meridian, is known as the local sidereal time of the place.
In other words, it may be
said that the local side-
real time is the measure
of the angle through
which the earth rotates
since the Equinox (First
point of Aeries) was on
the observer�s meridian.
But, we also know that
the equatorial angular
distance measured from
the First point of Aeries
to the hour circle of the
body, is known as its right
ascension. Hence, it may
be said that the local si-
dereal time of any place
is equal to the right as-
cension of the meridian of
the place, i.e. observer�s
meridian.

Fig. 1.49. Relation between sidereal time,
right ascension and hour angle of start.
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The local sidereal time (L.S.T.) = R.A. of a star + Westernly
hour angle of the star...(1.49)

Proof. (Fig. 1.49)
EE´    be the celestial equator
S         be the position of the star
γ         be the First point of Aeries
BP      be the declination circle of the star
∠ EPB = arc EB = Hour angle of the star S
Arc γB = right ascension of the star
But, L.S.T. = Eγ = EB + Bγ

L.S.T. = H.A. + R.A.
If the sum is greater than 24 hours, deduct 24 hours. If the sum

is negative, add 24 hours to get correct local sidereal time.
When a star is at its upper culmination, its hour angle is zero

and hence the sidereal time of upper culmination of the star is equal
to its right ascension, i.e.

Local sidereal time of upper transit of star = R.A. of star. But,
we also know that 24 hours of sidereal time correspond to 360°of
rotation of the earth. Hence, the difference between the local sidereal
time of two places, is always equal to the difference in their longi-
tudes.

2. The apparent solar time. The measurement of time based
on daily apparent motion of the sun around the earth, is known as
the apparent solar time. The interval of the time between two suc-
cessive lower transits (culminations) of the centre of the sun over
the meridian of the place is called the apparent solar day. The lower
transit of the sun is chosen so that the date changes only at mid-
night and not at noon.

Further sub-divisions of an apparent solar day are :
An apparent solar day is divided into 24 hours
An apparent solar hour is divided into 60 minutes
An apparent solar minute is divided in to 60 seconds.
The sun�s apparent daily path is along a great circle (ecliptic)

inclined to the equator at an angle of 23°27´. As the rate of move-
ment of the sun along the ecliptic is not uniform, the length of the
apparent solar day. throughout the year is also not uniform. This is
why apparent-solar time cannot be recorded by a clock having a
uniform rate of movement. The apparent solar time can only be
recorded with the help of a sun dial.
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3. The mean solar time. To overcome the difficulty of record-
ing the variation of apparent solar time by a clock, a fictitious sun is
assumed to move at a uniform rate along the equator so as to have
a solar day of a uniform duration. The motion of the mean sun is the
average of the motion of the true sun in right ascension. The start
and arrival of the mean sun and true sun are assumed to be the
same at the Vernal Equinox (the First point of Aeries).

The interval of time between two successive lower transits of
the mean sun is called mean solar day or a civil day. The duration of
a mean solar day is the average of all the apparent solar days of a
year. It may be noted that the rate of increase of right ascension of
the true sun is not uniform whereas the rate of increase of right
ascension of the assumed mean sun, remains constant throughout
the year.

Further sub-divisions of a mean solar day are :
One mean solar day is divided into 24 hours
One mean solar hour is divided into 60 minutes
One mean solar hour is divided into 60 seconds.
The Local mean noon (L.M.N.). The instant when the mean

sun crosses the local meridian at its upper transit, is known as the
local mean noon.

The Local mean time (L.M.T.). The hour angle of the mean
sun reckoned west-ward from 0 to 24 hours, is known as the local
mean time. The mean solar day begins at the mid night and com-
pletes at the next mid-night. The zero hour of the mean solar day is
at the local mean mid-night. As the duration of a mean solar day is
24 hours, the difference in local mean times of two places, is always
equal to the difference of their longitudes.

A civil day is divided into two periods, i.e. mid-night to noon and
noon to midnight. Each period is of 12 hour duration. The time of an
event occurring between mid-night and noon is denoted by A.M.
(antemeridian) whereas the time of the event occurring between
noon and mid-night is denoted by P.M. (Post-meridian). The
astronomical day is divided into 24 hours from 0 hour to 24 hours.

Note. The following points may be noted :
(i) Local sidereal time (L.S.T.)

= R.A. of the sun + H.A. of the sun
= R.A. of the mean sun + H.A. of the mean sun.

(ii) The instant at which the sun crosses the meridian of a
place, is called local apparent noon (L.A.N.)
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(iii) The instant at which the mean sun crosses the meridian of
the place, is called local mean noon (L.M.N.)

(iv) The sidereal time of apparent noon is equal to right ascen-
sion of the sun.

(v) The sidereal time of the mean noon is equal to right ascen-
sion of mean sun.

(vi) All places on the same meridian have same local time.
(vii) The local time of eastern meridians will be later than that

of western meridians.

4. The Standard Time. As the local mean time at any merid-
ian is reckoned from the lower transit of the mean sun at the merid-
ian, the local mean time of each meridian will, therefore, be differ-
ent. To avoid the confusion arising from the use of different local
mean times by the people, the mean time of the central meridian of
a country is referred to as the standard time of the particular coun-
try. The meridian whose local mean time is used as the standard
time of the country, is known as the standard meridian of the coun-
try. Standard meridian of a country is generally selected such that
it usually lies an exact number of hours from Greenwich. Of course,
India is an exception to this, as its standard meridian is 5½ hours
(Long. 82°30´) east of Greenwich. Watches and clocks throughout
any country keep the standard time of the country irrespective of
their locations in the country.

The difference between the local mean time of any meridian
and the standard time is due to the difference of longitudes between
the given meridian and the standard meridian. Thus, the local mean
time of any place can be easily obtained by adding/subtracting the
difference of longitudes between the place and the standard merid-
ian according as the place is east or west of the standard meridian.

i.e. Standard time = L.M.T. ± difference of longitude converted
to time, the signs plus and minus in the above equation are used
according as the place is west or east of the standard meridian.

Example 1.20. Calculate the local mean time at a place whose
longitude is 92°30´E, when the standard time is 8 hours 40 m 30 s.
Assume the standard meridian of the country as 82°30´E.

Solution.
Difference in longitudes  = 92°30´� 82°30´

= 10°= 10 x 4 = 40 minutes
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As the place is east of standard meridian,
Standard time = L.M.T. � Difference in longitudes in

time
i.e. 8 h 40 m 30 s = L.M.T. � 40 m
or L.M.T. = 8h 40m 30s + 40m

= 9h 20m 30s.        Ans.

1.33. RELATIONSHIP BETWEEN THE HOUR ANGLE, RIGHT
 ASCENSION AND TIME

The following relations between the hour angle, right ascension
and time of any meridian are noteworthy :

1. Apparent solar time = Hour angle of the sun + 12 hours.
2. Mean solar time = Hour angle of the mean sun + 12 hours.
3. Local mean sidereal time   = Right ascension of the mean

sun  +  Hour  angle  of the mean sun.

The hour angle of the sun at its upper culmination being zero,
the sidereal time of apparent noon = right ascension of the sun.
Similarly, the hour angle of the mean sun at its upper culmination
being zero, the sidereal time of mean noon = right ascension of the
mean sun.

1.34. EQUATION OF TIME
The difference between the apparent solar time and the mean

solar time at any instant, is known as the equation of time. In olden
days, the apparent time was first determined be making observa-
tions to the sun and then it was reduced to mean time with the help
of the equation of time. But, nowadays, mean time is determined
from sidereal time obtained by making observations to star or even
directly from wireless signals transmitted from Greenwich.

The values of equation of time at 0 hour (mid-night) at Green-
wich are tabulated in the Nautical Almanac for every day of the
year. The equation of time is thus treated as a correction which may
be applied to the mean time to obtain apparent time.

Equation of time = Apparent solar time � Mean solar time. The
equation of time is positive when the apparent solar time is more
than the mean solar time and negative when the apparent solar
time is less than the mean solar time. For example if at 0 hour
G.M.T. on 15th October, 1975, the equation of time is + 13 m 10 s, it
means that the apparent time at 0°h mean time is 0 h 13 m 10 s. In
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other words, we may say that the true sun is 13 m 10 s ahead of the
mean sun. Similarly if the equation of time is �10 m 45 s on 16th
January 1975, the apparent time at 0 h mean time will be 23 h 49 m
15 s on earlier day, i.e. on 15th January 1975. In this case the true
sun is behind the mean sun at that time. The value of equation of
time varies from 0 to about 16 minutes at different seasons of the
year. It vanishes four times during a year, i.e.on or about of April
15, June 14, September 1 and December 25. On these four dates,
the mean sun and the true sun are on the same meridian and hence,
the apparent time and mean time are also the same.

Reasons of Variation of Equation of Time. The main rea-
sons of the existence of the equation of time and its variation are
the following :

(i) The path of the earth around the sun is elliptical and not
circular. Hence, its motion is not uniform and varies with
its distance from the sun.

(ii) The movement of the true sun is along the ecliptic which
does not correspond to the movement of the mean sun
assumed to move along the equator.

Derivation of the Equation of Time. We know that
L.S.T. = R.A. of the mean sun

+ Hour Angle of the mean sun ...(1.50)
L.S.T. = R.A. of the true sun

+ Hour Angle of the true sun ...(1.51)
Subtracting Equation (1.51) from Equation (1.50), we get R.A.

of the mean sun � R.A. of the true sun
= H.A. of the true sun � H.A. of the mean sun.

But, the equation of time = Hour Angle of the true sun � Hour
Angle of mean sun

= Apparent time � Mean time
∴ Apparent time = Mean time + Equation of time.

1.35. CONVERSION OF TIMES
To convert different times, conversion of the difference in longi-

tudes in time interval may be made as under :
360°of longitudes = 24 hours of time

15°of longitudes = 1 hour of time
1°of longitude = 4 minutes of time
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15´of longitude = 1 minute of time
1´of longitude = 4 seconds of time

15´´of longitude = 1 second of time.

Example 1.21. Convert the following difference in longitudes
into interval of time (a) 62°17´42´´(b) 176°24´57´´.

Solution.

(a) 62°= 
62
15 h = 4 h 08 m 0s

17´= 
17
15 m = 0 h 01 m 8s

42´´= 
42
15 s = 0 h 00 m 2.8s

Total = 4h 09m 10.8s Ans.

(b) 176°= 
176
15 h = 11h 44m 00s

24´= 
24
15 m = 0h  01m  36s

57´´= 
57
15 s = 0h 00m 03.8s

Total = 11h 45m 39.8s. Ans.

Example 1.22. Express the following intervals of time into dif-
ference in longitudes.

(a) 5h 300m 45s. (b) 10h 24m 12s.
Solution.
(a) 5h = 5 × 15° = 75°0´00´´

30m = 30 × 15´ = 7°30´00´´
45s = 45 × 15´´ = 0°11´15´´ Ans.

Total = 82°41´15´´long.
(b) 10h = 10 × 15° = 150°0´00´´

24m = 24 × 15´ = 6°0´00´´
12s = 12 × 15´´ = 0°3´00´´

Total = 156°03´00´´Long. Ans.
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1.36. CONVERSION OF STANDARD TIME TO
  LOCAL MEAN TIME

The following abbreviations are usually referred to in connec-
tion with time conversion :

L.M.T. = Local mean time
L.M.M. = Local mean mid-night (0h)
L.M.N. = Local mean noon (12h)
G.M.T. = Greenwich mean noon
G.M.M. = Greenwich mean mid-night
G.M.N. = Greenwich mean noon
L.A.T. = Local apparent time
L.A.N. = Local apparent noon
L.S.T. = Local sidereal time
G.S.T. = Greenwich sidereal time
I.S.T. = Indian standard time.

We know that the difference between the standard time and the
local mean time is equal to the difference in longitudes between the
meridian of the place and the standard meridian of the country.

If the meridian of the place is east of the standard meridian, the
sun moving apparently from east to west will transit the meridian
of the place earlier than the standard meridian. Similarly, if the
meridian of the place is west of the standard meridian, the sun will
transit the standard meridian earlier than the meridian of the place.
Hence, it is evident that the local time will be more in eastern longi-
tudes and lesser in western longitudes as compared to the standard
time.

i.e.    L.M.T. = Standard time ±
Difference in longitudes ...(1.52)

= Greenwich Mean Time ± Difference in longitudes...(1.53)
In above equations, +ve sign is used if the meridian of the
given place is east of the standard meridian (or Greenwich) and

�ve sign signifies west of the Standard meridian (or Greenwich).

Example 1.23. If the standard time at a place in India is 18
hours, 18 minutes, 18 seconds corresponding to standard meridian
(82°30´E), find the local mean time for the places whose longitudes
are :
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(a) 90°E. (b) 48°W.
Solution.
(a) The longitude of the place = 90°E
The longitude of the standard meridian

= 80°30´E
.:  Difference in longitudes = 90°� (82°30´) = 7°30´
The longitude of the meridian of the given place is more than

that of the standard meridian, hence, the place is east of the stan-
dard meridian.

Conversion of difference in longitudes into time interval

7°of longitude = 
7

15 h = 0h 28m 0s

30´of longitude = 
30
15 m = 0h 2m 0s

Total = 0h 30m 0s
∴  L.M.T. = Standard time + Difference in longitudes

= 18h 18m 18s + Oh 30m 0s
= 18h 48m 18s past mid-night
= 6h 48m 18s P.M. Ans.

(b) The longitude of the place    = 48°W
The longitude of the Indian standard meridian = 82°30´E
∴ Difference in the longitudes = 82°30´� (�48°) = 130°30´
As the meridian of the given place is west of Greenwich and the

standard meridian is east of Greenwich, the place is west of the
Indian standard meridian.

Now 130°of longitude = 
130
15 h = 8h 40m 0s

  30´of longitude = 
30
15 m = 0h 02 m 0s

Total = 8h 42m 0s
Now L.M.T. = Standard Time � Difference in longitudes

= 18h 18m 18s � 8h 42m 0s
= 9h 36m 18s past mid-night
= 9h 36m 18s A.M. Ans.



FIELD ASTRONOMY 81

Example 1.24. Find the G.M.T. corresponding to the following
local mean times :

(a) 8h 36m 48s A.M. at a place in longitude 76°45´E
(b) 8h 36m 48s P.M. at a place in longitude 76°45´W.
Solution.
(a) Longitude of the place = 76°45´E

76°of longitude = 
76
15 h = 5h 04m 0s

45´of longitude = 
45
15 m = 0h 03m 0s

Total = 5h 07m 0s.
As the place is east of Greenwich, the local time will be ahead
i.e. L.M.T. = G.M.T. + Difference in longitude in time

or G.M.T. = L.M.T. � Difference in longitude in time
= 8h 36m 48s � 5h 7m 0s
= 3h 29m 48s. Ans.

(b) Longitude of the place is 76°45´W

76°of longitude = 
76
15 h = 5h 04m 0s

45´of longitude = 
45
15 m = 0h 03m 0s

Total = 5h 07m 0s.
As the place is west of Greenwich, the local mean time will be

behind.
i.e. L.M.T. = G.M.T. � Difference in longitude in time

or G.M.T. = L.M.T. + Difference in longitude in time
= 8h 36m 48s P.M. + 5h 7m 0s
= 20h 36m 48s past mid-night + 5h 7m 0s
= 25h 43m 48s

or G.M.T. = 1h 43m 48s A.M. next day. Ans.

Example 1.25. The Greenwich Civil Time (G.C.T.) at the time
of astronomical observations was known to be 8h 30m 48s P.M. on
January 21, 1980. If the longitude of the place of observation, is
93°45´45´´E, find the L.M.T. of the place.
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Solution.
Longitude of the place     = 93°45´45´´E

93° = 
93
15  h = 6h 12m 00s

45´ = 
45
15 m = 0h 03m 00s

45´´ =
45
15 = 0h 00m 03s

Total = 6h 15m 03s

As the place of observation is east of Greenwich, the local mean
time will be ahead of the Greenwich civil time.

Now G.C.T. = 8h 30m 48s P.M.
G.M.T. = 20h 30m 48s past mid-night
L.M.T. = G.M.T. + Difference in longitude

= 20h 30m 48s + 6h 15m 03s
= 26h 45m 51s past mid-night of Jan.

21, 1980
= 2h 45m 51s A.M. on Jan. 22, 1980. Ans.

1.37. CONVERSION OF LOCAL MEAN TIME TO LOCAL
 APPARENT TIME AND VICE VERSA

We know that
Equation of time    = Apparent solar time � Mean solar time

or     = Local apparent time � Local mean time
Hence, Local apparent time

    = Local mean time + Equation of time.
But, the equation of time varies in magnitude throughout the

year. Its correct values are published in Nautical Almanac at the
time of lower transit of the sun, for each day of the year. The correct
value of equation of time is obtained by adding or subtracting the
rate of increase or decrease since mid-night.

Procedure :
1. Convert the Local Mean Time (L.M.T.) to Greenwich Mean

Time (G.M.T.).
2. Compute the interval of time before or after Greenwich

mean mid-night or Greenwich mean noon in hours and
part thereof.
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3. Compute the amount of increase or decrease of the equa-
tion of time for the interval of time obtained in step (2)
above.

4. Calculate the equation of time at the computed Green-
wich mean time obtained in step (1) above.

5. Calculate the Greenwich apparent time (G.A.T.) by add-
ing or subtracting the equation of time computed in Step
(2) above to the G.M.T.

6. Calculate the local �apparent time by adding or subtract-
ing the difference in longitude in time to the local mean
time.

Example 1.26. Find the local apparent time of observation of
sun at a place in longitude 72°26´E, corresponding to local mean
time 9h 25m 20s. The equation of time at G.M.N. is 4m 34.22s
additive to the mean time, and decreases at the rate of 0.24s per
hour.

Solution.
Calculation of G.M.T.
Longitude of the place = 72°36´E = 4h 50m 24s
G.M.T. of the observations L.M.T. of observation � Difference in

longitude
= 9h 25m 20s � 4h 50m 24s
= 4h 34m 56s

Mean time interval before G.M.N.
= 12h � (4h 34m 56s) = 7h 25m 04s
= 7.42 hours.

It is given that equation of time decreases at the rate of 0.24s
per hour at G.M.N.

Hence, the increase of equation of time in mean time interval =
7.42 × 0.24 = 1.78s.

∴    Equation of time at G.M.T. = 4m 34.22s + 1.78s = 4m 36s
But G.A.T. = G.M.T. + E.T.
∴   G.A.T. of observation = 4h 34m 56s + 4m 36s

or G.A.T. = 4h 39m 32s
But, L.A.T. = G.A.T. + Difference in longitudes

= 4h 39m 32s + 4h 50m 24s
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or   L.A.T. of observation = 9h 29m 56s. Ans.

Example 1.27. Find the local mean time of observation of the
sun at a place in longitude 72°36´E, corresponding to local apparent
time 9h 29m 56s. The equation of time at G.M.N. is 4m 34.22s addi-
tive to mean time and increases at the rate of 0.24s per hour.

Solution.
Longitude of the place = 72°36´E = 4h 50m 24s
L.A.T. of observation = 9h 29m 56s (given)
Subtract longitude in time = 4h 50m 24s
∴ G.A.T. of observation = 4h 39m 32s
Time interval before G.M.T. = 12h � 4h 39m 32s

= 7h 20m 28s
Note. (In the absence of G.M.N. of observation, G.A.T. of obser-

vation has been used, for calculating the time interval)
= 7.34 hour

∴  Increase for 7.34 @ 0.24s per hour
= 7.34 × 0.24 = 1.76s

But E.T. at G.M.N. = 4m 34.22s
∴  E.T. at G.A.T. of observation = 4m 34.22s = + 1.76s

= 4m 35.98s
But G.A.T. = G.M.T. + E.T.
Now, G.A.T. of observation = 4h 39m 32.00s
E.T. (�ve) = 4m 35.98s

= 4h 34m 56.02s
G.M.T. of observation = 4h 34m 56.02s
Add longitude interval in time = 4h 50m 24.00s
L.M.T. of observation = 9h 25m 20.02s Ans.

Example 1.28. Find the L.M.T. of observation at a place from
the following data :

L.A.T. of observation= 15h 12m 40s
Equation of time at G.M.N. = 5m 10.65s, additive to appar-

ent time and increasing at 0.22 seconds per hour.
Longitude of the place = 20°30´W.
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Solution.
Longitude of the place = 20°30´W
Longitude of the place in time = 1h 22m

h      m      s
L.A.T. of observation = 15h 12m 40s
Add longitude in time = 1h   22m 00s
G.A.T. of observation = 16h 34m 40s
E.T. at G.M.N. = 5m 10.65s (Given)
M.T. interval for G.M.N. = 4h 34m 40s

= 4.57778h
Increase in E.T. for 4-57778h @ 0.22 seconds per hour

= 0.22 × 4.57778
= 1.01 s

∴  Equation of time at observation = 5m 10.65s + 1.01s
= 5m 11.66s

G.M.T. of observation = G.A.T. of observation + E.T.
= 16h 34m 40s + 5m 11.66s
= 16h 39m 51.66s

Deduct longitude in time =   1h 22m
∴  L.M.T. of observation = 15h 17m 51.66s Ans.

1.38. CONVERSION OF SIDEREAL TIME INTERVAL TO 
      MEAN TIME INTERVAL

In one tropical year, the mean sun apparently goes around the
earth once with respect to the First point of Aeries (γ) in the same
direction as that of the earth´s rotation. Let us suppose that earth
makes n rotations with respect to the First point of Aeries (γ) in one
tropical year. As per definition, a sidereal day is the time taken by
the earth in one complete rotation with respect to the First point of
Aeries (γ). Hence, total number of sidereal days in a tropical year
should be equal to n. But, actually the earth rotates only (n � 1)
times with respect to n sidereal days in a tropical year. Hence, cor-
responding to n sidereal days in a tropical year, there will be only
(n � 1) mean solar days. According to Bessal, there are 365.2422
mean solar days in a tropical year. Hence, there will be 366.2422
sidereal days in one tropical year.

Equating the number of sidereal days with the mean solar days,
we get
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366.2422 sidereal days = 365.2422 mean solar days.

1 sidereal day = 
365.2422
366.2422  mean solar day

1 sidereal day = 1 � 
1

366.2422  mean solar day

1 sidereal day = 23h 56m 4.09s mean solar time.
∴ 1h sidereal time = 1h � 9.8296s mean solar time
1m sidereal time = 1m � 0.1638s mean solar time
1s sidereal time = 1s � 0.0027s mean solar time.
Hence, conversion of sidereal time to the mean solar time may

be made by simply subtracting 9.8296 seconds per hour from the
given sidereal time. As the required correction is always negative, it
is known as retardation.

Again,
365.2422 mean solar days = 366.2422 sidereal days.

1 mean solar day = 1 +
1

365.2422  sidereal days

1 mean solar day = 24h 3m 56.56s sidereal time.
1 hour mean solar time = 1h + 9.8565s sidereal time.
1 minute mean solar time = 1m + 0.1642s sidereal time.
1 second mean solar time = 1s + 0.0027s sidereal time.
Hence, conversion of mean solar time to the sidereal time may

be made by simply adding 9.8565 seconds per hour to the given
mean solar time. As the required correction is always positive, it is
known as acceleration.

Note. The following points may be noted :
(i) The mean solar day is 3m 56.56s longer than the sidereal

day.
(ii) The sidereal day is 3m 55.91s shorter than the mean solar

day.

Example 1.29. Convert 6 hours 30 minutes 40 seconds sidereal
time to mean solar time interval.

Solution.
To convert sidereal time to mean solar time, the retardation

@ 9.8296 seconds per hour of sidereal time is applied.
∴  Total retardation @ 9.8296 seconds per sidereal hour.
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6h × 9.8296 = 58.9776 seconds
30m × 0.1638 = 4.9140 seconds
40s × 0.0027 = 0.1080 seconds

Total = 63.9996 seconds
= 1m 3.9996 seconds

Now, sidereal time interval = 6h 30m 40.0000s (Given)
Subtract retardation = 1m 3.9996s
∴ Mean solar time interval = 6h 29m 36.0004s. Ans.

Example 1.30. Convert 6h 29m 36s mean solar time to sidereal
time interval.

Solution.
To convert mean solar time to sidereal time, the acceleration

@9.8565s per hour of mean solar time is applied.
∴  Total acceleration @ 9.8565 seconds per mean solar hour.

6h × 9.8565 = 59.1390 seconds
29m × 0.1642 = 4.7618 seconds
36s × 0.0027 = 0.0972 seconds

Total = 63.9980 seconds
= 1m 3.988s

∴ Mean time interval = 6h 29m 36s
Add acceleration = 1m 3.988
∴ Sidereal time interval = 6h 30m 39.988s. Ans.

1.39. CONVERSION OF LOCAL MEAN TIME AT ANY
  INSTANT TO LOCAL SIDEREAL TIME IF GREENWICH
  SIDEREAL TIME (G.S.T.) AT GREENWICH MEAN
  MID-NIGHT (G.M.M.) IS KNOWN

Following steps are involved :
(1) Calculate local sidereal time (L.S.T.) at local mean midnight

(L.M.M.) from the given G.S.T. at G.M.M. as under :
(i) Convert the longitude of the place to time.

(ii) Calculate the total retardation/acceleration for the longi-
tude in time accordingly as the place is east/west of Green-
wich, @ 9.8565s per hour of longitude.

(iii) Obtain L.S.T. at L.M.M. by subtracting the retardation
from the G.S.T. at G.M.M.



ADVANCED SURVEYING88

(2) Calculate the mean time interval between the local mean
mid-night and the given local mean time.

(3) Convert the mean time interval to sidereal time interval by
adding the acceleration to or subtracting the retardation from the
mean solar interval as the case may be.

(4) Calculate the required local sidereal time by adding or sub-
tracting the sidereal interval obtained in step (3) to the local time at
local mid-night.

Note. If the standard time is given instead, convert it into L.M.T.
before converting to L.S.T.

Example 1.31. Find L.S.T. at a place in longitude 90°W of 10
AM if G.S.T. at G.M.M. is 13h 58m 4.1s.

Solution.
The longitude of the place = 90°W

The longitude in time = 
90
15  = 6h W

Since the place is west of Greenwich, the gain in sidereal time
for 6h of longitude is required.

∴  Total acceleration @ 9.8565s per hour = 6 × 9.8565s
= 59.1390S

L.S.T. at G.M.M. = G.S.T. at G.M.M. + Acceleration
= 13h 58m 4.1s + 59.1390s
= 13h 59m 03.2398

Now the given L.M.T. = 10.00h
∴ Mean time interval from L.M.M. = 10h
Total acceleration @ 9.8565s per hour for 10h mean time interval

= 10 × 9.8565 = 98.565s = 1m 38.565s
But, sidereal interval (SI) = Mean time interval + Acceleration

= 10h + 1m 38.565s = 10h 1m 38.565s
∴ L.S.T. at local mean time = L.S.T. at G.M.M. + S.I.

= 13h 59m 3.239s + 10h 01m 38.565s
= 24h 0m 41.804s

or      L.S.T. at L.M.T. = 0h 0m 41.804s Ans.

Example 1.32. Find the L.S.T. at a place in longitude 76°30´E
at 4h 30 m P.M., G.S.T. at G.M.N. being 4h 36m 18s.
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Solution.
Longitude of the place = 76°30´E

76°of the longitude = 
76
15  h = 5h 4m 0s

30´of longitude = 
30
15  m = 0h 2m 0s

∴  Longitude of the place in time = 5h 6m 0s
Since the place is east of Greenwich, a loss of sidereal time for

5h 6m has to be calculated, i.e.
5h × 9.8565s = 49.2825

6m × 0.1642s = 0.9852
Total = 50.2677

L.S.T. at L.M.N. = G.S.T. at G.M.N. � Retardation
= 4h 36m 18s � 50.2677s
= 4h 35m 27.7323s

Now, given L.M.T. = 4h 30m P.M.
∴  M.T. interval past L.M.N. = 4h 30m
To convert M.T. interval to sidereal time interval an accelera-

tion is added.
Total acceleration for 4h 30m

4h × 9.8565s = 39.4260s
30m × 0.1642 = 4.9260s

Total = 44.3520s
Sidereal time in interval = Mean time interval + Acceleration

past L.M.N.
= 4h 30m + 44.352s
= 4h 30m    44.352s

Now L.S.T. at L.M.N. = 4h 35m    27.7323s
Add S.I. Past L.M.N. = 4h 30m     44.3520s
∴  L.S.T. at L.M.T. = 9h 06m     12.0843s

= 9h 06m    12.084s Ans.

1.40. CONVERSION OF LOCAL SIDEREAL TIME AT ANY IN-
STANT TO LOCAL MEAN TIME IF GREENWICH SIDEREAL
TIME (G.S.T.) AT GREENWICH MID-NIGHT (G.M.M.) OR AT
GREENWICH MEAN NOON (G.M.N.) IS KNOWN

Following steps are involved :



ADVANCED SURVEYING90

1. Calculate the local sidereal time (L.S.T.) at local mean
mid-night from the given G.S.T. at G.M.M. as explained
earlier.

2. Calculate the sidereal time interval between the local mean
mid-night and the given local sidereal time.

3. Convert the sidereal time interval to mean time interval
by subtracting the retardation or adding the acceleration
from the sidereal time interval as the case may be.

4. Calculate the required local mean time by adding or sub-
tracting the mean time interval obtained in step (3) to the
local mean time at local mid-night.

Note. If standard time is required, convert the calculated local
mean time to the standard time, as explained earlier.

Example 1.33. Find L.M.T. at a place in longitude 90°W if L.S.T.
of the place is 0h 0m 41.8s and G.S.T. at G.M.M. is 13h 58m 4.1s.

Solution.

Conversion of 90°longitude into time = 
90
15

°
 = 6h

Since the place is west of Greenwich
L.S.T. at L.M.M. = G.S.T. at G.M.M. + Acceleration
Now, acceleration for 6h @ 9.8565s per hour

= 6 × 9.8565 = 59.1390s
G.S.T. at G.M.M. = 13h 58m 4.1s
Add acceleration                             59.139s
∴  L.S.T. at L.M.M. = 13h 59m 3.239s
Now, given local sidereal time   = 0h 0m 41.1s

= 24h 0m 41.800s
Subtract L.S.T. at L.M.M. = 13h 59m 3.239s
∴  S.I. interval = 10h 01m 38.561s
To convert sidereal interval to mean time interval, apply retar-

dation @ 9.8296 per sidereal hour.
10h × 9.8296 = 98.2960s
1m × 0.1638 = 0.1638s

38.561 × 0.0027 = 0.1041s
Total retardation = 98.5639s = 1m 38.5639s
Mean time interval = S.I. � Retardation
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= 10h 01m 38.56s � 1m 38.56s
or L.M.T. = 10.00 A.M. Ans.

Example 1.34. Find the L.M.T. at a place in longitude 76°15´E
if L.S.T. of the place is 6h 42m 18s and G.S.T. at G.M.M. is 8h 16m
1.5s.

Solution.
Longitude of the place 76°15´E
Longitude of the place in time

76°=
76
15

°
h = 5h 4m 0s

15´=
15
15  m = 0h 1m 0s

Total = 5h 5m 0s
Since the place is east of Greenwich

L.S.T. at L.M.M. = G.S.T. at G.M.M. �
Retardation for 5h 5m

5h × 9.8565 = 49.2825s
5m × 0.1642 = 0.8210s

Total retardation = 50.1035s
∴  L.S.T. at L.M.M. = 8h 16m 01.5s � 50.1s

or = 8h 15m 11.4s
Given L.S.T. = 6h 42m 18s

or   L.S.T. = 30h 42m 18s
S.I. past L.M.M. = 30h 42m 18s � 8h 15m 11.4s

= 22h 27m 6.6s
To convert S.I. to mean time interval, apply retardation

22h × 9.8296 = 3m . 36.2512s
27m × 0.1638 = 4.4226s

6.6035s × 0.0027 = 0.0178s
Total = 3m   40.69s

L.M.T.= sidereal interval past M.M. � Retardation
= 22h 27m 6.6s � 3m 40.7s
= 22h 23m 25.9s

or   L.M.T. = 10h 23m 25.9s P.M. Ans.

Example 1.35. Find sidereal interval, given mean interval as
8h 30m.
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Solution.
To convert mean interval to sidereal interval, the acceleration

@ 9.8565 seconds per hour is applied.
∴  Total acceleration @ 9.8565 per mean hour

8h × 9.8565 =78.852s
30m × 0.1642 = 4.926s

Total acceleration = 83.778 = 1m 23.778
Mean Time interval = 8h 30m
Add acceleration = 1m 23.778s
∴  Sidereal time interval = 8h 31m 23.778s Ans.

1.41. DETERMINATION OF THE L.M.T. OF THE UPPER
 TRANSIT OF A KNOWN STAR IF G.S.T. OF G.M.M. IS
  KNOWN

We know that the right ascension expressed in time of any star
at its upper transit is equal to the local sidereal time. The right
ascension and declination of important stars are generally published
in the Nautical Almanac. Hence, knowing the right ascension of the
star, the local sidereal time (L.S.T.) of its upper transit, is known.
Now L.S.T. can be easily converted into L.M.T. by the method ex-
plained earlier.

Following steps are involved :
(a) From the Nautical Almanac, find the right ascension of

the given star on the given day.
(b) Convert the right ascension (R.A.) to time to obtain local

sidereal time {L.S.T.) at the time of upper transit of the
star.

(c) From the given G.S.T. at G.M.M., calculate the L.S.T. at
local mean mid-night.

(d) Find the sidereal interval between the L.S.T. of transit of
star and the local mean mid-night.

(e) Convert the sidereal interval to mean time interval to get
L.M.T. of upper transit.

Example 1.36. Calculate the L.M.T. of upper transit of a star
at a place in longitude 82°30´W, whose R.A. is 20h 10m 30s. Given:
G.S.T. of previous G.M.N. as 9h 30m 30s.

Solution. Longitude of the place is 82°30´W
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Longitude of the place is 5h 30m in time
Since the place is west of Greenwich, a gain of sidereal time for

5h 30m is to be calculated.
5h × 9.8565s = 49.2825s

30m × 0.1642s = 3.2840
Total acceleration = 52.5665s
G.S.T. of G.M.N. = 9h 30m 30s (given)
Add acceleration = 52.5665
∴  L.S.T. ofL.M.N. = 9h 31m 33.5665s
Now, R.A. of star = L.S.T. = 20h 10m 30s
Subtract L.S.T. of L.M.N. = 9h 31m 22.5665s
∴  S.I. past L.M.N. = 10h 39m 7.4335s
To convert S.I. interval to mean interval, apply a retardation

10h × 9.8296s = 98.2860s
39m × 0.1638 = 6.3882

7.4335 × 0.0027 = 0.0128
Total retardation = 104.6970s = 1m 44.697s
∴ Mean time interval = S.I. � Retardation

= 10h 39m 7.4335S � 1m 44.6970s
= 10h 37m 22.7365s past L.M.N.

∴  L.M.T. at upper transit = 10h 37m 22.7365s P.M. Ans.

1.42. DETERMINATION OF TIME OF ELONGATION OF A
  CIRCUMPOLAR-STAR (FIG. 1.50)
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Z

90°

90°–δ

90
°–

θ

90°–α

H

A

90°–A

90°–α

90°–δ

90°–H

θ

(a) (b)

Fig. 1.50.
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Let S be the position of the star at elongation.
P and Z be the pole and zenith respectively.
At elongation, angle ZSP is a right angle.
(1) Applying the Napier´s sine rule,
Sine of middle part = product of tangents of adjacent parts
∴ sin (90°� H) = tan θ. tan (90°� δ)

cos H = tan θ. cot δ ...(1.54)
Knowing the value of latitude (θ) of the place and the declina-

tion (δ) of the circumpolar star, the value of the hour angle (H) of
the star at the instant of elongation can be calculated.

(2) Now, local sidereal time of elongation = Right ascension of
the star + Hour angle of the star, where value of

H =
24 �

H
H

accordingly as star is 
W
E

 of the meridian

(3) Convert L.S.T. to L.M.T. as already explained earlier.
(4) Calculate the time of elongation by allowing the chronom-

eter error, if any.

Example 1.37. Find the L.S.T. of western elongation of Polar is
in the evening at a place in latitude 30°22´15´´; given that the R.A. of
the star is 1h 52m 12.0s and its declination is + 89°03´46´´.

Solution.
Latitude of the place θ     = 30°22´15´´ (Given)
Declination of the star     = + 89°03´46´´ (Given)
We know from Eq. (1.53), that when the star is at elongation,

cos H = tan 9 . tan (90° � δ)
= tan 30°22´15´´× tan [90°� (89°03´46´´)]
= tan 30°22´15´´× tan 0°56´14´´
= 0.586012 × 0.0163591 = 0.0095866289

H = 89°27´02´´.52
or H in time = 5h 57m 48.2s

But, R.A. of Polaris = 1h 52m 12.0s (Given)
L.S.T. = H.A. + R.A.

∴ L.S.T. of elongation = 7h 50m 00.2s. Ans.
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1.43. METHODS FOR DETERMINATION OF TIME FROM
 ASTRONOMICAL OBSERVATIONS

The observations for the determination of time are made only
for finding out the error of the chronometer. For the determination
of the time it is required to find the hour angle of the heavenly body.
Determination may be made from the meridian or ex-meridian ob-
servations of the heavenly bodies.

The following five methods are usually employed for the deter-
mination of time :

1. By meridian observation of the stars.
2. By ex-meridian observation of the stars.
3. By equal altitudes of the stars.
4. By meridian observation of the sun.
5. By ex-meridian observation of the sun.

1. Determination of Time by making Meridian Observa-
tion to heavenly bodies

Given data : (i) Local longitude ; (ii) Direction of local meridian.
Principle of the Method
At the time of upper transit of a star, its hour angle is zero.

Hence, right ascension of star equals the local sidereal time.
The accurate values of right ascension of important stars are

tabulated in the Nautical Almanac for each day of the year.
1. Field observations with stars :
Procedure : Following steps are involved :

1. Set up a transit and level it accurately. Set the line of
collimation to lie along the direction of the observer�s me-
ridian.

2. Note down the chronometer time at the instant the star
transits, across the vertical wire of the diaphragm.

3. Compare the right ascension of the star with the observed
chronometer time, to obtain the error of the chronometer.

Calculations :
1. If the chronometer is keeping Greenwich sidereal time,

add local .longitude in time to the right ascension, to get
true Greenwich sidereal time of observation.

2. If the chronometer is keeping local mean time, the local
sidereal time determined, is required to be converted first
to local mean time to obtain the error of the chronometer.
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2. Field observations with Sun
Procedure : Following steps are involved :

1. Set up the theodolite and level it accurately. Set the line
of collimation along the pre-determined direction of the
meridian.

2. Note down the time at which sun�s west and east limb
cross the vertical hair by means of a chronometer.

3. Take the mean of the readings, to get the local apparent
time.

Calculations :
1. At the upper transit of the sun, the hour angle is zero and

local apparent time is 12 hours.
2. Find the G.M.T. of G.A.N. from the Nautical Almanac.
3. Find the L.M.T. of L.A.N. by applying the longitude to

G.M.T. of G.A.N.
4. Find the difference of L.M.T. of L.A.N. and the local ap-

parent time of transit, i.e. 12 hour, which is the required
error of the chronometer.

Example 1.38. A star at 71°15´E transits at 9h 12m 25s P.M.
recorded with a chronometer keeping Indian standard time. Deter-
mine the chronometer error if G.S.T. at G.M.M. on the day of obser-
vation was 14h 12m 24s. Given : R.A. of the star as 10h 42m 17.25s.

Solution.
Longitude of the place =71°15´E
Longitude of the place in time   = 4h 45m
Now G.S.T. at G.M.M. = 14h 12m 24s (Given)
Loss of the sidereal time @ 9-8565s per hour of longitude

4h × 9.8565 = 39.43 seconds
45m × 0.1642 = 7.39 sec.

Total retardation = 46.82 seconds
L.S.T. of L.M.M. = G.S.T. of G.M.M. � Retardation

= 14h 12m 24s � 46.82s
= 14h 11m 37.18s.

Now, L.S.T. of observation
= R.A. of the star

∴  S.I. past mid-night = (10h 42m 17.25s+24h) �14h11m37.18s
= 20h 30m 40.07s
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To convert S.I. to mean time interval, apply a retardation 9.8296
seconds per hour of sidereal time

20h × 9.8296 = 196.59 seconds
30m × 0.1638 =     4.91 seconds

40.07s × 0.0027 =     0.11 seconds
Total retardation = 201.61 seconds = 3m 21.61s
Mean time interval past L.M.M.

i.e.  Local time of observation = S.I. � Retardation
= 20h 30m 40.07s � 3m 21.61s
= 20h 27m 18.46s.

Standard time as recorded by the chronometer
= 9h 12m 25s P.M.
= 21h 12m 25s past L.M.M.

Local time of the chronometer
= 21h 12m 25s � Difference of longitude
= 21h 12m 25s � (82°30´ � 71°15´)
= 21h 12m 25s � 11°15´
= 21h 12m 25s � 45m = 20h 27m 25s

Now, local time of chronometer = 20h 27m 25s
and  Local time of observation = 20h 27m 18.46s
∴   chronometer error = 6.54s fast Ans.
2. Determination of time by making Ex-Meridian obser-

vation to a star. This is a most convenient and suitable method for
the determination of time.

Given data :
(i) R.A. of the star (ii) Declination of the star

(iii) Latitude of the place of observation.
Field observations : The following steps are involved :

1. Set up the theodolite and level it carefully.
2. Observe the altitude (α) of the star when it is out of the

meridian of the observer.
3. Observe the time of the chronometer corresponding to the

instant of observation.

Calculations :
1. Calculate the components of the spherical triangle PZS.

(Fig. 1.51).
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Co-latitude t»f the place = 90° � θ = λ
Co-declination of the star = 90° � δ = ∆
Co-altitude of the star = 90° � α = Z
2. Solve the spherical triangle PZS to

get the value of the hour angle (H) of the
star at the time of observation, using the
following formula :

tan 
2
H

= 
sin( ) . sin( )

sin . sin ( )
S S

S S Z
λ− − ∆

− ...(1.55)

where 2S = Z + X + A

or cos H =
sin sin sin

cos cos
α θ δ

θ δ
−

...(1.56)

= � tan θ . tan δ + 
sec
cos

θ
δ  sin α ...(1.57)

3. L.S.T. = R.A. ± 15
H

 using +ve sign if the star is west of the 15

meridian and negative if east of the meridian.
4. Convert L.S.T. to L.M.T. from the given G.S.T. at G.M.M.
5. The difference in the L.M.T�s of observation and the com-

puted value, is the error of chronometer.
Note. The following points may be noted :

1. The minimum altitude of the star should be 20°, to avoid
uncertainities in the refraction as refraction correction is
applied to the observed altitudes.

2. The star should be observed when it is actually on the prime
vertical, to obtain accurate results.

3. To increase the accuracy, several observations in quick
succession may be made preferably on both the faces of
transit.

4. To eliminate the instrumental errors, observations to the
stars on the east and west of the meridian, should be made.

5. If the star is observed on prime vertical, the errors in lati-
tude and elevation produce minimum error in time, as

cos H = 
tan
tan

δ
θ

Example 1.39. To find the chronometer error on 1-4-1956 ex-
meridian observations to star β Leo, east of meridian were made and

Fig. 1.51.
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the following data recorded :
Latitude of the place = 30°22´15´´
Corrected altitude of the star = 32°06´41´´
Right ascension of the star = 11h 46m 51.8s
Declination of the star = 14°48´47´´
Sidereal time observed by sidereal chronometer was 7h 57m 30.9s.
Solution.
Given data :

Latitude θ = 30°22´15´´
Declination δ = 14°48´47´´

Altitude α = 32°06´41´´
Substituting the values in equation (1.55), we get

  cos H = 
sin32 06´41´´ sin30 22´15´´ sin14 48´47´´

cos30 22´15´´ cos14 48´17´´
° − ° × °

° × °

or   cos H = 
sin32 06´41´´

cos30 22´15´´ cos14 48´17´´
°

° × ° � tan 30°22�15´´

× tan 14°48´47´´

= 
0.5315669

0.8627712 0.9667615× � 0.58601200 × 0.2644550

= 0.63729652 � 0.1549738 = 0.4823227
H = 61°09´46´´.2

or H = 4h 04m 39-07
But R.A. = 11h 46m 51.8s

L.S.T. = R.A. � H (star observed east of meridian)
= 11h 46m 51.8s � 4h 04m 39.1s

or = 7h 42m 12.7s
Observed chronometer time = 7h 57m 30.9s
Chronometer error = 7h 57m 30.9s � 7h 42m 12.7s

= 15m 18.2s (fast). Ans.

Example 1.40. The following notes refer to an observation for
time on a star :

Latitude of the place = 36°30´30´´N
Mean observed altitude of the star = 30°12´10´´
R.A. of star = 5h 18m 12.45s
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Declination of star = 16°12´18´´.4
The star is to the east of the meridian. Mean sidereal time ob-

served by chronometer = 1h 2m 5.25s.
Find the error of chronometer.
Solution. (Fig. 1.52).

P

S

Z

53°29´30
´´

73
°4

7´
41

.6
´´

59°47´50´´

H

Fig. 1.52.

Given : Latitude of place = 36°30´30´´N
Co-latitude of place PZ = 90° � 36´´30´30´´ = 53°29´30´´
Declination of star = 16°12´18´´.4
Co-declination of star PS = 90° � 16°12´18´´.4 = 73°47´41´´.6
Mean observed altitude   = 30°12´10´´
Zenith distance ZS = 90° � 30°12´10´´ = 59°47´50´´
Let H be the hour angle measured eastwardly.
Applying cosine formula to the astronomical triangle PZS, we

cos H =
cos cos . cos

sin . sin
ZS PZ PS

PZ PS
−

=
cos56 47´50´´ cos53 29´30´´ cos73 47´.6´´

sin53 29´33´´ sin73 47´41́ ´.6
° − ° °

° × °

=
0.503052 0.594940 0.279077

0.80377 0.960269
− ×

×

=
0.503052 0.1660341

0.7718354
−

= 0.43665773

H = 64°06´33´´
∴  Hour angle westwardly

= 360°.H = 360° � 64°06´33´´
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Hour angle in time

=
360 64 06´33´´

15
° − °

= 19h 43m 33.80s

Now L.S.T. = R.A. + H.A.
= 5h 18m 12.45s + 19h 43m 33.80s
= 25h 01m 46.25s = 1h 01m 46.25s

∴   Correction of chronometer.
= 1h 02m 05.25s � 1h 01m 46.25s
= 19 sec. fast. Ans.

3. Determination of time by making observations to a star
at equal altitudes. This is a very simple method and is generally
used when accurate direction of the observer�s meridian is not, known
and an accurate result is required.

Principle of the method. When a star is observed at the same
altitude on opposite sides of the meridian, the mean of the two chro-
nometer times is evidently the time at which the star transits the
observed meridian. When the star crosses the meridian, its hour
angle is equal to zero and its right ascension expressed in time,
therefore, equals the local sidereal time.

Field Observations : Following steps are followed.
1. Set up the theodolite on firm ground and level it carefully.
2. Sight the star, bring it in the field of view and follow it in

azimuth with the help of the horizontal tangent screw.
3. Note down the chronometer time (T1) at the instant the

star crosses the horizontal hair preferably near the cen-
tre.

4. Swing the theodolite to the right or left according as the
star sighted is south or north of the zenith and follow the
motion of the star without disturbing the vertical circle.

5. Note down the chronometer time (T2) again when the star
crosses the horizontal hair preferably at the previous po-
sition.

Calculations :
Mean time of the transit of star = ½ (T1 + T2) = T
∴   L.S.T. = T = Right ascension of the star.
Note. The,following points may be noted :

1. The face of the transit remains the same during both ob-
servations.
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2. The vertical circle remains clamped during both observa-
tions and vertical slow motion screw is not touched.

3. The altitude bubble is made central before each observa-
tion.

4. The observations to the star should be made preferably when
it is at prime vertical.

5. A series of observations are made on the same star and
mean time is accepted for the calculation of the�right as-
cension.

6. To eliminate the uncertainities of refraction, the vertical
angle of the star should not be less than 55°.

7. The interval of time between two observations can be re-
duced if the declination of the selected star is nearly equal
to the latitude of the observer.

Effect of the error in the altitude of stars (Fig. 1.53).
Z

P

N

E´

E

S

P´

A HS1

S2

Horizon

Eqator

Fig. 1.53.

The effect of a slight error in altitudes may be ascertained as
under:

Let S1Z = z, the zenith distance when the star is east of
the meridian.

S2Z = z + dz, the zenith distance when the star is
east of the meridian. Where dz is error in al-
titude.
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A = the azimuth of star
PZ = the co-latitude (λ)

PS1 = the polar distance (∆)
∠ ZPS1 = the hour angle (H) of the star east of the me-

ridian.
∠ ZPS2 = the hour angle (H + h) of the star west of the

meridian
∠ PZS2 = the azimuth (A) of the star west of the merid-

ian. Applying cosine formula to astronomical
∠ PZS1, we get

cos z = cos λ cos ∆ + sin λ sin ∆ cos H ...(1.58)
Similarly, from the astronomical ∠ PZS2, we get

cos (z + dz) = cos λ cos ∆ + sin λ sin ∆ cos (H + h)        ...(1.59)
where h is the error introduced in hour angle due to an error dz in
the zenith distance

Subtracting Eqn. (1.58) from Eqn. (1.59), we get
cos (z + dz) � cos z = sin λ sin ∆ {cos (H + h) � cos H}

or       (cos z cos dz + sin z sin dz) � cos z = sin λ sin λ [cos H cos h
+ sin H sin h � cos H] ...(1.60)

As dz and h both are nearly zero, cos dz and cos h each may be
equated to 1 and sin dz and sin h each equals to dz and h.

The equation (1.60) now reduces to :
dz sin z = h sin H sin λ sin ∆ ...(1.61)

Applying sine formula to ∆S1PZ, we get

sin
sin

z
H =

sin
sin A

∆
...(1.62)

Substituting the value of sin z from Eqn. (1.62), in Eqn. (1.61),
get

∴ h = 
. sin

sin sin sin
dz z

Hλ ∆ = 
. sin . sin

sin sin sin sin
dz H

H Aλ
∆

∆

or h = sin sin
dz

Aλ ...(1.63)

To have the least value of h, the denominator of R.H.S. of eqn.
(1.63) should be maximum, i.e. sin A = 1.
or A = 90°
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i.e. the error in the hour angle of the star due to slight error in
altitude is minimum when the azimuth of the star is 90°or it is on
the prime vertical.

4. Determination of time by making meridian observa-
tions to the sun. This method is similar to the one described earlier
by making meridian observation to the star. The main difference of
sun observations is that two times of observations are recorded when
the east and west limbs of the sun cross the predetermined direc-
tion of the meridian. The mean of the two observed times is the
time at which the centre of the sun transits, which corresponds to
the local apparent noon (L.A.N.).

Field Observations : The following steps are involved.
1. Set up the theodolite and level it carefully.
2. Sight the telescope along the predetermined direction of

the meridian accurately by the vertical hair near the in-
tersection.

3. Fit a dark glass to the eye piece and elevate the telescope
to the expected elevation of the sun. Do not move the the-
odolite in azimuth.

4. Note down the time when the sun�s east limb touches the
vertical hair and again when it�s west limb becomes tan-
gential to the vertical hair.

Calculations :
Let the observed times be T1 and T2.
∴ The time at which the sun transits the observer�s meridian

T =1/2(T1 + T2)
or L.A.N. = T

Convert the local apparent noon (L.A.N.) to local mean time to
get the chronometer error.

5. Determination of time by making ex-meridian
observations to the sun. This method is similar to the one de-
scribed earlier by making ex-meridian observations to stars.

Field Observations. The following steps are followed :
1. Set up the theodolite on firm ground and level it.
2. Observe the altitude of the lower limb on the face left and

the time (T1) of observation.
3. Change the face and observe the altitude of the upper limb

and time (T2) of observation.



FIELD ASTRONOMY 105

Calculations :
1. Compute the corrected altitude of the sun.
2. Compute the time of observation, i.e.½(T1 + T2)
3. Calculate the hour angle of the sun as under :

Let θ be the latitude of the place.

α be the altitude of the sun.
δ be the declination of the sun.
Now, Co-latitude = 90° � θ = λ
Zenith distance = 90° � α = z
Co-declination = 90° � δ = ∆

∴ tan H/2 =
sin( )sin( )

sin . sin ( )
S S
S S z

λ− − ∆
−

where λ + z + ∆ =  2S and H is the hour angle.
If the sun is east of meridian, L.A.T. of observation

= (24h � H/15) past local apparent noon.
= (12h � H/15) past local apparent mid-night.

If the sun is west to meridian, L.A.T. of observation
= H/15 past local apparent noon.
= 12h + H/15 past local apparent mid-night

4. Convert L.A.T. to L.M.T. as explained earlier.
5. The difference between the time of observation by

chronometer and its computed value is the error of the
chronometer.

Note. The following points may be noted :
1. Initial time of observation as recorded by the chronometer

may be accepted for the purpose of obtaining the value of
the declination of the sun.

2. Again, correct the computation for the hour angle by ob-
taining the value of declination corresponding to the time
computed.

3. Balancing of observations is affected by making a series of
observations on both faces, east and west of meridian.

4. The observations should be made preferably between 8 A.M.
and 9 A.M. and between 3 P.M. and 4 P.M.

Example 1.41. Following observations were made to determine
the error of the watch at a place whose latitude is 30°36´20´´N and
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longitude is 76°15´24´´E.
The mean corrected altitude of the sun = 32°42´35´´
The mean watch time of observation = 15h 57m 36s
The declination of the sun at the time of
observation = 16°24´45´´N
G.M.T. of G.A.N. = 11h 52m 23.4s.
Find the correct watch error if the watch is known to be 3m fast

on L.M.T.
Solution.
Longitude in time  = 5h 05m 1.60s
In the astronomical triangle PZS, we get

Z = 90° � α = 90° � 32°42´35´´ = 57°17´25´´
X = 90° � θ = 90° � 30°36´20´´ = 59°23´40´´
∆ = 90° � δ = 90° � 16°24´45´´ = 73°35´15´´

2S = 190°16´20´´
S =  95°08´10´´

(S�Z) = 95°08´10´´ � 57°17´25´´ = 37°50´45´´
(S � A.) = 95°08´10´´ � 59°23�40´´ = 35°44�30´´
(S � ∆) = 95°08´10´´ � 73°35´15´´ = 21°32´55´´

Substituting the above values in the formula

tan 
2
H

=
sin( )sin( )
sin . sin ( )

S S
S S Z

λ− − ∆
− , we get

=
sin35 44´30´´ sin21 32´55´´

sin95 08´10´´ sin37 50´45´´
° °

° °

=
0.584132 0.367290
0.955985 0.613539

×
+

= 0.35109538

tan 
2
H

= 0.59253302

2
H

= 30°38´53´´.16

H = 61°17´46´´.32
or H = 4h 05m 11.09s

∴ L.A.T. = 12h + H
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= 16h 05m 11.09s
G.A.T. = L.A.T. � Longitude in time

= 16h 05m 11.09s � 5h 05m 1.60s
= 11h 00m 9.49s

Now, G.M.T. of G.A.N. = 11h 52m 23.4s
12h = 11h 52m 23.4s + E.T.

or E.T. = 12h � 11h 52m 23.4s
= 0h 07m 36.6s to be subtracted from

the apparent time
or G.M.T. = G.A.T. � E.T.

= 11h 00m 9.49s � 7m 36.64s
= 10h 52m 32.89s

∴ L.M.T. = G.M.T. + Longitude in time
= 10h 52m 32.89s + 5h 05m 1.6s
= 15h 57m 34.49s

∴ Watch error = 15h 57m 36s � 15h 57m 34.49s
= 1.51s fast. Ans.

1.44. VARIATIONS IN THE LENGTH OF THE DAY ON THE
  EARTH’S SURFACE

The variation in the length of the day at any place is due to the
sun�s annual motion combined with the earth�s rotation.

Let θ be the latitude of the observer and ω be the sun�s obliq-
uity. We shall discuss the variation at different latitudes.

1. The observer on the equator. To an observer on the equa-
tor the celestial poles P and P´ appear on the horizon and coincide
with the north and south points. The celostial equator coincides with
the prime vertical. On March, 21 and September 23 the sun is on
the equator and its diurnal path on these days, is along the equator
itself. Apparently the hour angle at sun rise is a right angle. Hence
the day is of twelve hours duration. On other days of the year, the
sun�s diurnal path remains parallel to the prime vertical, that�s why
the day and night are equal throughout the year but not of 12 hour
durations.

2. The observer at a place (0 < θ < ω). On March 21, the sun
rises at east point and his diurnal path is along the equator. The
hour angle of the sun rise is 90° and the day and night are of equal
duration. From March 21 to June 22, the rising and setting points
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recede from east and west point towards the north. The sun�s hour
angle at rising goes on increasing to have its maximum value on
June 22. Consequently the days increase in length and nights
shorten. The longest day occurs on June 22. The sun�s meridian
altitude on June 22 is 90° + θ � ω. From September 23 to Decem-
ber 22, the sun�s hour angle at rising goes on decreasing so that
days shorten and nights lengthen. The shortest day is on Decem-
ber 22. The sun�s meridian altitude is minimum on December 22
i.e. 90° � θ � ω.

3. The observer in frigid zone [(90 � ω) < θ < 90°)]. The celes-
tial pole P for higher latitudes will be very near the zenith and the
angle between the horizon and the equator will be 90° � θ. In higher
latitudes, the days increase in length at a more rapid rate. The lati-
tude of the place in the frigid zone being more than 90° � ω, the
colatitude is less than ω. On some day between March 21 and June
22, the sun�s declination (δ) will be equal to the colatitude and hence
the sun on that day (say A) will be circumpolar. From this day on-
ward δ varies and the sun continues to stay above the horizon. From
June 22, the sun retraces his path and on another day (say B) his
declination will be equal to 90° � θ. After this day, the sun will again
rise and set.

The perpetual day. The period between the days A and B during
which the sun is entirely above the horizon, is called the perpetual
day. The middle of the perpetual day is June 22.

The perpetual night. The period between the days A´ and B´
during which the sun is completely below the horizon is called the
perpetual night. The middle of the perpetual night is December 22.

4. The observer on the north pole. To an observer on the
north pole, the celestial north coincides with the zenith and the ce-
lestial equator with the horizon. From March 21, the sun�s diurnal
paths are small circles above and parallel to the horizon and on
June 22, the sun attains maximum altitude. Thereafter it retraces
its path and on September 23, it is back on the equator. This period
of six months from March 21 to September 23 is the duration of the
perpetual day for the observer at the north pole. Similarly, the pe-
riod of six months from September 23 to March 21, is the perpetual
night of the observer on north pole.

The variations in the length of day and night to the observer in
the southern hemisphere will be reverse to what has been said for
the north hemisphere.
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Mathematical relationship between hour angle, declination and
latitude of the place. The variations in the length of the day is re-
lated as under :

cos h = � tan θ . tan δ ...(1.64)
where h = the hour angle of the sun

θ = the latitude of the place
δ = the declination of the sun (positive or negative as it

is north or south of the equator).

1.45. DETERMINATION OF AZIMUTH OF
 HEAVENLY BODIES

As the azimuth of heavenly bodies is used for the determination
of the true bearing of survey lines, the following terms may be clearly
understood before making an attempt to know different methods of
determination of azimuth.

1. Azimuth. The horizontal angle between the pole and celes-
tial body at the observer�s place, is known as azimuth of the body.
Astronomical azimuths are always reckoned from the north, east-
ward or west-ward and their values range from 0° to 180°.

2. True Bearing of a line. The horizontal angle between the
north meridian and the given line measured clockwisely, is known
as true bearing. It is reckoned from zero to 360°.

Knowledge of true bearing of survey lines is of prime impor-
tance to surveyors and engineers. There are several methods of de-
termining the true meridian. If the azimuth of any celestial body is
determined and the horizontal angle between a reference line and
the celestial body is also observed, then, the true bearing of the
reference line may be easily calculated.

Reference mark (R.M.) or Reference object (R.O). While
making astronomical observations, an illuminated object is sighted
at the end of the survey line either a triangulation station or any
other convenient point. For illumination a hurricane lantern or an
electric bulb may be centred on the ground station mark. Such a
station or mark is called reference mark or reference object. R.O.
should be placed at a sufficient distance away say 2 km to 5 km, so
that focussing of the telescope, is not required to be changed for
making observation to the star.



ADVANCED SURVEYING110

1.46. DETERMINATION OF AZIMUTH BY MAKING
 OBSERVATIONS ON STARS

The following are the principal methods of determining the azi-
muth of celestial bodies.

1. By observation on circumpolar star at transit.
2. By observation on a star at equal altitudes.
3. By observation on circumpolar star at elongation.
4. By observation on polaris.
5. By hour angle of stars.
6. By observation on ex-meridian altitude of the star.

1. By observations on circumpolar stars at transit. Prin-
ciple of the method. When a circumpolar star culminates either north
of pole or south of pole, its azimuth is zero. Hence, the horizontal
angle between the star and the R.O. is the required true bearing of
the line measured clockwise from the observer�s meridian.

Field Observation. The following steps are involved :
1. Set up the theodolite over the station of observation, cen-

tre and level it carefully.
2. Bisect the referring object (R.O.) on face left and note down

the reading about 5 to 10 minutes before the calculated
time of the transit of the star.

3. Swing right and bring the star in the field of view.
4. About 30 seconds before the exact time of culmination,

bisect the star and note down the hroizontal circle read-
ing.

5. Change face and bisect the star again in quick succession
and note down the reading again.

6. Swing left and bisect the referring object and note down
the horizontal circle reading.

7. Take the means of the readings on both the faces. The
difference of the means is the required angle between R.O.
and the meridian.

8. The required bearing of the line, is the angle measured
clockwise from the meridian.
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Specimen Field Book for Observations
Horizontal Angle

Object Face Mean General Angle
A B

R.O. L 0°05´30´´ 180°05´40´´ 0°05´40´´ 0°05´35´´

Star L 60°25´40´´ 240°25´50´´ 60°25´45´´

Star R 240°25´40´´ 60°26´00´´ 240°25´50´´ 60°25´47´´ 60°20´12´´
R.O. R 180°05´30´´ 0°05´40´´ 180°05´30´´

Note. The following points may be noted :
(i) When a circumpolar star transits, its movement is only in

azimuth and not in vertical plane.
(ii) By observing the star on both faces, few seconds before

and few seconds after the exact culmination, we eliminate
the error of the line of collimation.

Determination of chronometer time of culmination of a
circumpolar star. The time of culmination of a circumpolar star
may be determined as follows :

1. Ascertain the exact longitude of the place of observation
by noting down the Greenwich wireless signals.

2. Obtain the sidereal time of Greenwich Mean Mid-Night
on that day from a Nautical Almanac.

3. Convert the longitude to solar mean time.
4. Convert the interval of longitude in solar mean time to

sidereal time interval.
5 Calculate local sidereal time (L.S.T.) as under : L.S.T. at

L.M.M. = G.S.T. at G.M.M. ± difference in solar time in-
terval expressed in sidereal time. The +ve sign to be ac-
cepted if the place is west of Greenwich and negative if it
is east of Greenwich.

6. Obtain the right ascension (R.A.) of the star on that day
from the Nautical Almanac.

7. Calculate the interval in S.T. between local mean mid night
and the culmination, i.e. difference of the steps (6) and
(5). If right ascension (R.A.) is less than L.S.T. at L.M.M.,
add 24 hours to R.A.

8. Convert the sidereal interval obtained in step (7) to the
interval of solar time by subtracting @ 9.8295 sec per hour.

9. Calculate the L.M.T. of the chronometer. If the interval of
solar time is more than 12h, subtract 12h.
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Example 1.42. Calculate the local mean time (L.M.T.) of the
upper culmination of the polaris (α Ursae Minors) at Delhi
(Longitude 76°15´E) on 30th Dec. 1980. Given :

(i) G.S.T. at G.M.M. : 6h 29m 32.23s.
(ii) R.A. of the polaris : 1h 32m 27.40s.

Solution.
Longitude of Delhi = 76°15´E (given)
Longitude in time = 5h 5m
As the place is east of Greenwich, sidereal time at Delhi will be

less than the sidereal time at G.M.M. @9.8565s per hour of the solar
time.

Difference for 5h = 49.2825s
Difference for 5m = 0.8214s

Total = 50.1039 sec.
∴ L.S.T. at L.M.M. = 6h 29m 32.23s 50.10s

= 6h 28m 42.13s
Now, R.A. of the polaris = 1h 32m 27.40s (given)
and L.S.T. at L.M.M.     = 6h 28m 42.13s
∴ Interval in sidereal time between L.M.M. and culmination of

star
= R.A. � L.S.T. at L.M.M.
= (1h 32m 27.40s + 24h) � 6h 28m 42.13s
= 19h 03m 45.27s.

Convert the sidereal time interval to solar time by deducting
@9.8265 sec per sidereal hour.

19h S.T. = 186.76s
3m S.T. =     0.49s

45.27s =     0.12s
Total = 187.37s

= 03m 07.37s
The interval of solar time = 19h 03m 45.27s. � 3m 7.37s

= 19h 00 m 37.90
∴   Chronometer time of culmination of polaris

= 7h 00 m 37.90s P.M. Ans.
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2. By observa-
tion to Stars at
Equal Altitudes

To over-come
the difficulty of bi-
secting the circum-
polar star exactly at
culmination, it is
advisable to observe
the same star at
equal altitudes, once
before culmination
and again after cul-
mination. In this
method, neither the
latitude nor the local
time, is required and
also no calculations
are involved.

Principle of the
Method. The prin-
ciple of the method
is based on the fol-
lowing fact:

�The angle between the referring object and meridian of the place
is equal to the half algebraic sum of two horizontal angles at�equal
altitudes�.

Let S1 and S2 be the positions of a star when its altitude is equal
to θ. Let θ1 and θ2 be the respective horizontal angles between R.O.
and the star in two positions S1 and S2. As the star moves in a
circular path round the meridian of the observer, the horizontal dis-
tance between the meridian and star at same altitude will be equal.
(Fig. 1.54).
i.e. ∠ S1RP = ∠ S2RP

But ∠ S2RS1 = θ1 � θ2

or ∠ ORP = θ2 + 1 2�
2

θ θ

= 1 2

2
θ θ+

Fig. 1.54.

S1 S2

P

θ2

θ1

0

R
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Hence, the azimuth of the line is equal to half the sum of two
angles, if the positions of the star are to the same side of the survey
line. In case, the line lies such that the star attains the same alti-
tude once on its right and again on its left, the azimuth will be equal
to half the difference of the observed angles, which may be easily
proved by the reader himself.

Field observations : The following steps-are involved :
1. Set up the instrument at R, the station of observation and

level it accurately.
2. Sight the referring object and make the horizontal circle

reading approximately zero degree and few minutes.
3. Unclamp the upper plate and swing the telescope clock-

wise to bisect the star at position S1 and clamp both the
horizontal and vertical circles.

4. Read the horizontal circle reading as well as vertical circle
reading (α).

5. Unclamp the upper plate, swing the telescope and follow
the star till it is again seen through the telescope.

6. When the star attains the same altitutde (α), clamp both
the clamps.

7. Read the horizontal circle reading as well as vertical circle
reading (α).

Calculations :
1. Find the horizontal angle (θ1) between R.O. and the star

at position (S1).
2. Find the horizontal angle (θ2) between R.O. and the star

at position S2.
3. The angle between R.O. and meridian is equal to half the

algebrak sum of θ1 and θ2.

Note : It should be ensured that the theodolite is set up on firm
ground and levelling of the instrument is done with the help of alti-
tude bubble so that altitude bubble remains central in all positions
of the telescope.

Field observations with an imperfect instrument. The
procedure stated above is only suitable if the instrument is in per-
fect adjustment. If it is not, proceed as under :

1. Set up the instrument at R and bisect the referring object
O and clamp its both plates.

2. Read the horizontal circle.
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3. Loosen the upper plate, swing the telescope in azimuth
and bisect the star at S1.

4. Note down the horizontal and vertical circle readings.
5. Obtain the horizontal angle θ1 by subtracting the second

reading from the first and let the vertical angle be α1.
6. Change face and bisect O again and clamp both the plates.

During this duration, the star moves upward and west-
ward to position S2.

7. Unclamp upper clamp, and swing the telescope in azimuth
to sight the star at S2. Clamp the vertical circle. Read
horizontal and vertical circles again.

8. Obtain the horizontal angle θ2 by subtracting the seventh
reading from the sixth and let the yertical angle be α2.

9. With the vertical circle clamped at α2, swing the telescope
in azimuth and bisect thie star at S3 when it again attains
the altitude α2. Read the horizontal circle reading.

10. Swing the telescope and bisect the referring object again.
Read the horizontal circle reading.

11. Obtain the horizontal angle θ3 between the star at S3 and
R.O.

12. Change the face, bisect R.O. and read horizontal circle.
Set the vertical circle at α1.

13. Unclamp the upper plate, swing the telescope in azimuth
and bisect the star when it attains its altitude α1 again.

14. Clamp both the plates and read the horizontal reading.
15. Obtain the value of horizontal angle between R.O. and

the star at position S4.

Calculations :
Let θ1, θ2, θ3 and θ4 be the horizontal angles and α1, α2, α2, α1,

be the vertical angles respectively for the four positions of the star
S1, S2, S3 and S4.

Apparently mean horizontal angle for the position S1 and S2 is

1 2

2
θ θ+

and its vertical angle is 1 2

2
α + α .   Again, when the star

crosses the meridian, the mean horizontal angle for the positions S3

and S4 is 3 4

2
θ + θ and  its  vertical  angle  is 2 1

2
α + α

.  In other

words, the mean altitude is the same for both mean horizontal angles.
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If both average positions of the star at the time of observation
are on the same side of the line, the azimuth.

A =
3 41 21

2 2 2
θ + θθ + θ +  

A = 1 2 3 4( ) ( )
2

θ + θ + θ + θ
...(1.65)

If both average positions of the star at the time of observation
are on either side of the line, the azimuth

A =
3 41 21

2 2 2
θ + θθ + θ +  

A = 1 2 3 4( ) ( )
2

θ + θ − θ + θ
...(1.66)

3. By observations on a circumpolar star at elongation.
When a circumpolar star is at

elongation, it is at its greatest dis-
tance east or west of the meridian.
The paralactic angle ZSP appar-
ently becomes 90´´. (Fig. 1.55)

Let α be the altitude of the
star.

δ be the delination of the
star.

θ be the latitude of the
place.

Applying the sine formula to the right angle spherical triangle
ZSP at S, we get

sin
(sin90 )

A
° − δ =

sin90
sin(90 )° − θ

or
sin
cos

A
δ =

sin90
cos

°
θ

or sin A = cos δ sec θ ...(1.67)
Field Observations. The following steps are involved :

1. Calculate the exact time of elongation as discussed ear-
lier.

2. Set up the theodolite on the station of observation about
20 minutes before the time of elongation and level it accu-
rately.

Fig. 1.55.

Z

P
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A
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3. About five minutes before the time of elongation, bisect
R.O. on face left and read the horizontal circle.

4. Loosen the upper plate, swing the telescope in azimuth
and bisect the star on the vertical wire.

5. Note down the horizontal circle at every half a minute
interval.

6. Near the elongation, change the face of the theodolite and
intersect the star on vertical wire.

7. Note down the horizontal circle at every half a minute
interval. Equal number of observations should be taken
on either face.

8. Finally intersect R.O. on the face right and note down the
horizontal circle reading.

Calculations :
At elongation, the star moves on the vertical wire and hence

there is no change in azimuth. By inspection of the field observa-
tions, select an equal number of face left and face right readings,
when the horizontal angle readings remain constant.

The mean of face left and face right readings, gives the reading
of the star at elongation.

∴  The angle between R.O. and the star at elongation
= Reading of star � Reading of R.O.

Azimuth of the line = Reading to star at elongation � Reading to
R.O. + A according as star is at east or west elongation.

Note. The following points may be noted :
1. When the star is at eastern elongation, the star appears to

move vertically downward and at western elongation, it
appear to move vertically upward.

2. At both elongations the altitude of star is greater than the
elevation of the pole.

3. The observations should be limited within five minutes be-
fore and after elongation.

4. For observations extending over a period exceeding 5 min-
utes, a correction = 1.96 tan A sin2 δ (tE � t)2 (in seconds)
need be applied where (tE � t) is the sidereal interval in
minutes between the time of elongation and time of obser-
vation.

5. Observations 30 minutes before or after the time of
elongation, should never be accepted.
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Effect of an Error in latitude on the azimuth. We know
that the azimuth of a circumpolar star at elongation is calculated
from the following formula :

sin A =
cos
cos

δ
θ ...(1.68)

The accurate value of the declination may be obtained from the
star almanac. Accurate value of the latitude needs be obtained. Let
dA be the error in azimuth due to an error dθ in latitude.

Differentiating the equation (1.65) w.r.t. θ we get

cosA.dA = 2
cos ( sin )

cos
δ − θ

θ
. dθ

dA = 2
cos sin

cos cosA

− δ θ
θ

. dθ

Substituting 
cos
cos

δ
θ = sin A from (Eqn. 1.64), we get,

dA = 
sin cos

cos cos
A

A
− θ

θ . dθ

or dA = � tanA . tanq . dθ                              ...(1.69)
From equation (1.66) it is clear that the error in azimuth, is

directly proportional to the azimuth itself and also the latitude, i.e.
1. The closer the circumpolar star to the pole, the smaller it

its azimuth and consequently, the smaller is the error dA.
2. The error dA will be more the higher latitudes and less for

lower latitudes.

Example 1.43. The Polaris elongates on the west of meridian at
a place having latitude 30°22´15´´, at 7h 50m 00.2s local sidereal
time. If the horizontal angle between the R.O. and the star at elonga-
tion is 47°55´38´´, calculate the true bearing of the line given that the
declination of the star is 89°03´45´´.

Solution. (Fig. 1.47)
Given :       θ = 30° 22´ 15´´;   δ = 89° 03´ 45´´
Applying the Napier�s formula, we get
Sine of middle part = Product of consine of opposite parts

sin∆ = cos (90° � A) × cos (90° � λ)
sin∆ = sin A . sin λ

or sinA = 
sin
sin

∆
λ ...(i)
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90°– =θ λ

P
Z

S

90
°–

=δ
∆

90°–
=Z

α

H

90°

90°–A
90°–λ

90°–HZ

∆

(a)  (b)

Fig. 1.56.

Here ∆ = [90°�89°03´45´´] = 0°56´15´´
λ = [90°�30°22´15´´] = 59°37´45´´

sin A =
sin
sin

∆
λ = 

sin0 56´15´´
sin59 37´45´´

°
°

or sin A = 0.018964244
A = 1°05´12´´

Azimuth of R.O. = Horizontal angle between R.O. and the star +
Azimuth of the star

= 47°55´38´´ + 1°05´12´´ = 49°00´50´´
∴ True bearing of R.O. = 360°�49°00´50´´ = 310°59´10´´   Ans.
By observations to two circumpolar stars at elongation.

To eliminate the latitude altogether from the formula, observe two
circumpolar stars at elongation within a short time.

Let δ1 and δ2 be the declinations of two stars which elongate
within a short time at the place of observation, having θ latitude.

sin A1 = 1cos
cos

δ
θ

...(i)

and sin A2 = 2cos
cos

δ
θ

...(ii)

Dividing eq. (i) by eqn. (ii), we get

1

2

sin
sin

A
A

= 1

2

cos
cos

δ
δ

 = k, a constant

Two cases may arise according to the elongatijon of the stars.
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(1) Elongation of the stars on the same side of the pole
(Fig. 1.57)

Let the difference in azimuth (A2 � A1) of the stars at eastern
elongation be a,

A1 = A2 � a
or sin A1 = sin (A2 � a)

= sin A2 cos a � cos A2 sin a
But, sin A1 = k . sin A2

∴ k sin A2 = sin A2 cos a � cos A2 sin a
or k = cos a � cot A2 sin a

or cot A2 = 
cos

sin
a k

a
−

...(1.70)

P S1

S2

A1

A2

0

P

S1
S2

A2

A1

0

Fig. 1.57. Fig. 1.58.

(2) Elongation of the stars on either side of the pole
(Fig. 1.58).
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In this case A1 + A2 = a
A1 = a � A2

sin A1 = sin (a � A2) = sin a cos A2 � cos a sin A2

But, sin A1 = k sin A2

∴  sin a cos A2 � cos a sin A2 = k sin A2

or sin a cot A2 � cos a = k

or cot A2 =
cos

sin
k a

a
+

...(1.71)

Equations (1.67) and (1.68) may be combined into one equation.

i.e., cotA2 =
cos

sin
a k

a
±

...(1.69)

Using +ve sign for the elongations in opposite side and �ve sign
for the same side elongations of stars.

Example 1.44. A star of declination 82°06´45´´ N was observed
at E elongation when the clockwise angle from a reference object was
110°24´50´´. Immediately afterwards another star of declination
75°42´20´´ N was observed at E elongation, and clockwise horizon-
tal angle observed was 125°42´40´´. Determine the azimuth of R.O.

Solution. (Fig. 1.48)
Given : δ1 = 82°06´45´´ ; δ2 + 75°42´20´´

K =
1

2

cos
cos

δ
δ = 

cos82 06´45´´
cos75 42´20´´

°
°

=
0.1372284
0.246905 = 0.55579676

Now a = 125°42´40´´ � 110°24´50´´ = 15°17´50´´
From eqn. (1.67) we get

cot A2 =
cos15 17´50´´ � 0.55579676

sin15 17´50´´
°

°

=
0.9645702 � 0.55579676

0.268262

=
0.4087759
0.2638262 = 1.949439

or A2 = 32°50´18´´
∴ Azimuth of R.O. = 125°42´40´´ �  32°50´18´´

= 92°52´22´´ East of the meridian.     Ans.



ADVANCED SURVEYING122

4. By observations to Polaris (Fig. 1.59).
Polaris. The pole star, Polaris or a Ursa Minor is the star on

which observations for latitude and azimuth, are generally made in
latitudes between 20°to 40°North. Its distance from the pole is
roughly 1°. The maximum change in its declination is less than half
a second. Its location on the celestial sphere can be easily deter-
mined with the help of its neighbouring constellations ojf Ursa ma-
jor and Cassoipeia. α and β stars of the constellation of Ursa major,
are called the pointers because the line joining them passes very
nearly to the celestial north pole. The constellation of cassiopeia
always remains on the same side of the pole as Polaris. �

If cassiopia is in the north, polaris is at its upper culmination.
If cassiopia is in the south, polaris is near its lower culmination.
If cassiopia is in the east, polaris is near its east elongation.
If cassiopia is in the west, polaris is near

its west elongation.
The line passing through τ ursa major

and δ cassiopia passes nearly through the
polaris and north pole. If the line is nearly
horizontal, the polaris is at its either elon-
gation. If it is nearly vertical, the polaris is
on its either culmination.

Observations to determine the azimuth,
are usually made when polaris is at elon-
gation when it appears to move vertically.
Observations to determine the latitudes, are
usually made when polaris is at culmina-
tion, when the star appears to move hori-
zontally.

The data regarding culminations and
elongations of the pole star are published
in Star Almanac annually for the use of astronomers and field sur-
veyors.

We know that the polaris at its elongation moves very rapidly
in altitude whereas its azimuth remains constant. Error in altitude
if any, will not affect the azimuth. Moreover, when the hour angle of
the polaris is 90°, error in the assumed value of the latitude of the
place will be least.

Fig. 1.59. Polaris.
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To utilise these favourable conditions, usually observations are
taken when the polaris is within three hours of its elongation.

Field Observations. The following steps are involved :
1. Set up the instrument over the station mark, centre and

level it accurately,
2. Bisect the referring object (R.O.) on face left and note down

the horizontal circle reading.
3. Swing the telescope to the Polaris and bisect it at the cross

of the hair.
4. Note down the horizontal circle reading and observe ver-

tical angle, ensuring that altitude bubble is central.
5. Change the face quickly

and repeat the observa-
tions. This constitutes
one set.

6. Take a minimum of
three sets and finally bi-
sect R.O. on face right
to eliminate the collima-
tion error, if any.

7. Note down the tempera-
ture and barometric
pressure at the begin-
ning and at the end of
observations.

Computations.
Let P be the pole

Z be the zenith
RQ be the horizon
S be the position of polaris
α be the altitude of the polaris
θ be the latitude of the place.

Construction : Draw SK parallel to S´N where S´ is the pro-
jection of S on the horizon RQ. (Fig. 1.60)

Here KP = KN � PN
= SS´ � PN
= α � θ = a

The right angled triangle PKS being small, may be treated as a
plane triangle without introducing any appreciable error.

Fig. 1.60.
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cos H = 
KP
SP  = 

a
∆

where ∆ is north polar distance

or H = cos�1 a
∆

and sin H =
SK SK
SP

=
∆

∴ SK = ∆ sin H ...(1.73)
and Azimuth A = NS´ = SK sec α ...(1.74)

Substituting the value of SK
from eqn. (1.73), we get

A = A sin H sec α
Most suitable position of

the polaris for observations
We know that the polaris

attains maximum azimuth at
elongation and zero at its culmi-
nation. At elongation, the vari-
ables which affect the azimuth,
are the paralactic angle and the
altitude of the star. Let us dis-
cuss the effect of an error in alti-
tude (Fig. 1.61).
Let P be the pole

S be the position of Po-
laris
Z be the zenith of ob-
server
A be the azimuth of the
polaris
α be the altitude of the
polaris
δ be the declination of
the polaris

θ be the latitude of the
place of observation.

P

S

A

Z

Pa
th

of
P

ol
e

S
ta

r

N

Fig. 1.61.
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Solving the spherical triangle ZPS, we get

cosA =
cos � cos . cos

sin . sin
PS ZS ZP

ZS ZP

or cos A =
sin sin .

cos .
sin

cos
δ − α

α
θ

θ
...(1.75)

Differentiating eqn. (1.75) with respect to α, we get, � sinA.dA

= 2 2
cos .cos ( sin

cos cos
cos ) (sin sin sin )( cos sin ) dα θ −

α θ
θ α − δ − α θ − θ α δ

= 
2 2

2
sin

cos cos
cos sin sin sin sin

d
− θ α

α
θ α

α + δ α − θ

= 2
sin sin sin

cos cos
δ α − θ

θ α
dα

or  dA = 2
sin sin sin

sin . cos cosA
θ − δ α

θ α dα

Substituting the value of sin θ � sin δ sin α = cos δ cos α cos S
we get

dA = 2
cos cos . cos

sin . cos cos
S

A

δ α
θ α dx ...(1.76)

Again, applying the sine formula to ∆ZPS we get

sin
sin

A
PS =

sin
sin

S
PZ

or sin A sin PZ = sin S sin PS
or sin A cos θ = sin S cos δ ...(1.77)

Substituting the value of sin A cos θ from (Eqn. 1.77) in Eqn.
(1.76) we get

∴ dA = 2
cos cos cos

sin . cos cos
S

S
δ α

δ α dα

= cot S sec α dα ...(1.78)
i.e. error in azimuth (dA) increases as paralactic angle S decreases
or as altitude α increases. The maximum value of altitude is at-
tained when the star is farthest away from the meridian.

Note. The following points may be noted :
(i) If the vertical angles increase, the polaris is east of the

meridian.
(ii) If vertical angles decrease, the polaris is west of the me-

ridian.
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Example 1.45. The polaris (declination 89°03´54´´.9N) was ob-
served west of the meridian when the anticlockwise angle from a
reference object was 28°49´38´´. The angle of elevation corrected for
refraction was 30°50´19´´ and the latitude of the place of observation
was 30°19´25´´. Calculate the azimuth of the R.O.

Solution.
Here ∆ =90°� δ = (90°� 89°03´54.9´´)
∴ 56´5.1´´ = 3365´´.1
Altitude of the polaris = 30°50´19´´
Latitude of the place = 30°19´25´´
∴ True value of a = 0°30´54´´ = 1854´´

cos H = a
∆

= 
1854

3365.1
= 0.5509494

H = 56°34´04´´
Substituting the values of H and a in eqn. (1.71) we get

A = ∆ sin H . sec α
= 3365.1 × 0.8345381 × 1.1646663
= 3270´´.5

∴ A = 0°54´30´´.5
As the polaris is west of the meridian,
Azimuth of R.O. = Angle between Polaris and R.O. � Azimuth of

the polaris
= 28°49´38´´ � 0°54´30.5´´
= 27°55´7.5´´    Ans.

Example 1.46. The polaris (declination
89°03´48´´ ; R.A. 1h 52m 16.8s.) was ob-
served west of meridian at a place of lati-
tude 30°22´15´´. The L.S.T. of observation
was 8h 37m 02.3s. Calculate the bearing of
the polaris.

Solution. (Fig. 1.62.)
Let P be the pole of celestial sphere

S be the Polaris
Z be the zenith of observer.
A be the azimuth

Given : Declination of polaris

Fig. 1.62.

S

P

Z

A

HPolaris
(Pole)
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= 89°03´48´´
R.A. of polaris = 1°52´16´´.8
Latitude of the place = 30°22´15´´
In spherical triangle PSZ we get

PS = 90°� 89°03´48´´ = 0°56´12´´
PZ = 90°� 30°22´15´´ = 59°37´45´´

Hour angle H = L.S.T. � R.A.
= 8h 37m 02.3s � 1h 52´m 16.8s
= 6h 44m 45.5s

H in arc = 101°11´22.4´´
Applying cosine formula to ∆PSZ we get

cos ZS = cos 0°56´12´´ cos 59°37´45´´
+ sin 0°56´12´´ sin 59°37´45´´ × cos 101°11´22´´.4
= 0.999866 × 0.505595 + 0.0163472 × 0.862771

× (� 0.194055)
= 0.50552725 � 0.0027369303 = 0.50279027

ZS = 59°48´54´´.7
Applying sine formula to ∆PZS we get

sin A = 
sin0 56´12´´ sin101 11´22.4´´

sin59 48´54.7´´
° × °

°

=
0.0163472 0.980991

0.864408
×

sin A = 
0.016036456

0.864408
= 0.018551952

∴ A = 1°03´46-8´´
Bearing of Polaris = 360°� 1°03´46´´.8

= 358°56´13´´.2 Ans.

Example 1.47. The following observations were made to Po-
laris to calculate the bearing of a survey line :

Latitude of the place = 30°22´15´´
Declination of Polaris = 89°03´49´´ N
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Field Observations
Horizontal angles Vertical Angles

Object Face Reading General Angles Reading Vertical
Mean Angles

R.O. L 301°02´48´´ 301°01´45´´

R 121°00´52´´ 301°01´50´´

Polaris L 222°03´27´´ 222°02´08´´ 78°59´37´´ 30°25´16´´ 30°24´38´´

R 42°00´49´´ 149°36´00´´

Polaris R 42°00´47´´ 222°02´07´´ 78°59´38´´ 140°36´55´´ 30°22 �31´´

L 222°03´26´´ 30°21´57´´

R.O. L 301°02� 37´´ 301°01´40´´

R 121°00´43´´

Solution. (Fig. 1.63)
As the vertical angle of the polaris

decreases, the star is on the west of the
meridian.

Let P = celestial pole,
Z = zenith of observer
S = the polaris

Observed altitude of polaris
  = 30°24´38´´

Refraction correction 57 cot α
= (�)   1´39´´ = 30°22', 59´´

In astronomical triangle PZS (Fig. 1.64) we
get

PZ = 90°� 30°22´15´´= 59°37´45´´
PS = 90°� 89°03´49´´=   0°56�11´´
ZS = 90° � 30°22´59´´= 59°37´01´´
Let A be the azimuth of the polaris

cos PS = cos PZ.cos SZ + sin PZ sin
SZ.cos A.

cos A = 
cos � cos . cos

sin . sin
PS PZ Z

PZ SZ

= 
cos0 56´11´´� cos59 37´45´´cos59 37´01´´

sin59 37´45´´sin59 37´01́ ´
° ° °

° °

Fig. 1.63.
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Fig. 1.64.
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=
0.9998660 0.25571933

0.862771 0.862663
−
×

=
0.74414670
0.74428061

= 0.99982009
A = 1°05´12´´.5 Ans.

∴ Azimuth of the Polaris = 1°05´12´´.5 W.
By approximate formula
When the poiaris is at its elongation, the astronomical triangle

SZP may be treated as a plane triangle.
Let H be the hour angle

∴ cosH = 
a
∆

...(i)

Here a = (observed altitude � latitude) = 30°22´´ 59´´ � 30°22´15´´
∆ = north polar distance in seconds Substituting the values in

eqn. (i) we get

cos H = 
44

3371 = 0.013052506

∴ H = 89°15´7´´
Now, substituting the values in eqn. (1.70) we get

A = ∆ sin H sec α

=
3371sin89 15´7´´

cos30 22´59´´
°

° = 
3371 0.999915

0.862663
×

= 3907´´.33
or A = 1°05´07.33´´ Ans.

Now clockwise angle between polaris and R.O.
= 78°59´37´´

∴  Bearing of R.O. = 78°59´37´´ �1°05´12´´.5
= 77°54´24´´.5 Ans.

5. By Hour Angle of the Star
Principle of the method. If we know the hour angle of the

star at the time of observation the azimuth of the star may easily be
calculated without any knowledge:of the altitude of star.

Suitability of the method.; As the altitude of the star is not
involved atmospheric refraction does not affect the accuracy of the
result.
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Field Observations. Following steps are involved :
1. Set up the theodolite over the station of observation and

level it accurately.
2. Select a suitable star preferably near the prime-vertical.
3. Bisect the R.O. on the face left and read the horizontal

circle.
4. Unclamp the upper plate, swing the telescope in azimuth

and bring the star in the field of view.
5. When the star is exactly at the intersection of the cross

hair, note down the chronometer time accurately.
6. Note down the horizontal circle reading.
7. Change the face of the transit and bring the star in the

field of view.
8. When the star is exactly at the intersection of the cross

hair, note down the chronometer time accurately.
9. Note down the horizontal circle reading.

10. Swing the telescope in azimuth, bisect the R.O. and read
the horizontal circle.

Calculations.
1. The mean of the chronometer time is the required time of

the observation and the difference of the means of hori-
zontal circle readings taken on
both faces to R.O. and star, is
the required angle between the
star and the R.O.

2. Convert the observed chronom-
eter mean time, duly corrected
for chronometer error, to the
local sidereal time.

3. Calculate the hour angle of the
star from the relation, i.e.
L.S.T. = R.A. ± Hour Angle.

4. Solve the spherical astronomical triangle PZS where colati-
tude PZ, co-declination PS and the hour angle H, are
known to get the azimuth of the star (Fig. 1.65).

Let PZ = (90 � θ) = λ = co-latitude
PS = (90 � δ) = ∆ = co-declination

∠ ZPS = H = the hour angle

Fig. 1.65.
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then, tt aa nn  A = tan H . cos B . cosec (B�θ)
where       B = tan�1 (tan δ . sec H)

Disadvantages of the method. As separate observations for
time are necessary, this method is generally not preferred to.

Note. The following points may be noted :
(i) The error in time has very little effect on the azimuth if

star is observed on the prime vertical.
(ii) The motion of the star in between two observations of time

is not linear but circular. Hence, a correction for the curva-
ture of the path is applied to the face left �and face right
observations.

(iii) The correction (∆A in seconds) to be applied to the azimuth
may be calculated by the formula.

∆A´´ = 1
8 sin A cos θ sec2 a (cos a sin δ�2 cos A cos θ)

∆t2  × sin 1´´ ...(1.76)
where ∆t = the difference of time between the face right and face
left observations.

Example 1.48. At a place (latitude 34°30', longitude 82°30´E),
the following observations were taken on an eastern star.

Observed clockwise angle between R.O. and the star = 125°36´15´´
R.A. of the star     : 12h 17m 13.74s
Declination of the star      : 20°06´48´´.4
G.M.T. of observation       : 16h 32m 26.5s
G.M.T. of G.M.M.              : 11h 32m 34.2s
Calculate the true bearing of the reference object.
Solution.
In this case no altitude of the star is observed, hence azimuth of

the star may be calculated from the hour angle of the star at the
time of observation.

Calculation of the hour angle
G.S.T. of G.M.M. = 11h 32m 34.2s (Given)

Since the place of observation is east of Greenwich, a retarda-
tion @9.8565 seconds per hour for the longitude in time, is applied
to G.S.T. of G.M.M. for calculating the L.S.T. of L.M.M.

Longitude = 82°30´E = 5h 30m E
5h × 9.8565 = 49.28 seconds
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30m × 3.1642 = 4.93 seconds
Total = 54.21 seconds

∴ L.S.T. of L.M.M. = G.S.T. of G.M.M. � Retardation
= 11h 32m 34.2s � 54.2s
= 11h 31m 40s

But, L.M.M. of observation = G.M.M. of observation + Longi-
tude in time

= 16h 32m 26.5s + 5h 30m
∴  L.M.T. of observation = 22h 02m 26.5s
To convert M.T. interval to S.I. an acceleration @ 9.8565 sec-

onds per mean time interval is added.
22h × 9.8565 = 216.8430 seconds
2m × 0.1642 = 0.3284 seconds

26.5 × 0.0027 = 0.0716 seconds
Total = 217.2430 seconds = 3m 37.24s

S.I. = Mean time interval + Acceleration
= 22h 2m 26.5s + 3m 37.24s
= 22h 06m 03.74s

∴  L.S.T. of observation = L.S.T. of L.M.M.+ S.T.
= 11h 31m 40.0s + 22h 6m 03.74s
= 33h 37m 43.74s

Subtract R.A. of the star = 12h 17m 13.74s
Hour angle of the star = 21h 20m 30s

= 320°07´30´´ (westernly)
∴ Eastern hour angle of the star (i.e. smallest arc of the hour

angle)
= 360°- 320°07´30´´

or H = 39°52´30´´
∴ The value of the hour angle (H) = 39°52´30´´
Calculation of the azimuth of the star
We know that

tan A = tan H . cos B . cosec (B � θ)
where tan B = tan θ . sec H.

= tan 20°06´48´´.4 sec 39°52´30´´
= 0.3662141 × 1.3030249
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or tan B = 0.477186
B = 25°30´35´´

and B � θ = 25°30´35´´ � 34°30´00´´ = � 8°59´35´´
tan A = tan 39°52´30´´ × cos 25°30´35´´

× cosec (� 8°59´25´´)
= 0.8353890 × 0.9025120 × 6.3993037
= 4.8247459

or A = 78°17´25´´
Azimuth of the R.0. = 125°36´15´´ � 78°17´25´´ = 47°18´50´´
∴ True bearing of R.O. = 360°� 47°18´50´´

= 312°41´10´´. Ans.
6. By observation on ex-meridian altitude of a star. Suit-

ability of the method. In lower latitudes, polaris attains lower alti-
tude and as such the refraction becomes uncertain. This is why polaris
is not observed at lower latitude. To compensate the effect of refrac-
tion both east and west stars are observed.

Position of stars. As the refraction correction is almost uncer-
tain for stars very near the horizon, the stars are observed only
when these attain altitude at least 30°. Again, a star when observed
should move more in altitude and less in azimuth. Such conditions
are ahieved only when the star is on the prime vertical.

Selection of pair of stars. We know that when a star is on the
prime vertical, its azimuth is 90°. Hence, by solving the right angled
triangle at zenith, we get sin δ = sin θ sin α. For any place latitude
is constant and for a particular day, declination of the star is also
constant. To avoid uncertain refraction, altitude should not be less
than 30°. Hence, the selected star should be such that its declina-
tion is equal to sin�1 (sin θ sin 30°).

Field observations. The following steps are involved.
1. Set up the transit over the ground station.
2. Clamping both the plates to zero, sight R.O. on face left.
3. Swing the telescope and bisect the star.
4. Note down horizontal and vertical angles.
5. Change face and bisect the star again.
6. Swing the telescope and bisect R.O.
7. Note down the horizontal and vertical angles to R.O.
8. Take a number of sets in the same manner with different

zeros.
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Computation. Let Z, P and S represent the zenith, the pole
and the star at an altitude (α). (Fig. 1.66).

Z

P

N

E

E

A

S

Horizon
Equator

Star’s path

Fig. 1.66.

In the spherical triangle ZPS
ZP = co-latitude = 90°� θ = λ
PS = co-declination = 90°� δ = ∆
ZS = co-altitude = 90°� α = Z

The azimuth A of the star may be calculated by one of the fol-
lowing formulae.

sin 1
2 A = 

sin( )sin( )
sin . sin
S Z S

Z
− − λ

λ

cos 1
2 A =

sin .sin( )
sin . sin

S S
Z

− ∆
λ

tan 1
2 A =

sin( )sin( )
sin . sin( )

S Z S
S S
− − λ

− ∆
where 2S = (λ + ∆ + Z)

Effect of an error in altitude on the azimuth.
We know that

cosZ =
cos cos cos

sin sin
PS PZ ZS

PZ ZS
−

=
cos(90 ) cos(90 )cos(90 )

sin(90 )sin(90 )
° − δ − ° − θ ° − α

° − θ ° − α
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or cos Z =
cos sin . sin

cos . cos
δ − θ α

θ α
...(1.80)

Differentiating eqn. (1.80) with respect to α, we get

Z
P

S

90°–θ

90°–
δ

90°–α

Fig. 1.67.

� sin ZdZ = 2 2
sin sin sin 1

coscos cos cos
d

δ α θ − × α θθ α α 

= 2
sin sin sin

cos cos
d

δ α − θ  α α α 

or dZ = 2
sin � sin sin
cos cos sin

d
Z

θ δ α  α θ α 
...(1.81)

Again, applying cosine formula to ∆PZS we get

cos =
cos cos cos

sin sin
PZ PS ZS

PS ZS
−

=
cos(90 ) cos(90 )cos(90 )

sin(90 )sin(90 )
° − θ − ° − δ ° − α

° − δ ° − α

=
sin sin sin

cos cos
θ − δ α

δ α
or cos S cos δ cos α = sin θ � sin δ sin α ...(1.82)

Substituting the value of sin θ � sin δ sin α from eqn. (1.82) in
eqn. (1.81), we get

dZ = 2
cos cos cos
cos cos sin

S

Z

δ α
θ α

. dα.

Applying sine rule to ∆PZS we get

sin
sin(90 )

Z
° − δ =

sin
sin(90 )

S
° − θ

or sinZ =
sin cos

cos
S δ

θ



ADVANCED SURVEYING136

∴ dZ = 2
cos . cos cos . cos
cos cos sin cos

S

S S

δ α θ
θ α

dα

or dZ = cot S sec α dα ...(1.83)
i.e. For minimum error in azimuth, the altitude should be barely
minimum and S should be nearly 90°or star should be near elonga-
tion.

Effect of an error in latitude on azimuth.
We know that

cosZ =
cos cos cos

sin sin
PS SZ PZ

SZ PZ
−

=
cos(90 ) cos(90 )cos(90 )

sin(90 )sin(90 )
° − δ − ° − α ° − θ

° − α ° − θ

or cos Z =
sin sin sin

cos cos
δ − α θ

α θ ...(1.84)

Differentiating eqn. (1.81) w.r.t. θ we get

� sin ZdZ =  2 2
sin sin sin

.
cos cos cos cos

d
δ θ α − θ α θ α θ 

or dZ = 2
sin sin sin
sin cos cosZ

α − δ θ
α θ

dθ ...(1.85)

Again, applying cosine formula to ∆PZS we get

cos P =
cos cos cos

sin sin
ZS PS PZ

PS PZ
−

=
cos(90 ) cos(90 )cos(90 )

sin(90 )sin(90 )
° − α − ° − δ ° − θ

° − δ ° − θ

or cos P =
sin sin sin

cos cos
α − δ θ

δ θ

∴ sin α � sin δ sin θ = cos P cos δ cos θ

Substituting the value in eqn. (1.85) we get

dZ =
cos cos cos
sin cos cos

P
Z

δ θ
α θ dθ ...(1.86)

But
sin
sin

Z
P = 

sin
sin

PS
ZS = 

sin(90 )
sin(90 )

° − δ
° − α = 

cos
cos

δ
α

∴ sin Z = 
sin cos

cos
P δ

α
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Substituting the value of sin Z in eqn. (1.85) we get

dZ = 
2cos cos cos cos

sin cos cos cos
P
P

δ θ α
δ α θ

 dθ

or dZ = cot P sec θ . dθ. ...(1.87)
i.e. the error in azimuth will be minimum if the hour angle of the
celestial body is 90°or 6 hours. Also, the error in azimuth will be
more in higher latitude.

Effect of an error in declination on the azimuth.
We know that

cos Z =
cos cos cos

sin sin
PS PZ ZS

PZ ZS

=
cos(90 ) cos(90 )cos(90 )

sin(90 )sin(90 )
° − δ − ° − θ ° − α

° − θ ° − α

∴ cos Z = 
sin sin sin

cos cos
δ − θ α

θ α ...(1.88)

Differentiating eqn. (1.88) with respect to δ we get

� sin ZdZ = 
cos

cos cos
δ

θ α dδ

or dZ = 
cos

sin cos cos
d

Z
− δ δ

θ α dδ

sin Z =
sin cos

cos
S δ

θ

But Z = 
cos cos

sin cos cos cos
S

S
θ

δ θ α dδ

or dZ = � cosec S sec α ...(1.89)
i.e. the error in azimuth will be minimum if δ is 90°and also it will
be more for higher altitudes.

1.47. DETERMINATION OF AZIMUTH BY MAKING
 OBSERVATIONS ON SUN

The following are some of the principal methods used for deter-
mining the azimuth from the sun.

1. By observations on the sun at equal altitudes.
2. By hour angle of the sun.
3. By ex-meridian observations on the sun.

1. By observations on sun at equal altitudes. The principle
of the method and sequence of the observations are the same as
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that of a star at equal altitudes. As the sun�s centre cannot be bi-
sected, observations are made on either right hand limb or left hand
limb of the sun with the telescope normal and inverted, before me-
ridian and after meridian respectively. During this interval of ob-
servations, the sun�s declination changes considerably. Hence, the
mean of the horizontal angles needs be corrected to determine the
azimuth of the lines accurately by the following formula :

C ==  ½½  (( δE � δm) sec θ . cosec t ...(1.90)
where C = Angular correction to the mean of the horizontal angles.

δE = Sun�s average declination for after-noon observations.
δm = Sun�s average declination for before-noon observations.

θ = Latitude of the place of observation.
t = Half of the time interval between two observations.

For detailed procedure refer to article 1.41.
2. By hour angle of the sun. The principle of the method and

the sequence of the observations are the same as in the case of stars.
For detailed procedure, refer to article 1.41.
3. By ex-meridian observations of the sun. As the declina-

tion of the sun changes rapidly, an exact time of observation is re-
quired. To the observed altitudes of the sun, refraction correction
and also parallax correction are applied to get accurate altitude.

To get the required altitude and the horizontal angle to the sun�s
centre, the cross hairs are set tangential to the two limbs simulta-
neously. The opposite limbs are then observed by changing the face
as shown in Fig. 1.68.

Sun

Sun

Sun

Sun

Fig. 1.68.
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Field procedure for afternoon observations
Following steps are involved :

1. Set the theodolite over the ground station mark and level
it accurately.

2. Unclamp the lower plate, swing the telescope and bisect
the R.O. using the lower tangent screw. Note down the
reading.

3. Swing the telescope and bring the sun into the lower left
quadrant of the object glass. The sun is moving upward
[Fig. 1.69(a)]. Clamp both the plates.

( )a ( )b ( )c ( )d

Fig. 1.69.

4. Keep the vertical wire on the apparent right limb of the
sun by using the tangent screw of the upper plate.

5. When the upper limb touches the horizontal wire, remove
hand from the tangent screw and note down the horizon-
tal and vertical readings.

6. Change face and intersect the sun on the upper right quad-
rant Fig. 1.69(b).

7. Keep the vertical wire on the apparent left limb of the sun
by moving the tangent screw of the upper plate.

8. When the apparent lower limb touches the horizontal wire,
remove hand from the tangent screw and note down the
vetical and horizontal readings.

9. Swing the telescope to the R.M. on face right and bisect it
accurately. Note down the reading.

One set of observations will therefore be as under:
Point sighted Position of the Sun Readings

R.M. Horizontal reading
to R.M. on face left

Sun Apparent right and upper Horizontal and vertical
limbs  of the sun readings to the sun on

touch vertical and face left.
horizontal wires
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Change face and swing the transit to get the sun in the field of view.

Sun Apparent   left   and Horizontal     and
lower limbs of the vertical readings to

sun   touch   vertical the sun on face right
and horizontal wires

R.M. Horizontal reading
to R.M. on face right.

Example 1.49. At a place (latitude 30°22´15´´ N, Longitude
77°50´00´´ E), the following observations were taken on the sun at
03.10 P.M. on 18th March, 1980.

Observed angle between the R.M. and the sun
= 175°14´15´´ (clockwise)

Declination of the sun at 03 10 P.M. = 0°53´06´´S
Observed corrected altitude of the sun  = 40°11´38´´
Calculate the true bearing of the R.M.
Solution. We know that in a spherical triangle

tan A/2 =
sin( )sin( )

sin . sin( � )
S S z
S S
− λ −

∆

Here z = (90° � α) = 49°48´22´´
λ = (90° � θ) = 59°37´45´´
∆ = (90° � δ) = 90°53´06´´

Sum = 2S = 200°19´13´´
S = 100°09´37´´

S � A = 9°16´31´´
S � λ = 40°31´52´´
S � z = 50°21´15´´

Substituting the values in eqn. (i) we get

tan A/2 =
sin40 31´52´´ sin50 21́ 15´´
sin100 09´37´´ sin9 16´31́ ´

° °
° °

A/2 = 0.24943575
A/2 = 60°37´02´´

A = 121°14´04´´
Bearing of the sun = 360°� 121°14´04´´

= 238°45´56´´ sun being in west
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Bearing of the R.M. = Bearing of the Sun � angle between
R.M. and sun

= 238°45´56´´ � 175°14´15´´
=   63°31´41´´ Ans.

Example 1.50. Find the bearing of the line ML from the follow-
ing ex-meridian observations to the sun.

S.N. Object Face Horizontal Circle Vertical Circle
 Verniers Verniers

A B C D

1 R.O. L 30°33´19´´ 33´17´´

R 210°33´04´´ 33´12´´

2 Sun R 25°52´15´´ 52´10´´ 40°42´12´´ 42´22´´

L 205°42´52´´ 43´15´´ 140´17´15´´ 17´12´´

3 Sun L 206°23´38´´ 23´58´´ 140°51´00´´ 50´42´´

R 27°41´50´´ 41´30´´ 39°08´00´´ 08´12´´

4 R.O. R 210°33´28´´ 33´32´´

L 30°33´40´´ 33´40´´

Latitude of station M
= 30°22�15´´N

Longitude of the station M
= 77°50´00´´ E

Declination of the Sun at G.M.N.
= 00°50´46´´ S

(decreasing 1´per hour on 18th
March 1976) L.M.T. of two ob-

servations= 3h 10m 0s P.M.
= 3h 16m 0s P.M.

P.M. Correction for horizontal
parallax

= 10.8´´
Correction for refraction = 51.5´´ cot  (apparent altitude)
Mode of graduations of vertical circle is as shown in Fig. 1.69.

Fig. 1.70.

270°

0°180°

90°
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Solution.
Mean horizontal reading to R.O.

= ½ (30°33´13´´ + 30°33´35´´) = 30°33´24´´
Horizontal angle between R.O. and the Sun at first position

= ½ (205°52´13´´ + 205°43´04´´) � 30°33´24´´
= 205°47´39´´-30°33´24´´ = 175°14´15´´

Horizontal angle between R.O. and the Sun at second position
= ½ (206°23´48´´ + 207°41´40´´) � 30°33´24´´
= 207°02´44´´ � 30°33´24´´ = 176°29´20´´

Vertical angle of the Sun at first position
= ½ [40°42´17´´ + 180°�140°17´13´´] = 40°12´32´´

∴ Apparent zenith distance V1

= 90°� 40°12´32´´ = 49°47´28´´
Vertical angle of the sun at second position

= ½ [(180°� (140°50´51´´) + 39°08´06´´]
= 39°08�38´´

∴ Apparent zenith distance V1

= 90°� 39°08´38´´ = 50°51´22´´
Refraction correction for V2

= � 51.5´´ tan 49°47´28´´ = 0°01´01´´
Refraction correction for V2

= � 51.5´´ tan 50°51´22´´ = 0°01´03´´
Parallax correction for V2

= 10.8´´ cos 40°12´32´´ = 0°00´08´´
Parallax correction for V2

= 10.8´´ cos 39°00´38´´ = 0°00´08´´
∴  Corrected zenith distance
1st position Second position
= + 49°47´28´´ + 50°51´22´´
   + 0°01´01´´ + 0°01´03´´

� 0°00´08´´ � 0°00´08´´
= 49°48´21´´ = 50°52´17´´
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Calculation of declination
1st position 2nd position

Local Standard Time = 15h 10m 0s 15h 16m 0s
Deduct East Longitude =   5h 30m 0s 5h 30m 0s
∴  G.S.T. of observation =   9h 40m 0s 9h 46m 0s
Sun�s declination G.S.T. =   0°50´46´´ 0°50´46´´
Variation @ 60´´ per hour
for interval of G.S.T. = + 0°02´20´´ 0°02´14´´
and G.N.T.
Declination at the time
of observation = 0°53�06´´S 0°53�00´´ S
Zenith distance Z = 49°48´21´´ 50°52´17´´
Co-latitude λ = 59°37´45´´ 59°37´45´´
Co-declination ∆ = 90°53´06´´ 90°53´00´´

2S = 200°19�12´´ 201°23�02´´
   S= 100°09´36´´ 100°41�31´´

or S�∆ = 9°16´30´´ 9°48´31´´
S�λ = 40°31�51´´ 41°03�46´´
S�Z = 50°21´15´´ 49°49´15´´

Substituting these values in the formula

tan A/2 =
sin( ) sin( )

sin sin( )
S Z S

S S
− − λ

− ∆
, we get

tan A/2 =
sin50 21´15´´ sin40 31́ 51́ ´
sin100 09´36´´ sin9 16´30´´

° °
° °

=
0.7700031 0.6498608

0.9843181 0.16111779
×

×
or A/2 = 60°37´03´´

A = 121°14´06´´ West
360°� A = 238°45´54´´

Bearing of the line = Bearing of the Sun � Horizontal angle
= 238°45´54´´ � 175°14´15´´ = 63°31´39´´

Similarly, from second observation, we get

tan A/2 =
sin49 49´15´´ sin40 03´46´´
sin100 41´31́ ´ sin9 48´31´´

° °
° °
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=
0.7640244 0.6568855
0.98433181 0.1705582

×
×

A/2 = 59°59´32´´
A = 119°59´04´´ West

∴ 360°� A = 240°00´56´´
Bearing of line = 240°00´56´´ � 176°29´20´´

= 63°31´36´´.
Mean bearing of the line = ½ (63°31´39´´ + 63°31´36´´)

= 63°31´37-5´´ Ans.

Example 1.51. The following notes are recorded at 4 P.M. on
Jan. 14, while determining the azimuth of a reference point P from a
station A of a triangulation survey. The opposite faces of the theodo-
lite were used in observing the upper and lower limbs of the sun :

Latitude of the station A : 41°40´40´´ N
True altitude of the Sun : 34°32�50´´
Declination of the Sun at 4 P.M. : 23°17�18´´
The mean observed horizontal angle of the sun, right of the refer-

ence point was 202°26´43´´. Find the azimuth of the reference point.
Solution. (Fig. 1.71)

Z

P

N

E

E´
S

Horizon
Equator

Dec
lin

atio
n Latitude

Fig. 1.71.
Given :
Latitude of station A,

θ = 41°40´40´´ N



FIELD ASTRONOMY 145

Altitude of the sun, α = 34°32´50´´
Declination of the Sun at the time of observation, i.e. 4 P.M.

δ = 23°17´18´´
In the spherical triangle PZS, we have
Co-latitude λ = 90°� 0 = 48°19´20´´
Co-altitude Z = 90°� α = 55°27´10´´
Co-declination ∆ = 90°� 5 = 66°42´42´´

2S = 170°29´12´´
S = 85°14´36´´

and S � λ = 36°55´16´´
S � Z = 29°47´26´´
S � ∆ = 18°31´54´´

Substituting the values of (S � λ), (S � Z), (S � ∆) and S in the
following equation.

tan A/2 =
sin( ) sin( )

sin . sin( )
S Z S

S S
− − λ

− ∆

tan A/2 =
sin29 47´26´´ sin36 55´16´´
sin85 14´36´´ sin18 31́ 54´´

° °
° °

=
0.4168309 0.6007148
0.9965559 0.3178287

×
×

= 0.9707102
tan A/2 = 0.9707102

A/2 = 44°08�55´´
or A = 88°17´50´´.

Now, Azimuth of the Sun measured anticlockwise
= 88°17´50´´

Angle between R.O. and Sun
= 202°26´43´´

∴ Azimuth of the R.O. measured clockwise
= 290°44�33´´

∴ Azimuth of the R.O. measured clockwise
= 360°� 290°44´33´´
= 69°15´27´´ Ans.
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Example 1.48. At a place A (latitude
52°30´20´´), the sun was observed on the
western sky. The following data were avail-
able :

Mean corrected altitude   = 33°35´10´´
Declination of the sun at the time of

observation = + 22°05´36´´
What was the azimuth of the sun ?
Solution. (Fig. 1.72).
Let Z be the zenith of observer

P be the celestial pole
S  be the Sun�s position in western sky.

Given :
Altitude = 33°35´10´´
Declination = + 22°05´36´´
Latitude = 52°30´20´´

ZS = coaltitude = 90°� 33°35´10´´
= 56°24´50´´

PS = Codeclination
= 90°� 22°05´36´´ = 67°54´24´´

PZ = Colatitude = 90°� 52°30´20´´
= 37°29´40´´

Applying cosine rule to the astronomical triangle PSZ, we get

cosA = 
cos cos cos

sin sin
PS ZP ZS

ZP ZS
−

...(i)

Substituting the values in eqn. (i), we get

cosA =
cos67 54´24´´ cos37 29´40´´cos56 24´50´´

sin37 29´40´´cos56 24´50´´
° − ° °

° °

=
0.376177 � 0.793412 0.553190

0.608685 0.8333055
×

×

=
0.376177 � 0.43890758

0.50706808
or cos A = � 0.12383068

As value sine of A is negative, the angle A lies between 90°and
180°.

∴ cos (180°� A) = 0.12383068
or 180°� A = 82°53´12´´.48

Fig. 1.72.

S

P

Z

A

H
67°54´24´´

37
°2

9´
40

´´56°24´50´´



FIELD ASTRONOMY 147

∴ Azimuth of the sun = 180°� 82°53´12´´.5
= 97°06´47´´.5 Ans.

Example 1.53. The greatest azi-
muth attained by a circumpola star is
45°. If the latitude of the observer�s
place is 45°N, prove that star�s decli-
nation is 60°.

Solution. (Fig. 1.73).
ZP = Colatitude = 90°� 45°= 45°
∴ ∠ ZSP = right angle, star being

at elongation
∠ PZS = 45°azimuth (given)
Applying sine rule to the spherical triangle PZS we get

sin
sin 45

PS
° =

sin
sin90

PZ
°

or sin PS =
sin 45 sin 45

sin90
° × °

° = 
1 1 1

22 2
× =

or PS = 30°= co-declination
∴  Declination = 90°� 30°= 60°.

Example 1.54. In determining the azimuth of a line in Calcutta
observation was made to the sun and the following data were avail-
able.

Mean horizontal angle of the sun
Clockwise angle from the reference line = 47°07´30´´
Mean observed altitude of the sun = 10°03´00´´
Declination of the sun at the time of observation

= 180°30´00´´ South
Horizontal parallax = 8´´.9
Refraction correction = 57´´ cot α
Latitude of Calcutta = 22°30´ North
The sun was observed on the west sky
Calculate the azimuth of the line.
Solution. (Fig. 1.74.)
Let P represents the celestial pole

Z represents the zenith
S represents the sun�s position

Fig. 1.73.

Z

P

S

45°

45°



ADVANCED SURVEYING148

P

Z

S

N

47°07´30´´
R0

Sun

Fig. 1.74.

Here observed altitude α = 10°03´00´´
Horizontal parallax correction = + 8´´.9
Corrected angle = 10°03´08´´.9
Refraction correction (�) = 05´21´´.6
(57´´ cot 10°03')
Corrected angle = 09°57´47´´-3
In spherical triangle PZS, we get

PS = Co-declination = 90°� (� 18°30')
= 108°30´

ZS = Co-altitude = 90°� 09°57´47´´.3
= 80°02´12´´.7

PZ = Co-latitude = 90°� 22°30´
= 67°30´

Let A be the azimuth of the sun
Applying cosine formula, we get

cosA = 
cos cos cos

sin sin
PS SZ PZ

SZ PZ
−

=
cos108 30´ cos80 02´12´´.7 cos67 30´

sin80 02´12´´.7 sin67 30´
° − ° °

° °

=
�0.17305 � 0.173015 0.382684

0.984919 0.923879
×

×

=
0.317305 � 0.06621

0.90994598

cos A = 
0.383515

0.90994598 = � 0.42147011
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A = 144°55´37´´.2 westernly
The azimuth of the line

= 114°55´37´´.2 + 47°07´30´´
= 162°03´07´´.2 westernly. Ans.

Example 1.55. A star was observed at western elongation at a
station A in latitude 54°30´N and longitude 52°30´W. The declination
of the star was 62°12´21´´ N. The mean observed horizontal angle
between the referring object P and the star was 65°18´42´´. Find :

(i) Hour angle of the star ;
(ii) The altitude of the star at elongation,
(iii) The azimuth of the line AP.
Solution. (Fig. 1.75)

A(Z)

P
R.O.

S

N Pole

Path of star

S

Z

N
90°– =δ ∆

90
°–

=θ
λ

90°–
=Z

α

Fig. 1.75

Let,    S be the star�s position
N be the North pole ;  Z be the zenith of A.

The star being at western elongation ∆NSZ is a right angled
triangle.

From Napier�s rule for circular parts, we get

sin α =
sin
sin

θ
δ



ADVANCED SURVEYING150

=
sin54 30´

sin62 12´21́ ´
°

° = 
0.814116
0.884628

= 0.92029191
or α = 66°58´7´´.68

∴ The altitude of star at elongation
= 66°58´7´´.68 Ans.

Again, sin A =
cos
cos

δ
θ

= 
cos62 12´21́ ´

cos54 30´
°

°

=
0.466297
0.580703  = 0.80298706

or   Azimuth of sun A = 53°24´58´´.68 W
∴ Azimuth of line AP = Azimuth of the star + Horizontal angle

between the line and the star.
= 53°24´58´´.68 + 65°18´42´´
= 118°43´40´´.68

∴ Azimuth of line AP = 118°43´40´´.68 W Ans.

Again, cos H =
tan
tan

θ
δ = 

tan54 30´
tan62 12´21´´

°
°

=
1.40195
1.89714  = 0.73898078

or   Hour angle H = 42°21´19´´.08 Ans.

Example 1.56. At a place of 39°N, the declination and hour
angle of a star were 19° and 42° respectively. Find the altitude and
azimuth of the star.

Solution.
In the astronomical triangle PZS, we have
Colatitude PZ = 90° � 39° = 51°
Codeclination PS = 90° � 19° = 71°
Hour angle H = 42°
Applying cosine formula (1.5) to ∆PZS, we get

cos SZ = cosPS . cosPZ + sinPS . sinPZ. cosH.
or cos (90° � α) = cos 71° . cos 51°+ sin 71°sin 51°cos 42°

= 0.325568 × 0.629321 + 0.9455180
× 0.777146 × 0.743145

= 0.20488677 + 0.54606705



FIELD ASTRONOMY 151

= 0.75095382
90° � α = 41°19´36´´.8

Altitude (a) = 90° � 41°19´36´´.8
= 48°40´23´´.2.   Ans.

Again, applying sine rule to triangle PZS, we have

sin A = 
sin . sin

sin
PS H

SZ  = 
sin71 sin42
sin41 12´36´´.8

°× °
°

=
0.945518 0.669131

0.660354
×

sin A = 0.9580852
or    Azimuth (A) = 73°21´09´´. Ans.

1.48. DETERMINATION OF LATITUDE
Knowledge of the latitude at different places on the surface of

the earth, is very necessary for the land surveyors and civil engi-
neers. The most practical and generally accepted methods for deter-
mining the latitude of any place are as under :

1. By meridian altitude of a star.
2. By equal meridian altitudes of two stars on either side of

zenith.
3. By meridian altitude of a circumpolar star at its upper or

lower culminations.
4. By ex-meridian observations of a star.
5. By altitude of the star on the prime vertical.

1. Latitude by meridian altitude of a star
Principle of the method. This method is based on the fact that

the latitude of any place is equal to the altitude of the pole star at
that place.

Field Procedure. Following steps are involved :
1. Determine the meridian of the place and fix two pegs at

considerable distance apart to define it.
2. Set up the theodolite on the north peg if the star is in

south direction and on the south peg if the star is in north
direction.

3. Bisect the distant peg and clamp both the plates.
4. Rotate the telescope in the vertical plane till the star is

bisected on the horizontal wire.
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5. Read both the verniers of vertical scale and take the mean
to get apparent meridian altitude of the star.

6. Change the face and repeat the steps (1) to (5) to get ap-
parent meridian altitude on face right.

7. The mean of the two altitude observations of both faces, is
the required altitude.

The observed altitude should now be corrected for the refraction
as discussed earlier.

Calculations :
Given data :

(i) declination of
the star.

(ii) meridian alti-
tude of the
star.

Depending upon the
position of the star in the
celestial sphere four
cases may arise.

Let S1, S2, S3 and S4
be the positions of the
star  (Fig. 1.76).

NS is the north south
direction and Z and P are
the zenith and pole re-
spectively

Case I. Star (S1) between the horizon and the equator.
The latitude θ = NP
∴ Co-latitude (90° � θ)= ZP
ButEZ = 90° � ZP

EZ = θ = latitude
Angle, SS1 = α1 = meridian-altitude of the star S1

ZS1 = 90° � α1 = z
= zenith distance of the star

Angle, ES1 = δ1 = declination of the star (south)
EZ = ZS1 . ESl

EZ = (90° � α1) � δ1

Fig. 1.76.
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or θ = z1 � δ1

∴ Latitude = Zenith distance � Declination.
Case II. Star (S2) between the equator and the zenith.
Here SS2 = α2 meridian altitude of the star

ZS2 = (90° � α2) = z2 = zenith distance
ES2 = δ2 = declination of the star (North)

Now EZ = ZS2 + ES2

θ = (90° � α1) + δ2

or θ = z2 + δ2

∴ Latitude = Zenith distance + Declination.
Case III. Star (S3) between the zenith and the pole.
Here NS3 = α3 = altitude of the star

ZS3 = (90° � α3) = z3 = zenith distance
ES3 = δ3 = declination of the star (North)

Now, EZ = ES3 � ZS3

= δ3 � (90° - α3)
or EZQ = δ3 � z3

∴ Latitude = Declination � Zenith distance.
Case IV. Star (S4) between the horizon and the pole
Here NS4 = α4 = altitude of the star.

ZS4 = (90° � α4) = z4 = zenith distance.
E´S4 = δ4 = declination of the star.

Now, PN = altitude of the pole
= latitude of the place θ
= NS4 + PS4 = α4 + (PE´ � E´S4)
= α4 + (90° � δ4) = (90° � Z4) + (90° � 54)
= 180° � (24 + δ4)

∴ Latitude = 180° � (Zenith distance + Declination)
Disadvantages of the method. The following are the disad-

vantages of the method :
(i) During the interval of changing face, the star moves out

of the meridian.
(ii) The direction of the meridian of the place needs be deter-

mined before actual observations are made.

2. Latitude by equal meridian altitudes of two stars on
either side of zenith (Tal Cott Method)
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Principle of the method. The error of observations, refraction
and instrument may be reduced by making observations upon two
stars which culminate on the opposite sides of the observer�s zenith,
and having zenith distances approximately equal.

Field Procedure. Following steps are involved :
1. Select two stars which culminate within an interval of 10

to 30 minutes, such that difference of right ascensions of
the two stars is equal to the interval of times between
their culmina-
tions.

2. Observe the
meridian alti-
tude of the star
which culmi-
nates first, ac-
curately.

3. Swing the tele-
scope and ob-
serve the me-
ridian altitude
of the second
star.

Calculations : Pro-
ceed as under.

Let S1 and S2 be the
two stars which culminate within an interval of 20 minutes. S1 cul-
minates south of zenith and S2 culminates north of the zenith.

Let α1 and α2 be the meridian altitudes, and δ1 and δ2 be the
declinations.

Apparently for S1, latitude
θ = EZ = (90° � α1) + δ1

For S2 latitude θ = EZ = δ2 � (90° � α2)
∴  Average latitude = ½ [90° � α1) + δ1 + δ2 � (90° � α2)]

or θ = 2 1 1 2

2 2
α − α δ + δ

+ ...(1.91)

Note. The following points may be noted :
(i) The correction for refraction gets cancelled as the differ-

ence in the altitudes of stars is not involved and these are
approximately equal.

Fig. 1.77.
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(ii) The instrumental errors also get cancelled as the observa-
tions to both stars are made under identical conditions.

(iii) The face of the theodolite remains the same.

3. By meridian altitudes of a circumpolar star at its up-
per and lower culminations

Principle of the
method. The north polar
distance of a circumpolar
star at lower culmination
is equal to the north polar
distance at its upper culmi-
nation i.e., the mean alti-
tude of the circumpolar star
at upper and lower culmi-
nations is equal to the alti-
tude of the pole and hence
equals the latitude of the
place.

Proof.
Let S1 and S2 be the

two positions of the circum-
polar star at its lower and
upper culminations. The
path of the star is denoted by arrows (Fig. 1.78).

Let α1 be the altitude of the star at lower culmination
α2 be the altitude of the star at upper culmination.
But, latitude of the place = altitude of the pole

i.e. θ = NP
NP = NS1 + PS1 = α1 + PS1 ...(i)
NP = NS2 � PS2 = α2 � PS2 ...(ii)

Adding equations (i) and (ii), we get
2 PN = α1 + α2 + (PS1 � PS2)

But PS1 = PS2 = Co-declination of the star
∴ 2NP = α1 + α2

or NP = 1 2

2
α + α

...(1.92)

i.e. the latitude of the place is equal to half the sum of the alti-
tudes of the circumpolar star at its upper and lower culminations.

Fig. 1.78.
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Field procedure. Following steps are involved :
1. Determine the meridian of the place.
2. Select a suitable circumpolar star whose both culmina-

tions occur within night.
3. Observe the meridian altitude at its upper and lower cul-

minations.

Calculations : Proceed as under.
Let α1 and α2 be the altitudes of the star at lower and upper

culminations

∴ Latitude θ = 1 2

2
α + α

Note. The following points may be noted :
(i) This method is not preferred to as 12 sidereal hours elapse

between two observations.
(ii) If the duration of night is less than 12 hours, one of the

culminations of the star will be in day.
(iii) The declination of the star is not involved in the computa-

tion.
(iv) The error of refraction for both altitudes is not same.

Example 1.57. In northern hemisphere in longitude 76°30´E on
December 20th 1978, observations for latitude were made on a cir-
cumpolar star whose altitude at lower and upper culminations were
25°37´15´´ and 35°24´40´´ respectively. Calculate the latitude of the
place.

Assume refraction in seconds
= 58´´ × Tangent of apparent zenith distance
= 58´´ × Cotangent of apparent altitude.

Solution.
Apparent altitude at lower culmination = 25°37´15´´
Refraction correction = 58´´ × 2.0852143 = �    02´01´´
∴ Correct altitude at lower culmination = 25°35´14´´
Apparent altitude at upper culmination = 35°24´40´´
Refraction correction = 58´´ × 1.4065587 = �     1´22´´
∴   Correct altitude at upper culmination         35°23´18´´
∴   Latitude of the place θ = ½(25°35´14´´ + 35°23´18´´)

= 30°29´16´´ N.
Ans.
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Example 1.58.
Find the latitude of a
place in the northern
hemisphere at which a
star of declination N
6°18´34´´ will have an
altitude at upper tran-
sit of 45°03´04´´.

Solution. (Fig.
1.79)

As the declination
of star is 6°18´34´´
north, it lies between
zenith and equator.

∴ Latitude of the
place = declination + ze-
nith distance.

= 6°18´34´´ + (90° � 45°03´04´´)
= 51°15´30´´ N. Ans.

Example 1.59. Find the latitude of a place at which the merid-
ian zenith distances of a circumpolar star were observed to be
75°29´30´´ and 47°31´24´´. Take coefficient of refraction = 58´´.

Solution.
Refraction correction for lower transit

= 58´´ tan 75°2´30´´ = 224´´ .13
Refraction correction for upper transit

= 58´´ tan 47°31´24´´ = 63´´.35
∴   Corrected co-altitude of star at lower transit

= 75°29´30´´ + 0°03´44´´.13
z1 = 75°33´14´´.13

Corrected co-altitude of star at upper transit
= 47°31´24´´ + 0°01´03´´.35

z2 = 47°32´27´´.35
∴   Co-latitude of the place

= ½ (z1 + z2)
= ½ [75°33´14´´13 + 47°32´27´´.35]

Fig. 1.79.
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= ½ (123°05´41´´.48) = 61°32´50´´.74
∴   Latitude of the place = 90° � co-latitude

= 28°27´09´´.26 N. Ans.
4. By ex-meridian observations of star or Sun. This method

involves the following elements of the astronomical triangle.
1. The altitude of the star or sun.
2. The exact time of observation.
3. The right ascension of the star or

sun.
Field observations. The following

steps are followed.
1. Observe the altitude of the celes-

tial body.
2. Note down the correct time of ob-

servation.

Calculations : Proceed as under.
We know L.S.T. = R.A. of the star + H.A. of the star.
In the astronomical triangle SZP (Fig. 1.80).

SZ = 90° � α = Z
SP = 90° � δ = ∆

∠ ZPS = H
From the cosine formula, we get
cos (90° � α) = cos (90° � θ) cos (90° � δ) + sin (90° � θ)

sin (90° � δ) cos H
or sin α = sinθ sinδ + cosθ cosδ cos H ...(1.93)

By substituting the values in equation (1.90) the value of θ can
be evaluated.

Alternatively
Applying the sine formula to the astronomical triangle SZP we

get

sin SZP = 
sin . sin

sin
PS SPZ

ZS
i.e. the azimuth of the star can be computed

Again, tan
2

PZ
= 

1
2
1
2

sin ( )

sin ( )

A H

A H

+

− tan 1
2 (SP � SZ)

Fig. 1.80.
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= 
1
2
1
2

sin ( )

sin ( )

A H

A H

+

− tan 1
2 (90° � δ � 90° + α)

tan 2

2
ρ

=
1
2
1
2

sin ( )
sin ( )

A H

A H

+

− tan 1
2 (d � δ) ...(1.94)

Note : The solution of the equation (1.93) may be done as fol-
lows.

sin α = sin θ sin δ + cos θ cos δ cos H
Let sin δ = x sin y ...(1.95)

and cos δ cos H = x cos y                                              ...(1.96)
Dividing equation (1.94) by equation (1.95) we get

sin
cos cos H

δ
δ = tan y

tan δ sec H = tan y ...(1.97)
Substituting the values of equations (1.95) and (1.96) in equa-

tion (1.90)
sin α = sin θ . x sin y + cos θ . x cos y
sin α = x (sin θ sin y + cos θ cos y)
sin α = x cos (θ � y)

x = sin α sec (θ � y) ...(1.98)

Substituting the value of x in equation (1.95) we get
sin δ = sin α . sec (θ � y) sin y

or cos(θ � y) = sin α . sin y cosec δ                       ...(1.99)
Substituting the value of y

from equation (1.97) in equation
(1.99) we may compute the value
of θ.

5. By altitude of a star on
prime vertical. (Fig. 1.81)

Let P be the celestial pole
Z be the zenith
ZSE be the prime verti-
cal
α be the altitude
δ be the declination of
star
θ be the latitude of place.

Fig. 1.81.
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When the star is on the prime vertical, its azimuth is 90°. i.e.
Spherical triangle PZS is a right angled triangle.
∴ cos PS = cos ZS . cos ZP.

or cos (90° � δ) = cos (90° � α) cos (90° � θ)
or sin δ = sin α sin θ

sin θ = sin δ cosec α
= sin δ sec z ...(1.100)

where z is zenith distance
Knowing the values of δ and z we can compute the value of the

latitude.

Example 1.60. The altitude of a star when on the prime vertical
is seen to be 30°and its meridian altitude is 45°. Calculate the lati-
tude of the place.

Solution.
Given : α1 = altitude on prime vertical = 30°

z = 60°
α2 = altitude on meridian = 49°

or z = 45°
Substituting the values in eqn. (1.97) we get

sin θ = sin θ sec 60° ...(i)
Again, we know that

θ1 = z + δ
sin (z + δ) = sin δ sec 60° ...(ii)

sin (45°+ δ) = sin δ sec 60°
sin 45° cos δ + cos 45° sin δ = 2 sin δ

or
1
2 cot δ + 

1
2 = 2

1
2 cot δ = 2 � 

1
2

cot δ = 2 2 � 1
cot δ = 1.828427

δ = 28°40´30´´
Substituting the value of δ in equation (ii) we get

θ = 45° + 28°40´30´´
∴  Latitude θ = 73°40´30´´ Ans.
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Example 1.61. The length of the shadow of a7m high pole at 10
O�clock in the morning is 15  m. If the pole does not cast any shadow
at noon, calculate the latitude of the place.

Solution. (Fig. 1.82)

7m

B

AC

θ

15m

λ
λ

28°57´18´´

P

SZ

( )a ( )b

Pole

Fig. 1.82

Let AC be the shadow of the pole AB at 10 o�clock.
Apparently, zenith angle

= ∠ CBA = 0

tan θ =
15
7

 = 0.55328332

or θ = 28.955 = 28°57´18´´
At noon, the pole does not cast any shadow i.e. sun is in zenith.
Co-latitude of the observer = Co-declination of sun = λ
At 10 O�clock in morning hour angle = 15° × 2 = 30°
Applying cosine formula to spherical triangle PZS we get

cos2 x + sin2 x cos 30°= cos 28°57´18´´
(1 � sin2 x) + sin2 x × 0.866026 = 0.875
1 � sin2 x + 0.866026 sin2 x = 0.875

or      sin2 x (1 � 0.866026) = 1 � 0.875

sin2 x =
0.125

0.133974 = 0.93301685

sin x = 0.96592797
x = 75°

∴ Latitude of the place = 90° � 75°
= 15°N. Ans.
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Example 1.62. An observation for latitude was made at a place
in longitude 7°20´15´´ W. The meridian altitude of the sun�s lower
limb was observed to be 44°12´30´´, the sun being to the south of the
zenith. Sun�s declination at G.A.N. at 6.82 seconds per hour and
semi-diameter of sun 15´45´´.86. Find the latitude of the place of
observation.

Solution.
Observed meridian altitude of the sun = 44°12´30´´.00
Correction for refraction (� 57´´ cot 44°12´30)´´ (�) 59´´.60
Semi-diameter correction (+ve) 15´45´´.86
Correction for parallax (8´´.78 cos 44°12´30´´) + ve 6´´.30
.-.   Corrected meridian altitude = 44°27´22´´.56
Zenith distance z = 45°32´37´´.44
L.A.T. of observation = 0h 0m 0s
Time interval between Greenwich and observer�s
meridian 7°20´15´´ W = 0h 29m 21s
G.A.T. of observation = 0h 29m 21s west
Declination of sun at G.A.T. = 22°18´12´´.80
Increase in sun�s declination in Oh 29m 21s
@ 6.82 sec per hour =             + 3´´.34
Sun�s declination at L.A.N. = 22°18´16´´.14
From the established relationship we get

θ = z + δ
∴ Latitude = 45°32´37´´.44 + 22°18´16´´.14

= 67°50´53´´.58 Ans.

Example 1.63. Observations were taken on a star at some place
in northern hemisphere and the following data were obtained.

True altitude of the star = 41°00´15´´
Declination of the star =16°31´45´´
Hour angle of the star = 50°35´20´´
Calculate the latitude of the place of observation.
Solution.
We know from Eqn. (1.93), that

tany = tan δ . sec H ...(i)
Substituting the values in Eqn. (i)
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tan y = tan 16°31´45´´ × sec 50°35´20´´
= 0.2967672 � 1.57510 = 0.467438

or y = 25°03´11´´.5
Substituting the values in Eqn. (1.95)

cos (θ � y) = sin α . sin y . cosec δ
= sin 41°00´15´´ × sin 25°03´11´´

× cosec 16°31´45´´
= 0.656114 × 0.423457 × 3.5149014

or = 0.97656637
θ � y = 12°25´41´´.5

or θ = 12°25´41´´.5 + 25°03´11´´.5
Latitude of the place = 37°28´53´´ North. Ans.

Example 1.64. The observed altitude of the sun�s lower limb
when crossing the meridian of a station in the northern hemisphere
was 42°16´46´´. The G.M.T. of observation was 12h 52m 45s. Calcu-
late the latitude and longitude of the station.

Given : Sun�s declination = 1°33´55´´ S increasing
58´´.475 per hour,

Equation of time = + 8m 55.053 increasing
20.1s/day.

Semi-diameter of the sun = 15´58´´-55
Correction for refraction = 57 cot α
Correction for parallax               = 8´´.8 cos α
Solution.
Equation of time at midnight at Greenwich

= 8m 55.05s
Change in equation of time during

12h 52m 45s = 10.79s
∴  Equation of time at the time of observation

= 9m 05.84s
∴  Equation of time at the time of observation

= G.M.T. + E.T.
= 12h 52m 45s + 9m 05.84s
= 13h 01m 50.84s
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Local apparent solar time at noon = 12h
∴  Longitude of the place = Apparent solar time at Green-

  wich�local apparent solar time
= 13h 01m 50.84s � 12h
= 1h 01m 50.84s

Because, the apparent solar time is ahead of the local apparent
solar time, the longitude is west.

= 15°27´42´´.59 W. Ans.
Calculation of the latitude
Observed meridian altitude of sun = 42°16´46´´
(i) Correction for semidiameter (+ve) = 15´58´´.55
Altitude of the sun corrected for semi-diameter

= 42°32´44´´.55
(ii) Correction for refraction (�ve)        = (�) 0°01´02´´.69

  57 cot 42°16´46´´ = 62.69s.
Correction for parallax

8.8 cos 42°16´46´´ = = +   0°00´6´´.51
∴ Altitude of the sun corrected for semi-diameter

=    42°32´44´´.55
(�)   0°01´02´´.69
(+) 0°00´  6´´.51

∴ Corrected altitude of the sun = 42°31´48´´.37
Corrected zenith distance = 47°28´11´´.63
Corrected declination of sun

δ= 1°33´55´´ + 12´41´´98
= 1°46´36´´.98

Latitude of the sun θ = z � δ
∴   Latitude of the place = 47°28´11´´.63

� (� 1°46´36´´.98)
θ = 49°14´48´´.61 N. Ans.

Example 1.65. If the apparent altitude of a star of declination
52°39´ 30´´ S at upper transit is 24°20´20´´ s, what is the observer�s
latitude ?
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Solution.
Refraction correction = 58´´ cot α

= 58´´ cot 24°20´20´´ = 127´´.93
= 2´7´´.93

∴   Correct altitude of star
= 24°20´20´´ � 2´7´´.93
= 24°18´12´´.07

Zenith distance of star     = 90° � 24°18´2´´.07
= 65°41´47´´.93

As the star is between horizon and equator, we get
Latitude θ = Zenith distance of star � declination of star

= 66°41´47´´.93 � 52°39´30´´
= 13°02´17´´.93

∴  Latitude of the place = 13°02´17´´.93 Ans.

1.49. DETERMINATION OF LONGITUDE
The longitude of any place with respect to another is the angu-

lar measure between the meridians of two places measured along
the equator. Longitudes are reckoned east or west of the fixed refer-
ence meridian up to 180°. The fixed meridian or the standard me-
ridian universally chosen is that of Greenwich, a small town west of
London.

We know that the difference of longitudes of two places is con-
nected with the difference of times taken at two places at the same
instant. Therefore, we may infer that the difference in local times of
two places is equal to the difference in their longitudes.

The various methods of determining longitudes are as under :
1. By transportation of chronometers.
2. By listening to radio signals.
3. By observing the stars which culminate at the same time.

Example 1.66. At the station A, altitude of Sun was observed in
the morning of a certain date in the month of May, 80 and the fol-
lowing data was recorded.

Corrected altitude of Sun = 43°38´00´´
Declination of sun = + 18°45´50´´ N
E.T. to be subtracted from apparent time = 3m 43s
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Latitude of station = 42°20´N
G.M.T. of observation = 16h 22m 55s
Find the longitude of station A.
Solution. (Fig. 1.83)
In the spherical triangle ZPS we have

ZS = 90° � α = 90° � 41°38´00´´ = 46°22´00´´
PS = 90° � δ = 90° � 18°45´50´´ = 71°14´10´´
PZ = 90°� θ = 90° � 42°20´00´´ = 47°40´00´´
2S = 165°16´10´´

S = 82°38´05´´

N

E

PH

Z

E
S

Horizon

Equator

Fig. 1.83.

Solving the triangle ZPS for the hour angle (H) we get

tan
2
H

=
sin( )sin( )

sin . sin( )
S PZ S PS

S S ZS
− −

− ...(i)

Substituting the values in equation (i) we get

tan
2
H

=
sin35 28´05´´ sin11 53´55´´
sin83 08´05´´ sin36 46´05´´

° °
° °

=
0.5802489 0.2061804
0.9928299 0.598577

×
×

= 0.2013106 = 0.4486764

∴
2
H

= 24.164648
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2
H

= 24°09´52´´

or H = 48°19´44´´
As the observation to Sun was made in the morning.

L.A.T. of observation = 12h � 
48°19´44´´

15
= 12h � 3h 13m 19s

∴  L.A.T. of observation = 8h 46m 41s
Subtract E.T. from L.A.T. =        3m 43s
Local mean time = 8h 42m 58s
Difference of G.M.T. of observation and L.M.T. of observation

= 16h 22m 55s
= 08h 42m 58s

∴  Longitude in time =   7h 39m 57s
Longitude of the place = 7h × 15 = 105°00´00´´

39m × 15 =     9°45´00´´
57s × 15 = 14´15´´

114°59´15´´
As the L.M.T. of observation is behind the G.M.T., the place is

west of Greenwich.
∴  Longitude of the place = 114°59´15´´ West. Ans.

1.50. CONSTELLATIONS
The fixed stars are at varying distances from the earth, but they

only appear to lie upon the surface of a sphere known as celestial
sphere. For the purpose of classification, the relatively fixed stars,
have been arranged into groups known as constellations. These
groups of stars bear the names of animals, birds and other familiar
objects, they resemble.

According to Bayer, the various stars of the same constellation
are designated in order of their brightness by the name of the con-
stellation preceded by the small Greek letters. In case the constella-
tion contains more stars than 24 Greek letters, the 25th and on-
ward stars are designated by Roman letters. For example the stars
of the constellation Taurus, are designated as under. The brightest
star is a Tauri. the next bright star in β Tauras and so on.
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Some brightest stars of the sky bear individual names and des-
ignated by their names. For an example, the brightest stars a of the
constellation, �The Little Bear� is popularly known as polaris or the
pole star. It may be easily located in the north sky by a line through
the stars β and α (known as pointers) of Ursa Majors and prolong-
ing the same to pass through the polaris (Fig. 1.84).

Sirius, Canopua, Capella, Arcturus, Aldebran, Vega, etc. are
other stars which are identified by their names.

According to Flamsteed (1729), the telescopic stars have been
numbered consecutively from west to east across the constellation
in the order of their Right Ascension (R.A.).

Zodiacal constellations. The imaginary belt between two
small circles parallel to the ecliptic at a distance of 8°, on either
side, is called the zodiac. The motions of all the planets and the
moon are within the zodiac. The zodiac is further divided into 12
equal signs, each sign being of 30°. Each sign contains a constella-
tion of stars, which is named after its resemblance with the animals
or objects. These tweleve constellations which are called zodiacal
constellations are named as under :

1. Aeries (Rama) 2. Taurus (Bull)
3. Gemini (Twins) 4. Cancer (Crab)
5. Leo (Lion) 6. Virgo (Virgin)
7. Libra (Balance) 8. Scorpio (Scorpion)
9. Sagittarius (Archer) 10. Capricornus (Goat)
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11. Aquarius (water-carrier) 12. Pisces (Fish).

1.51. STAR ALMANACS AND STAR CHARTS
The celestial coordinates (right ascension and declination) of a

selection of 650 stars for various dates corresponding with latitudes
and longitudes on the earth are given in the Star Almanac for land
surveyors published annually by Her Majesty�s Nautical Almanac
office, London. The position of a celestial body at any time can be
obtained by interpolation. The publication most widely used by as-
tronomers in India is �the Star Almanac for Land Surveyors�. This
is published annually in advance. The declination and right ascen-
sion of the listed stars in the star almanacs, are determined by
making observations at, fixed observatories by the astronomers. The
location of Stars are published in Star Chart as shown in Fig. 1.85.
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Fig. 1.85. Stars at New Delhi in November month

* The magnitude of a star is a number which indicates its brightness.
Magnitude increases as the brightness decreases. The magnitude of the sun,
the brightest star is -26.7, for full moon -12.5 and Aldebran is 1.06.
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Exercise 1

1. If the latitude of a place is 33°, find the zenith distance of
the north pole. [Ans. 57°]

2. If the latitude of New Delhi is 28°32´45´´ N, calculate the
declination of the star which may culminate at the New
Delhi. [Ans. 28°32´45´´ N]

3. If the latitude of a place is 28°45´30´´ N and the declina-
tion of a star is 25°30´45´´ N, ascertain whether the star
culminates north or south of zenith. [North of zenith]

4. If the declination of a star is 15°25´20´´ S, calculate its
zenith distance when it is on the meridian of a place hav-
ing latitude 25°32´00´´ N. [Ans. 40°57´20´´]

5. The declination of polaris is 89°02´40´´ N. Calculate the
altitude of Polaris at its upper and lower culminations at
a place of latitude 5°32´40´´. [Ans. 6°33´00´´, 4°35´20´´]

6. Find the altitude of the sun at upper transit at place in
latitude 30°30´20´´ given that the declination is
12°29´40´´s. [Ans. 47° in the South]

7. Find the altitude at upper and lower transits of a star
(declination N 62°32´30´´) at a place in latitude 28°24´30´´
N. [Ans. 55°52´, 0´57´´]

8. Find L.S.T. at L.M.N. (1200 hrs) in longitude (i) 90°E
(ii) 90°W if G.S.T. at G.M.N. is 2h 02m 22.4s.

[Ans. 2h 01m 23-3s, 2h-03m 21.5s]

9. Find L.S.T. at 0800 A.M. (Local Mean Time) in longitude
75°W if G.S.T. at G.M.M. is 14h 48m 08.7s.

[Ans. 22h 50m 16-9s]
10. Determine L.A.T. of an observation at a place in longi-

tude 15°W if L.M.T. is 15h 30m 20s ; the equation of time
at G.M.N. is 5 min. 58.7 sec additive to apparent time and
increasing at 0.22 sec/hr. [Ans. 15°24´20´´.31s]

11. Find the azimuth of a reference mark from the following
observations taken on a star at its eastern elongation.
Declination of the star = 75°24´30´´
Latitude of the place = 45°20´N.
Clockwise angle from the sun to the reference mark
= 45°42´29´´ [Ans. 66°43´30´´]
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12. A star of declination 82°04´30´´ N was observed at East
Elongation when the anti-clockwise angle from a refer-
ence mark was 110°25´50´´. Immediately afterwards a star
of declination 63°45´35´´ was observed at East elongation
and the anti-clockwise angle observed was 75°20´20´´. De-
termine the azimuth of R.M.

[Ans. 123°57´49´´ clockwise from North]
13. Following observations were taken on the sun to deter-

mine the azimuth of a reference mark.
The mean observed altitude = 22°34´30´´
Readings of the altitude level L. 4.5 E 3.5

bubble R. 5.5 E 2.5
One division of altitude = 15´´
The Mean time of observation = 3h 12m 57s.
The declination of the star =  3°25´06´´
Latitude of the place = 53°29´19´´ N
The mean horizontal angle between
R.M. and the sun = 120°07´14´´
[Ans. Azimuth of R.M. = 108°clockwise from North]

14. Find the latitude of a place in the northern hemisphere at
which a star of declination N 16°18´30´´ will have an alti-
tude at upper transit of 45°45´45´´. (Ans. 60°32´45´´)

15. A star was observed to reach an altitude of 50°20´30´´ at
9hr 46 min. 16 sec G.S.T. and to return to the same alti-
tude at 10 hr 58 min 20 sec G.S.T. The R.A. of the star
was 10 hrs 6 min 6 sec. Determine the longitude of the
observer. (Ans. 4°5´W)

16. The meridian altitude of a star was observed to be
74°26´20´´ on 5th April 1980, the star lying between the
zenith and the equator. The declination of the star was
40°18´56-50´´ N. Find the latitude of the place of observa-
tion. [Ans. 65°52´52-37´´]

17. To determine the azimuth of a line AB, a star was ob-
served at its eastern elongation and the following data
was observed :
Latitude of the place = 45°30�20´´ S
Longitude of the place = 82°30´00´´ E
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Declination of the star = 75°25´32-5´´ S
Clockwise horizontal angle from the line AB to the star

120°25´30´´
Calculate the azimuth of the line AB.

[Ans. 38°31´59´´.5 clockwise from North]
18. Find the Indian standard time of the western elongation

of Polaris for a place in latitude 27°12´35´´ N and longi-
tude 31°30´30´´ E on 30th November 1980. The standard
meridian is 82°30´E. Find also the azimuth at elongation.

[Ans. 6 h 38 m 07 1 s ; 1°04´10´´]
19. Polaris was observed at its western elongation on Aug.

30, 1980 and the horizontal angle between the star and
the referring mark which is west of star is 45°30´20´´.
Declination of Polaris is 88°52´22´´.73 N. Latitude of the
place of observer is 50°N. Calculate the azimuth of the
referring mark.

[Ans. 312°44´27´´4 clockwise from North]
20. Observations were taken to the sun at place in longitude

80°30´45´´ E, the observed meridian altitude of the lower
limb being 38°30´40´´, Sun�s declination at G N A, on that
data was 22°17´41´´ S, decreasing at the rate of 8´´.2/hour.
Find the latitude of the place, the sun being on the south
of the observer�s zenith. Semi-diameter of the sun = 16´17´´.

[Ans. 28°55´39´´.1 N]
21. Explain the following terms in brief :

(i) Ecliptic (ii) Sensible horizon
(iii) Equation of time (iv) local meantime.

(UPSC Engg. Exam, 1999)


