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Statics of a Particle

1.1. Force and its Characteristics

Force is that which produces or tends to produce change in the state of
rest or of uniform motion in a straight line, of a body.

Let a horizontal force P be applied to a body placed on a rough
horizontal plane. When P is a small, the body does not move. When P is
increased, the body will start moving in a straight line if the line of action of
P passes through the centre of gravity (c.g.) of the body : there will be motion
of translation as well as of rotation if the line of action of P does not pass
through the c.g. of the body.

Thus we see that the effect of a force depends on three characteristics
— (1) magnitude, (2) direction, (3) position or line of action. The complete
effect of a force can be found only if we know all these three characteristics.

If we draw a straight line
parallel to the line of action of the N
force, whose length is proportion-
al to the magnitude of the force,
the line is said to represent the
force in magnitude and direction.
Thus let the force P be 15 kilo-
grams acting in the north-east %
direction. Let 1 cm length repre- W A
sent 5 kilograms. Then a straight
line AB of length 3 cm drawn in
the north-east direction will rep-
resent the force P in direction and
magnitude. An arrow is placed on
the line with the arrow-head S
pointing north-east to show the
sense of the force, i.e. the force is
acting from A towards B. The
force represented by the line AB
is written as AB. Fig. 1.1-A
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If the line AB is drawn through the point at which P acts, then AB is
said to represent P in direction, magnitude and position, or in short, AB
represents P completely.

Any quantity which possesses magnitude as well as direction is called
a vector quantity. Some examples of vector quantities are force velocity and
acceleration. Any vector quantity can be represented by means of a straight
line which is called a vector. Thus the force P is a vector quantity which is
represented by the vector AB .

Vectors are also denoted by a single letter, like P or a, etc. The
magnitude of the vector a is represented by | a | or a.

A free vector can be moved any-where in space, provided it retains its
direction and magnitude unchanged.

A vector which can be applied at any point of its line of action is called
a sliding vector.

A bound or fired vector passes through a fixed point.
1.2. () M.K.S. and C.G.S. Units

The units of mass, distance and time are called fundamental units. All
other units are known as derived units.

In the M.K.S. system, mass is measured in kilograms, distance in
metres and time in seconds. The abbreviations for them are respectively kg, m
and sec.

The weight of a body is the force of attraction exerted on it by the earth.
If the mass of a body is m, then its weight is m x g, where g is the acceleration
due to gravity. The value of g on the earth’s surface is approximately 9.81
metres per sec per sec which is written as 9.81 m/sec’. Sometimes we take g
= 9.8 m/sec?.

If the mass of a body is m kg then its weight is m x 9.81 Newtons. Since
weight is a force, the unit of force is also Newton. The abbreviation for Newton
isN.

Now a force of mg Newtons is equal to the weight of a body of mass
m kg. We say that

mg Newtons = weight of m kg
or =m kg-wt
or =m kgf.

Thus if a force in Newtons is divided by g = 9.81, then the force is
obtained in kg-wt. or kgf. Kg-wt or kgf is called the gravitational unit of force.
In the gravitational system, mass and weight are equal numerically. Newton
is called the absolute unit of force.

In the C.G.S. system mass is measured in grams (gm), length in
centimetres (cm) and time in seconds. Weight and force are measured indynes.
Thus if the mass of a body is m gm, then its weight is mg dynes, where g = 981
cm/sec’. The gravitational unit of force and weight, is gmf.
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Pressure is force per unit area. It is measured in kgf/cmz, or kgl/square
millimetre (mmz), or N/cmz, or N/mm? and so on.

When the point of application of a force F moves through a distance x
along its line of action, work is said to be done and its magnitude is F .x. When
F is measured in kgf and x in metres, the work done = F . x. kgt-m. When F is
measured in Newtons and x in metres, the workdone = F . x N-m = F . x Joules.
One Newton-metre is called one Joule.

The unit for energy is the same as for work.

In the F.P.S. system, the three fundamental units are the pound (Ib),
the foot (ft) and the sec. Force is measured in poundals, which are obtained by
multiplying Ib by g = 32.2 ft/sec’. The gravitational unit is Ib-wt.

1.2. (¢0) S.L Units
The following are the base units in this system as required in this book :

Quantity Name Abbreviation or
symbol
Length Metre m
Mass Kilogram kg
Time Second s
S.1. derived units

Quantity Name Symbol
Force Newton N
Moment Newton-metre N-m
Work and energy Joule J
Power Watt W
Area Square metre m?
Velocity Metre per second m/s or ms™"
Acceleration Metre per second per

second m/s? or ms ™
Density Kilogram per cubic

metre It.g,/m3
Pressure and stress Pascal Pa

One Newton is that force which acting on a mass of one kilogram will
produce in it an acceleration of one metre per second per second.

One Joule is the work done when the point ot apphcation of a force of
one Newton is displaced through one metre along its line of action. One Joule
is also called one Newton-metre.

1J=1N-m.
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Power is rate of doing work A rate of one Joule per second is called
one Watt.
1wW=1 J/S
Pressure, and also stress, is force per unit area. A pressure of one
Newton per square metre is called one Pascal.

1Pa=1N/m?
S.1 prefixes for multiples
Factor Prefix name Symbol
10 deca da
102 hecto h
10° kilo k
10 Mega M
10° Giga G
10" Tera T
S.L prefixes for sub-multiples
Factor Prefix name Symbol
107! deci d
1072 centi c
10° milli m
1078 micro 1
10”° nano n
1071 pico P

The use of the prefixes hecto, deca, deci and centi is not recommended.

Compound prefixes should be avoided. For example, 25000 kg should
be written as 25 x 10° kg or 25 x 105 g or 25 Mg (Mega gram), but not as 25
kkg.
The following symbols are written in Roman type, lower case :
m, kg, s.
The following symbols, which have been derived from the names of
persons, are written in Roman type, capital letters :
N, I, W, Pa.
The prefixes M, G, T are written in Roman type, capital letters.
The prefix k for kilo is written in Roman type, lower case.
The following prefixes are written in italics, lower case :
da, d, ¢, w, n p
Correct way of writing S.L units
The S.I unit names and symbols do not change in plural. The symbols
are not followed by a full stop. No space should be left between prefix symbols
and unit symbols. Compound prefixes are not used.
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Some examples are given below.

Quantity Correct Incorrect
Force 250 Newton or 250 N 250 Newtons
Length 10 m 15 mm 10 m. 15 mm.
Length 20 metre or 20 m 20 metres
Volume 20 m’ 20cum
Volume 50 ml 50cc
Velocity Sm/sor5ms™ 5 m/sec
Velocity 40 km/h 40 kmph
Acceleration 0.5 m/s or 0.5 ms™ 0.5 m/sec’
Force 10kN 10k Nor i0k-N
Mass 2000 kgor 2 x 10° kg 2kkg

Alternative unit for pressure. As already mentioned, the unit for
pressure and stress is Pascal (Pa). For convenience, the unit N/mm? is also

used.

Since 1000 mm = 1 m, and 1 Pa = 1 N/m?, it follows that

1 N/mm? = 1000? N/m? = 10° N/m?
=10° Pa = 1 MPa (one Mega Pascal)
1 kN/mm? = 10° kN/m? = 10° N/m? = 10° Pa
=1 GPa (one Giga Pascal)

1.3. Resultant and Components

If the combined effect of several forces Py, P, P;, ... acting on a body
is the same as that of a single force R, then R is called the resultant of Py, P,,
P; ..., and the forces P, P,, P; ...... are called the components of R.

1.4. Law of Parallelogram of Forces

The resultant of two forces acting at a point can be found by the
application of the law of parallelogram of forces, which is stated below.

If two forces, acting at a point B c
O, be represented in direction and mag-
nitude by straight lines OA and OB, and
the parallelogram OACB be completed,
then their resultant acts through O and
is represented in magnitude and direc- 0 >~ v
tion by the diagonal OC of the paral- '
lelogram which passes through O.

Fig. 1.4-A

Cor. Let the diagonals of the parallelogram intersect at E. Then E is
the middle point of each AB and OC.
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The resultant of forces 0—:4 and 5;3 = O_E' =2 51":" .

_, Hence the resultant of forces represented in direction and magnitude
by OA and OB is represented by 2 OE , where E is the middle point of AB.

L.5. Resultant of Two Forces Acting at a Point

Let two forces P and Q, acting at
B O, be represented in direction and mag-
nitude by the sides OA and OB respec-
tively of the parallelogram OACB. Then
OC represents their resultant R.
Let ZAOB = a, LAOC = 6.
Draw CD perpendicular to OA.
Since AC is equal and parallel to
OB, we get AC = Q.
Also LCAD = LAOB = a.
: AD=Qcosa, DC=Qsina
OC? = OD? + DC? = (OA + AD)? + DC?
R*= (P + Q cos a)? + (Q sin a)?
=P? + 2PQ cos o + Q? cos® a + Q% sin’

eb----- - a

Fig.15-A

=P+ Q% +2PQ cos a (1)
Equation (1) gives the magnitude of R.
_DC__ Qsina
tan 8= OD P+Qcosa ~(2)

Equation (2) gives the direction of R.

Particular Cases

() Leta = 90°, i.e., let the forces act at right angles. Then parallelogram
OACB becomes a rectangle.
From (1) and (2), or directly,

R*=P+ Q%
tan9=§.
(i) Let P=0

Then from (1), R2=P2.+P2 +2P*cos a=2P? (1 + cos )

a
= 4P cos? 5

a
R=2Pcos 2

Psina _ sina
P+Pcosa 1+cosa

From (2), tanB=
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. a a

2 sin — cos —
= 2 2-tang
- T2

2 &
2 cos 5

a
==
2
i.e. the resultant bisects the angle between the forces, a result which is quite
obvious also from first principles.

Note. It is easy 1o see that the greatest resultant of two force P and Q is P +
when the two forces act in the same line and same sense and that the least resultant is
P—Q when they have the same line of action and opposite senses.

If two forces acting at a point are in equilibrium they must be equal in
magnitude, have the same line of action and opposite senses.

1.6. Resolution of Forces

Finding the components of a given force in two given directions is
called resolution.
Let the given force be R, and let it be required to find its components
in directions making angles o and Y
P with its line of action.
Let OC represent R in mag-
nitude and direction and let the c
lines OX and OY make angles x and
B respectively with OC. Through Q
C, draw CA parallel to OY meeting
OX at A, and CB parallel to OX, T-(«£)
meeting OY at B. Then OA and OB ¢ 4 ~X
represent the components of R Fig. 16 A-1
along OX and OY respectively. o

Let OA=P, OB=0.
LOCA = £LBOC (alternate angles) = f§
LOAC=n—(w+P)

In A OAC., by trigonometry,

oA _AC _____OC
sinf "~ sinct  sin [ - (c+ P)]
P 0 R

sinﬁ-__sinu:;in(owﬁ)
for AC is equal to OB which is proportional to Q.

Hence p=_Rsinp

~ sin (a + B)
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__Rsina
“sin(a+f)
Particular case, Let OX and OY be at right angles. Then OACB
becomes a rectangle and

o+ f=90°

or B=90"-a
B c g oo
Q R or P=Rcosu
90« % = cos (90° - )
e X
0 P A =sina
Fig. 1.6 A-2 or Q=Rsina

When the components P and Q are at right angles, they are called the
resolved parts of R.

We see that the resolved part of R in a direction inclined at angle « to
R (i.e. along OX)

=P=Rcosa.

This result is important. To find the resolved part of a force in a given
direction, multiply the force with the cosine of the angle between the line of
action of the force and the given direction.

In the application of this rule, care must be exercised in the measure-
ment of the angle between the line of action of the force and the given direction.
Let R be the force and X ' X the given
direction Let O be their point of inter-
section. The positive direction of R is
that in which the arrow-head points
away from O. If it is required to find the
resolved part of R along OX, then mul- X~ »—X
tiply R with cos XOA, where OA is the
positive direction of R. Let ZXOA =« .

Then resolved part of R along OX = Fig. 1.7A-3
Rcos a.

Clearly, angle X’OA = 180° - a. Hence the resolved part of R along
OX =R cos (180° - a0) = — R cos «. We can also find the resolved part of R
along OX’ by first finding the resolved part of R along OX and then reversing
its sign. Thus the resolved part of R along OX is R cos « ; reversing the sign,
we see that the resolved part of R along OX' is —R cos «. This method is often
convenient, since the use of obtuse angle is avoided.
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Consider the case shown in Fig. 1.6 A-4.

The angle between R and OX
is not XOA. Produce AO 10 A’ ; then
OA'’ is the positive direction of R and
the angle between R and OX is XOA'.
Hence the resolved part of R along OX

is

R cos XOA' =R cos u,

and the resolved part of R along OX " 1s

R cos (180° —a) = - R cos a.

A2 *
«
4
I’l
A
Fig. 1.6 A-4
Let it be required to find the

,
3 resolved parts of a torce F; along
OX and OY (sce Fig. 1.6 A-5).
Produce AO 10 A'. Then OA' is the
1 positive direction of F,. Clearly
60° LX'OA' = 6lF.
X :
GOK” Resolved pant of F
’ F
,’ along OX" = F; cos 60° =—,,l.
’ -~
Ve Resolved part of F
A F,
Y along OX = - 3 -
/ . ” = 10
Fig. 1.6 A-5 LA0Y =30,
Resolved part of F along OY
=F, cos 30° Y
F, V3 A
- 2 .
. Resolved part of F along F,
F,V3 J20°
oX =- 7 " X
Next, let us find the resolved
patts of F> along OX and OY (sce Fig.
1.6 A-6).
LAOX = 180° - 120° = 60°
~. Resolved part of F; along Y’

OX' = F; cos 60°
F,
=5

r4

Fig. 1.6 A-6
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Resolved part of F, along OX
F
)
(which is also equal to F; cos 120°)
LAOY = 120° - 90° = 30°

Resolved part of F,

Y along OY
= F>cos 30°
FyV3
T2
X- ON /o X (which is also equal to F; sin 120°).
Similarly resolved part of F3
along OX (see Fig. 1.6 A-7)
p R
T2
Y’ A and resolved part of F; along OY
FiV3
Fig. 1.6 A-7 o2

From the above discussion, we derive the following rule which may
be found helpful.

If the positive direction of a force F makes with u line OX an angle 0,
and OY is perpendicular to OX, the angles being measured in the same sense,
theresolved parts of F along OX and OY are respectively F cos 0 and F sin 0.

Cor. The resolved part of a torce F in its own direction is F, and the
resolved part in a perpendicula direction is zero.

Ex. 1. The resultant o two forces is 8 N and its direction is inclined at
60° to one of the forces whose magnitude is 4 N. Find the magnitude and
direction of the other force.

Sol. Let OA = 4N,0C =& N B c
Let 623 = P be the other force inclined at Z o &
to OC.
Clearly ZOCA = «, pA 9 ?p
AC=P.
Also LOAC = 180° - (60° + a) % 60
From AOCA, o > A
4 P 8 4

sino sin 60°  sin [180° = (60° + )]~ Fig. 1.6 E-1
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Taking the first and third members,
4 8
sina  sin (60° + o)
2 sin « = sin (60° + o)
= sin 60° cos i + cos 60° sin a

V3 1.
=—-cosa + = sina

2 2

3sina=V3 cosq, tan = 71_3—
. o =30°.
Taking the first and second members and carrying the value of o, we

get
4 P
sin 30° ~ sin 60°
4 sin 60°
=m0 4 ViN

Hence the other force is 4 V3N at right angles to the force of 4N.

Ex. 2. Find a point within a quadrilateral such that, if it be acted on
by forces represented by the lines joining it to the angular points of the
quadrilateral, it will be in equilibrium.

Sol. LetABCD be the quadrilateral and
E, F the middle points of the sides AB, CD
respectively. Let_P be the point such that the
forces PA , PB, PC , PD, are in equilibrium.

—> —> —

Now PA + PB=2PE |An 1.4 Cor.]

PC +PD =2 PF

PA +131>3+I;5+I;13=2[13E+};7-"|

The system will be in equilibrium

if PE + PF =0,

or PE = - PF
—> —>
i.e. the forces PE and PF should be equal and opposite : in other words, these
force should have the same line of action and PE = PF numerically.
P must be the middle point of the line joining EF.

Similarly. we can show that P must be the middle point of the line
joining the middle points of AD and BC.
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Hence P is the point of intersection of the lines joining the middle

points of opposite sides of the quadrilateral.

10.

PROBLEMS

. A loaded wagon is at rest on a railway line and is pulled by a horizontal force

of 200 N at an angle 50° to the railway line. What is the force tending to urge
the wagon forwards ? |Ans. 128.56 N]

. Findthe resultant of two torces, 13 N and 11 N acting at an angle whosc tangent

is 12/3. [Ans. 20 N inclined at tan”) 33/56 to the force of 13 N]

. Find the components of 4 ferce of 100 N in directions inclined to it at 30° and

40° on opposite sides. |Ans. 68.41 N, 53.2 N]

. Find a horizontal torce and a force inclined at an angle ot 60° with the vertical

whose resultant shall be a given vertical force F. |Ans. F V3 and 2F)
The resultant of iwo forces P and Q is at right angles to P. Show that the angle

. -1 P
between the two torees is cos ~— ) .

Q

. Two forces equal to 2P and P respectively act on a particle ; if the first be

doubled and the second increased by 120 N the direction of the resultant is
unaltered ; find the value of P. |Ans. 120 Nj
Show that the system of forces represented by the lines joining any point to the
angular points of a triangle is equivalent to the system represented by straight
lines drawn from the same point to the middle points of the sides of the triangle.
Find a point within a triangle such that, if it be acted on by forces represcnted
by lines joining it to the angular points of the triangle, it will be in equilibrium.

[Ans. The centroid of the triangle]

. A boat B is in the middle of a canal 100 m wide, and is pulled through two

ropes BA (150 m long) and BC (100 metres long) by two men on the banks.
‘The pull in BC' = 1500 N. Find the pull ¢ in BA so that the boat moves parallel
1o the banks. Find also the resultant pull on the boat.

|Ans. Q = 2250 N Resultant force = 3420 N}

P=|500N

/50”,

50m QSOm

Fig. 1.6 P-9
Convert (i) 6.1 tonne into kg.
(i) 10 MN into N
(tir) 15 MPainto N/mm?
(iv) 1 GPa into kKN/mm?
[Ans. (i) 6100 kg (if) 10 x 10° N (iif) 15 N/mm? (iv) | kN/mm?]
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11. Write the following as per S.1. units.
(1) The volume of this bottle is 750 cc
(1) Draw a line of length 15 MM.
(i) A toom is 5 m wide x 6 m long. Its area is 30 sy m
(iv) 1mN=10"N.
(v) The mass of this stone is 50 kgs.
(vi) The acceleration of the car is 1 mjsec?.
(vii) This pencil is 60 m-m. in length.
(vit) Strain energy in the bar = 100 m-N.
[Ans. () The volume of this bottle is 750 ml.
(i) Draw a line of length 15 mm.
(#1) A room is 5 m wide x 6 m long. Its area
is 30 m®
() IMN=10°N
(v) The mass of this stone is 50 kg.
(vi) The acceleration of the car is 1 m/s”
(or 1 ms™)
(vit) This pencil is 60 mm in length.
(viii) Strain energy in the bar = 100 N-m
(or 100 J)].

L.7. Extension of the Law of parallelogram of Forces

We have seen that the resultant of forces represented by OA and OB 1s
represented by the diagonal OC of the parallelogram OACB. Similarly, the
resultant of forces represented by /.OA and .OB is represented by [.OC. In
other words, the law of parallelogram of forces enables us to find the resultant
of two forces represented by OA and OB on the same scale. When the scales
are not the same the resultant can be found by the following theorem :

The resultan of two forces, acting at a point O in directions OA and
OB and represented in magnitude by \.OA and p.OB is represented by (A + ).
OC, where C is a point in AB such that AAC = u.CB.

Complete the parallelograms ODAC
and OCBE. £ B

By the low of parallelogram of forces,

- > K\
A. OA = WOD + NOC 2
— —> — C
u. OB = n.OE + u.0C 0 -0
—> —>
A.OA + 1.OB 0 A
=(A+ p).O-Z' + k.0—1>) + uai? Fig. 1.7A

—> — — — — —>
But A.OD + W.OE = An.CA + u.CB=—-MAC + u.CB=0
MOA + OB = (A + ). OC.
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Cor. If A=p =1, we get
OA + OB = 2.52‘
where C is the middle point of AB.

Ex. 1. Show that if A, B, C, P are any four points, the resultant of the
thre forces acting at P and represented by PA, PB and PC is represented by
3 PG, where G is the centroid of the triangle ABC.

Sol. Let D be the middle point of BC. Then

A P I—’E + I;E' = 2.1;5
On AD take a point G such that
1AG=2.GD
G
Then, by Art. 1.7,
Fig. 1.7E-1 1.PA +2.PD = (1 + 2).PG =3.PG

- —» —> —>
The resultant of PA, PB, PC is 3PG. But AD is a median of the AABC
and G divides AD in the ratio 2 : 1, so that G is the centroid of the triangle.
Hence the preposition is proved.

Ex. 2. Two forces P, Q and their resultan R act at a point O. If their
directions meet a transversal in L, M, N respectively, prove that

P.,O _R

OL + W = O—N . (Roarkee)

Sol. The force P along OL is the same as OI;. OL along OL, and the
Q2

oM’
OM along OM. e

Resultant of P and Q.

force Q along OM is the same as —=—

P
= Resultant of oL OL along M R
OL and
Qo
oM .OM along OM

> P
P Q0 0 AN
—— +—==— | ON along ON

( OL oM ) 5 Fig. 1.7E-2

=R (givcn)

P QO
()L+ oM

O—N '
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1.8. Theorem of Resolved Parts

The algebraic sum of the resolved parts of two forces in a given
direction is equal to the resolved part of their resultant in the same direction.

Let the two forces be P and Q represented by OA and OB respectively.
Complete the parallelogram OACB. Then OC represents the resultant R of P
and Q.

Let OXbe the given direction. Draw AL, BM, CN perpendiculars to OX

and AK perpendicular to CN.
Since BO is parallel to CA,

and BM is parallel to CK,
LOBM = LACK
In the As BOM, ACK
LOBM = LACK
LOMB = LAKC
(each being a 1. angle)

OB = AC (being opposite
sides of the parallelogram OACB)

The triangles are congruent.
OM=AK=LN

. OL + OM =OL + LN =ON

But OL, OM, ON represent respectively the resolved parts of P, O, R
along OX.

Hence the theorem is proved.

Cor. The theorem can be easily extended to any number of concurrent
coplanar forces.

Let three forces Py, P,, P; act at a point O and let OX be the given
direction. Let R(P;) denote the resolved part of P, along OX and so on.

Let the resultant of P, and P, be R}, and that of R, and P be R,, so that
R; is the resultant of P,, P,, P;.

Then applying the theorem to P and P,,

R(P)) + R(P;) =R(Ry) (1)
Again applying the theorem to R, and P,
R(R) + R(P3) = R(R,) e

Adding equations (1) and (2),
R(P,) + R(Py) + R(P3) = R(R))

i.e. sum of the resolved parts of Py, P,, P; along OX is equal to the resolved
part of their resultant in that direction.

Thus the theorem is true for three forces. Proceeding thus we can prove
that it is genecrally true.

Note. ‘“Concurrent’” means meeting at a point. **Coplanar’™ means lying in
the same plane.
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1.9. Resultant of any Number of Concurrent Coplanar Forces

By applying Art. 1.8, we can find the resultant of any number of forces
acting on a particle in the same planc.
Let the forces be Py, P, P;
P Yy L acting at O. Let OX be any con-
J venient direction and OY a direction
perpendicular to OX.
B Let the forces make angles
oy, 0y, A3 ...... WithOX. LetR be their
resultant inclined at 20 to OX.
By Art. 1.8, resolved part of
X Ralong (0).¢

Ay

= Sum of the resolved parts
Fig. 1.9-A of Py, P;, P; ..... along OX.
RcosO=Pycosa, + Pycosay + Pscos oz + ......
= X, say (1)
Similarly, resolving along OY,
Rsin0=Pysina; + Pysinay + Pysinag + ...

=Y, say (2)
Squaring and adding (1) and (2)
R*=X*+Y? ~(3)
Dividing (2) by (1),
tan 6 = Y/X (4

Equation (3) gives the magnitude of R, and equation (4) its direction.

1.10. If the Forces in Art. 1.9 are in equilibrium, then
R=0

- X+Y’=0.

Now X? and Y? are positive quantities and their sum cannot be zero
unless each of them is zero.

X=0, Y=0.

Hence if any number of forces acting at a point are in equilibrium the

algebraic sum of their resolved parts in any two perpendicular directions are
separately zero.

Conversely, if the sum of resolved parts in each of two directions at
right angles is zero, the forces are in equilibrium.
Ex. 1. A particle O is acted on by the following forces :
(1) 20 N inclined 30° to north of east.
(1) 25 N towards the north.
(¢i1) 30 N towards north west.
(iv) 35 N inclined 40° to south of west.
Find the resultant. (Bombay)
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Sol. The system of forces is shown in Fig. 1.10 E-1.
Let the resultant be R in-
clined at Z 0 to the north of east.

Let X = sum of the 30N N
resolved parts of the forces along
OE 825N
: 20N
Y = sum of the resolved 45°
parts of the forces along ON. A o
45 30
Resolved part of 20 N w E
along OF = 20 cos 30° 40° 0
=1732N.
Resolved part of 25 N
along OE =0 ‘ 35N s
(Resolved partof a force

in a direction perpendicular to
its own is zero).
Resolved part of 30 N along OW = 30 cos 45°
=21.21N
» o ” OE=-2121N

[Or thus : 30 N makes £135° with OE. Hence its resolved parts along
OFE =30 cos 135° = -21.21 N)

Resolved part of 35 N along OW = 30 cos 40°

Fig. 1.10 E-1

=26.81 N
’ ' ’ ,, OFE =-2681N
X=1732+0-21.21-26.81 =-30.7
Le. R cos 6=-30.7 ..(D)

Resolved part of 20 N along ON =20 sin 30° = 10 N.

[Or thus : Angle between 20 N and ON is 60°. Hence resolved part of
20 N along ON =20 cos 60° = 10 N.]

Resolved part of 25 N along ON =25 N.

[Resolved part of a force in it own direction is equal to the force itself.]
Resolved part of 30 N along ON

=30 cos 45° or 30 sin 135°=21.21 N.
Resolved part of 35 N along OS
=355in40°=22.50 N
Resolved part of 35 N along ON = -22.50 N

o Y=10+25+21.21-2250=33.71N
Le. R sin 0 =33.71 -(2)
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By squaring and adding (1) and (2)
R? = (30.7)% + (33.71)* = 2738.80
R =45.60 N.

Dividing (2) by (1)

Now from (1) and (2) we see that cos 0 is negative while sin 0 is
positive. Hence 0 lies between 90° and 180°. The angle whose tangent is 1.098
is 47° 42

0=180°-47° 42" =132° 18’

Note. To find the value of 8, first determine the quadrant by looking at signs
of sin 0 and cos 0. Then take the numerical value of tan 8 and find the acute angle
whose tangent is equal to that quantity. Let this angle be a.

If 8 lies in the 1st quadrant, 8 = a.

If 0 lies in the 2nd quadrant, 8 = 180° - a.

If 0 lies in the 3rd quadrant,d = 180° + a.

If 0 lies in the 4th quadrant, 6 = 360° - a..

Ex. 2. Forces of 2, 3, 4, 5, 6, kN act at an angular point of a regular
hexagon towards the other angular points taken in order ; find their resultant.
(Nagpur)
Y Sol. ABCDEF is the hexagon.
! We shall resolve the forces along AB
" D or X X and AE or AY.
Let R be the resultant inclined
at £ 6 with AB.
Each of the angles BAC, CAD,
DAE, EAF is 30°.
Resolved part of 2 kN along
AB =2kN.
Resolved part of 3 kN along

X A7 B TTTX 45 3LOS3O°*—3‘/—kN
i . Resolved part of 4 kN along
Fig. 110E-2 AB =4 cos 60° = 2 kN.
Resolved part of 5 kN along AB = 0
. ' 6 » = -6 cos FAX

=-6cos 60° =-3 kN
Sum of resolved parts of the forces along AB

=2+%'/§+2+0—3=1 —\/—_kN
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Resolved part of 2 kN alongAE =0

» ” 3, ., =3sin 30° = 3/2 kN

e =4 sin 60° = 2V3 kN

» . 5 . 5 5 =5kN

» » 6 ,, ,, ,  =6cosFAE =6cos30°
= 3V3 kN.

Sum of the resolved parts of the forces along AE
=0+—;—+2\/§+5+3\/_=1—2§+5\/§kN.

Rc0s9=1+%=3.60

Rsin 0 =—12—3— +5V/3 =15.16.

R=V(3.6)%+(15.16)2 = 15.58 kN
15.16
= —1____= -1 . - 03 1
0 = tan 360 tan— 4.211=76° 39

Hence the resultant is 15.58 kN inclined at 76° 39’ to the first force.
Ex.3.ABCDEF is a regular hexagon. Forces 4, X, 8, Y, 6 N act along
AB, CA, AE, AD, FA respectively. Find the values of X and Y in order that the
system may be in equilibrium.
Sol. Produce BAtoB', CAto C',FAto F'.
Resolved part of force of 4 N along AB =4 N.
AC' is the positive direction of
the force X, and ZB'AC’ = 30°. E
Resolved part of X along AB’
V3
B
Resolved part of X along AB F
XV3
-
Resolved part of Y along AB Bi---=

=Xcos30° =

Y
=Y 60° =—. . o
Ccos 2 (1 .

Resolved part of force of 8 N :
along AB = 0. Fig.1.10E-3

AF' is the positive direction of the force of 6 N and ZBAF' = 60°.
Resolved part of 6 N along AB = 6 cos 60° = 3 N.

The sum of the resolved parts of the forces along AB must be zero
since the system is in equilibrium.
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Xv3 Y
4-= 454320
or XV3-Y=14 (1)

Produce EA to E'.
Resolved part of 4 N along AE =0

Resolved part of X along AE’ = X sin 30° = g
X
Resolved part of X along AE = — 5
Resolved part of Y along AE =Y cos 30° = Y_\é__3 .

Resolved part of 8 N along AE =8 N
Resolved part of 6 N along AE’ = 6 sin 60°
=3V3N
Resolved part of 6 N along AE = —3V3 N.
The sum of the resolved parts of the forces along AE must be zero.

XY\/_
-2+ 2+83\/_0

or X-YV3=16-6V3 -(2)
Solving (1) and (2)
X=932N, Y=2144N.
Ex. 4. A string of length | is fastened to two points A, B at the same
tevel at a distance ‘a’ apart. A ring of weight W can slide on the string, and a
horizontal force X is applied to it such that it is in equilibrium vertically

beneath B. Prove that X = #/ and that the tension of the string is

W (P +a%)
2r
Sol. Let C be the ring, vertically beneath B, and let BC = x, ZACB =

Then AC=1-x
AB? + BC? = AC?
A+ x?=(-x)? =P+ -2k

P-4?

_R 2 -

2ic=1F-a°, or x= 51
P-a® P+a?

lox=l-—=r=—

cin 0 = a_ 2al

l-x P+42
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) a
A : B

Fig. 1.10 E-4
X P-d

cos 0 =

I-x P+a*

Since the ring C slides on the string, the tension in BC = tension in AC
=T (say).

Tne forces acting on C are

T along CB,

T along CA,

X along the horizontal D'CD,

W, the weight of the ring acting vertically downwards.

These forces are in equilibrium.

The sum of the resolved parts of the forces in the vertical direction must
be zero.

P-q?
T+TcosO=W,orT| 1+ 5 |=W
P+a
T_W(12+a2)
T

Similarly, resolving horizontally,
W@ +a») 2al _aWw
2P "P+ad® 17

Ex. 5. Four smooth pegs A, B, C, D are fixed in a vertical plane so that
they form the four highest corners of a regular hexagon with the side BC
horizontal. A loop is thrown over the pegs supporting a weight W, the loop
being of such a length that angles formed by it at the lower pegs are right
angles. Find the tension of the string and the pressures on the pegs.

Sol. ABCDE is the string, with weight W resting at E. Angles BAE,
CDE are right angles. As the pegs are smooth, E is symmetrically situated with
respectto A and D.

X=Tsin0=
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LBAD = % of the angle of a regular
hexagon = 60°.
LDAE = 90° - 60° = 30°
Similarly, ZADE = 30°
LAED = 120°.
Since the pegs are smooth, the ten-

sion in the string is the same at every point.
Let this tension be T.

Resultant of tensions 7 each in EA
and ED

= 2T cos AED

Fig. 1.10E-5

=2T cos 60° = T.

This must be equal to W (since E is in equilibrium).
T=W
Pressure at A = Resultant of tensions T each in AE and AB acting at

right angles

90°
5 = TV2 =WV2.

Similarly, pressure at D = Wv2 .

Pressure at B = Resultant of tensions 7 each in BA and BC acting at
120°

=2T cos

=2Tcosl—:§O=T=W.

Similarly pressure at C = W.

Note. At every point of a string, tension is equal and opposite. The direction
of the tension at any point must be marked so as to show the effect of the tension at the
point. Consider the equilibrium of E. If the string ED be cut, E will fall down, showing
that E is being pulled towards D by the string. Hence at E, the direction of the tension
is from E to D in ED. Similarly the direction of T in EA is E to A for the equilibrium of
E.

Next consider the peg A. The tensions in AE and AB are pulling at A, tending
to move it towards the right. Hence at A, the directions of the tensions are from A to E
and A to B.

Similarly, when considering the equilibrium of B, the tensions are to be marked
fromB to C and B to A.

Ex. 6. A string ACB of length 47.3 cm is tied to two points A and B at
the same level. A smooth ring of weight 40 N which can freely slide along the
string is at C, 30 cm away from A along the string and pulled by a horizontal
force P. If point C is 15 cm below the level of AB, determine the magnitude of
P.
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Sol. As the ring is smooth, tension in AC
= tension in BC =T (say)

Draw CE perpendicular to AB. Then CE = 15 cm

. 15
sin B = 173
=0.867
B=60°6
cos B = 0.495

cos A = 0.866.
Angle between CB and P
=/LB=60°6"
Angle between CA and P produced backwards
=LA =30°.
The ring at C is in equilibrium under the action of the forces P acting

horizontally, T acting along CB, T acting along CA and the weight 40 N acting
vertically.

Resolving vertically,
T'sin 60° 6' + T sin 30 = 40
(0.867 + 0.5)T = 40
40

T= 1367 - 29.26 N.

Resolving horizontally,
Tcos 60°6" + P =T cos 30
P=(0.866-0495)T
=0.371x29.26 = 10.88 N.
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PROBLEMS

. Three forces 13, 10 and 5 MN act in one plane at a point, the angles between

the direction of each pair being the same. Find the magnitude and direction of
their resultant. [Ans. 7 MN inclined at 38° 12" to the first force]

. Forces Py, P, P3, P4, act on a particle O at the centre of a square ABCD ; P,

and P, act along diagonals OA and OB and P3 and P4 perpendicular to the sides
AB and BC. If

Py,:Py:P3:Py::4:6:5:1
find the resultant in magnitude and direction.
[Ans. 12.31 making an angle of 78° 41’ with AB]

. ABCD is a square and E is the middle point of AB. Forces of 7, 8, 12, 5,9 and

6 N act at a point in the directions AB, EC, BC, BD, CA, DE respectively. Find
the magnitude and direction of the single force which will keep the particle at
rest. [Ans. 11.49 N inclined to AB at 252°]

. Eight points are taken on the circumference of a circle at equal distances, and

from one of the points straight lines are drawn to the rest ; if these straight lines
represent forces acting at a point, show that the direction of the resultant
coincides with the diameter through that point and that its magnitude is four
times that diameter.

[Hint. Let the points be A, B, C, D, E, F, G, H and let O be the centre of the
circle. Clearly ZBAF =90° ; hence BF is a diameter and O is its middle point.

— —> —> — — —> —> - —> —> —
AB +AF =2A0 =AE . Similarly,AC +AG =2A0 =AF ,AD +AH =2A0 =

—> — —
AE and AE = AE . Adding these equations, we get the required result].

. A string of length 310 mm has its extremities attached to two fixed points

situated 250 mm apart in a horizontal line. If the string can bear any tension
upto 36 N, find the greatest load that can be supported at a point of the string
distant 240 mm from one extremity. |Ans. 37.5 N]

A string of length 310 mm has its extremities attached to two fixed points at
the same level 250 mm apart. A small ring from which a weight of 9 N is
suspended can slide on the string and is acted upon by a horizontal force of
such a magnitude that in the position of equilibrium the ring is at a distance of
70 mm from the nearer end of the string. Show that the horizontal force is
approximately 5 N and find the tension in the string. [Anms. 7(8/81) N]

1.11. Law of Triangle of Forces

If three forces acting upon a particle be represented in magnitude and

direction by the sides of a triangle, taken in order, they will be in equilibrium.

Let forces P, Q, R acting at O be represented in direction and magnitude

by the sides of a triangle ABC taken in order.

Complete the parallelogram BCAD. Then BD, being equal and parallel

to CA represents Q.
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By the low of parallelogram of forces, the resultant of EE’ and Ei) =

— -

BA = —AB = —R, i.e. the resultant of P and Q = — R. Hence the resultant of P,
QandR=-R+R=0.

Fig. 1.11-A
Hence the system is in equilibrium.

—>

Cor. The resultant of forces EE? and C_‘Z = resultant of B_EZ’ and BD =

-
BA .

Hence if two forces are represented in direction and magnitude by two
sides of a triangle, taken in the same order, their resultant is represented by
the third side taken in the opposite order.

1.12. Converse of the Law of Triangle of Forces

If three forces acting at a point be in equilibrium, they can be repre-
sented in magnitude and direction by the sides of any triangle which is drawn
50 as to have its sides respectively parallel to the directions of the forces.

Let the forces P, O, R acting at O, be in equilibrium.

Cut oft OA and OB respectively
from the lines of action of P and Q to
represent these forces.

Complete the parallelogram
OACB and join OC.

Then OC represents the resultant
of P and Q. But the resultant of P and Q
is equal and opposite to R (since P, Q R
are in equilibrium). Hence OC represents
a force equal and opposite to R and, there- R
fore CO represents R.

Since AC is equal and parallel to Fig.1.12-A
OB, it represents Q.

In the triangle OAC, OA represents P, AC represents Q and OC

represents R. Hence the sides of the triangle OAC, taken in order, represent the
forces P, Q, R.
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Any other triangle whose sides are respectively parallel to those of the
triangle OAC, will have its sides proportional to the sides of triangle OAC and,
therefore, proportional to P, O, R. Hence the theorem is proved.

1.13. Lami’s Theorem

If three forces acting at a point are in equilibrium, each force is
proportional to the sine of the angle between the other two.
Let P, O, R be the three forces acting at O along the lines OL, OM, ON
respectively and let ZMON = o, ZNOL =, ZLOM =Y.
Construct a triangle ABC whose sides are respectively parallel to OL,
OM, ON. Then by the converse of the triangle of forces,
P O R
_‘TC = a‘ = KE ...(1)
Produce BC to X. Now CX is parallel to OL and CA is a parallel to OM.

X
Fig. 1.13-A
LACX = LMOL =y
R LACB=m—y
Similarly, ZCAB=mn-o, LABC=mn-§.
By trigonometry,
BC  CA ___AB
sin(m-a) sin(m-p) sin(T-y)
or BC CA _AB (2)

sina sin - sin y
From (1) and (2),
P Q R

sino sinf siny’

Note. In applying Lami’s theorem, either the angle between the forces or its
supplement, may be taken, since sin « = sin (180° — ).
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1.14. Tension and Compression

When a string, whose weight is negligible, is pulled with a force P,
then at every point of the string equal and opposite forces P, act. Each of these
forces is called the tension of the string. It must be remem-
bered that tensions at every point of a string are equal and
opposite. The arrow showing the direction of tension in any

part of the string is to be marked so as to show the effect of A
the tension on the point whose equilibrium is under con-
sideration Let AB be a string whose end A is fixed to a nail T

and let a weight W be attached to B. Evidently the string is
pulling at A ; hence if the equilibrium of A is being con-
sidered, the arrow showing the tension 7 in the part adjacent
to A points downwards. Again the string is clearly preventing
the weight at B from falling downs i.e. the string is pulling B
upwards. Hence the arrow near B points upwards.

We will assume that when a light string passes round ’7
a smooth peg or pulley, its tension remains unchanged. JB
When a bar is pulled at its ends by equal and opposite W

forces, it is in tension and the above remarks apply to it. A

bar under tension is called a tie. String
When a bar is pushed at both ends by equal and | 4or tension

opposite forces, it is said to under compression. Fig. 1.14 A-1

Let AB be a bar subjected to compressive forces P at A and B. At every
point of AB equal and opposite forces P’ (Where P’ = P) act. P’ acting atA must

P’ p’
P————-' ——ee e ——

A 8
Fig. 1.14 A-2. Rod under compression.
balance the external force P ; hence when considering the equilibrium of A,

the arrow showing P' must point towards A. So when considering the equi-
librium of B, the arrow points towards B.

A bar under compression is called a strut.

1.15. Action and Reaction

When two bodies are in contact, each exerts a force on the other. One
of these forces is called action, and the other is called reaction. Action and
reaction are equal and opposite and when bodies are smooth, they are normal
to the surfaces in contact.

Fig. 1.22 shows a block resting on a plane surface. The reaction R of
the plane surface on the block is perpendicular to the surface.
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)
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Fig. 1.23 shows a bar AB with end A resting on a plane surface. The
reaction R of the surface on the bar AB at A is perpendicular to the surface.

Fig. 1.24 shows a sphere in contact with a plane surface at A and with
a bar at B. At A, the reaction R, is ncrmal to the sphere and its line of action
passes through the centre of the sphere. At B, the bar exerts a force Ry, on the
sphere. R, is perpendicular to CD and its line of action passes through the
centre of the sphere. The sphere exerts an equal and opposite force on the bar.

Fig. 1.25 shows two spheres in contact, cach exerting a force R on the
other whose lines of action pass through the centres.

Fig. 1.26 shows a bar AB hinged at A and resting on rollers at B on an
inclined plane. The reaction R of the inclined plane on the bar is perpendicular
to the plane.

A diagram showing the forces acting on a body, together withreactions
at the supports, but not showing the supports, is called a free-body diagram
(FBD).

A body when so isolated from its supports is called a free-body.

Ex. 1. Forces of 7, 15, 13 N acting on a particle are in equilibrium.
Find the angle between the first two forces.

Sol. Let the angle between forces of 7 N and 15 N be .

Construct a triangle ABC whose sides are 7, 15 and 13 units respec-
tively.

Then £LBCA =180° —a (as in Art. 1.13)
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A
13 15
B 7 ¢
Fig. 1.15E-1

By trigonometry,
o 7% +15% - 132
cos (1 80° - (l) = m—

—cosa = % ora = 120°.

Ex. 2.An electric light fixture weighing 15 N hangs from a point C, by
two strings AC and BC. AC is inclined at 60° to the horizontal and BC at 45°

Fig. 115 E-2
to the vertical as shown in Fig. 1.15 E-2. Using Lami’s theorem or otherwise,

determine the forces in the strings AC and BC. (A-M.LE. Summer 1975)

Sol. Produce the line of action of the weight of the light fixture L to
meet the horizontal through A at D.
Clearly, LACD = 30°
LBCD = 45°
LACL = 180° -30°
£4BCL = 180° - 45°
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Let Ty, T, be the tensions in AC and BC respectively.
Applying Lami’s theorem,

rn L, 15
sin BCL ~ sinACL ~ sin ACB
T, _ I _ 15
or sin (180° — 45°) ~ sin (180° - 30°) _ sin (30° + 45°)
Ty T, 15
or - == =—
sin 45°  sin 30°  sin 75°
15 x sin 45°
I 10.98 N
15 x sin 30°
== =776N.

Ex.3.A fine light string ABCDE whose extremity A is fixed has weights
wandw; attachedto it at B and C and passes round a smooth peg at D carrying
a weight of 40 N at the free end E. If in the position of equilibrium, BC is
horizontal and AB, CD make angles of 150° and 120° respectively with BC,
find

(1) the tension in the portions AB, BC, CD, DE of the string :

(2) the values of the weights w and wy ;

(3) the pressure on the peg at D.

Sol. Let the tensions be Ty, T,, Tz, T4 as shown in Fig. 1.15 E-3.

E isin equilibrium under
the vertical forces T, and 40 N.
T,=40N.
3 150 120° AT, As the peg is smooth,,
! = g T, tension in DC = tension in DE.
\ \ Is=T14
H l6 =40 N.
w w Let G be a point on the
Fig. 1.15E-3 line of action of weight w;.
Then £LDCG =360° — (LBCD + LBCG)
=360° — (120° + 90°) = 150°
Applying Lami’s theorem to forces at C,
w T. T.
S 120° = 5 150° = sm 907 = 0 [ Ta=40]
wy =40 sin 120° = 20 V3 = 34.64 N.

T, =40 sin 150° =20 N.
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Let H be a point on the iine of action of weight w.
Then ZABH = 360° — (150° + 90°) = 120°.

Applying Lami’s theorem to forces at B,

T, w T, 40
= = - =—= o = 20
sin 90° ~ sin 150° ~ sin 120° V3 [ T2=20]
40
=—==23.0
T, 7 23.09 N
40 1
w—-ﬁx 2—11.55N
CG and DE are parallel.

LDCG + LCDE =180°
150° + LCDE = 180°
LCDE =30°
Tension in each of DC and DE is 40 N. The pressure on D is the
resultant of these tensions acting as 30°.

Pressure on D = 2 x 40 x cos %Q = 80 x 0.966

=77.28 N.

Ex. 4. Two equal lengths of tubing, of weight 2W each, are placed on
two racks so that each rack supports half the weight of the tubing. Neglecting
friction at all surfaces, determine the reactions exerted by the racks at A, B
and C when o = 45°.

Find the least value of o for which equilibrium is possible.

Fig. 1.15E-4.1
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Sol. The FBD of the upper, tubing
is shown in Fig. 1.15 E-4.2. R, is the reac-
tion at A, S is the force exerted upon the
upper tubing by the lower tubing; it is in-

Ra clined to the horizontal at 30°.
30°
Resolving vertically, we sec that
Ssin30=2Wand S = 4W

# s Ry=Scos30=4WxV3/2

2W =2WV3. Ans.
Fig. 1.15E-4.2

The FBD of the lower tubing is
shown in Fig. 1.15 E-4.3. R, the reaction
at C, is perpendicular to the inclined sur-
face and hence it makes angle o with the
vertical.

Resolving horizontally, we get

R sin o = S cos 30° = 4W x V3 /2

Re=2W V3 /sin a

If =45, R-=2WV6. Ans.

Resolving vertically, we have

Rp + R¢ cos e = S sin 30 + 2W

Rg =S sin 30 + 2W - R, cos o Fig. 1.15E-43
2W
=2W+2W- L, v3 X COS (U
sina

=4W -2WV3 cot a.

If o = 45°, Rg=4W -2WV3. Ans.

R4, Rg, R, are the total reactions exerted by the two racks.

As ot decreases, the tendency of the lower tubing to ascend the inclined

surface increases. When it is about to ascend, Rg = 0.
The minimum value of « for cquilibrium is given by
Ry =4W -2WV3 cota =0
tana=Vv3/2, a=409°. Ans.

Ex. 5. Three bars hinged at A and D and pinned at B and C as shown
inFig. 1.15 E-5.1, form a four link mechanism. Determine the value of Pwiich
will prevent motion. Neglect friction. (M.S.U.R. College, Hyderabad)
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Fig. 1.15E-5.1 Fig. 1.15E-5.2

Sol. Consider the equilibrium of pin B.
Let S, = force exerted by AB on B.
S, = force exerted by BC on B.

Fig. 1.15 E-5.2 is the free-body diagram of pin B. BC makes with AB
produced an angle of 180° — (75° + 45°) = 60°.

Resolving perpendicular to S;, we get

S, sin 60° = 200 sin 75°
S, = 200 sin 75°/sin 60°.

Consider the equilibrium of pin C. Assume that the force exerted by
DCon Cis Ss.

Angle between DC produced and BC
is 180° — (60° + 45°) = 75°.

Fig. 1.15 E-53 is the free-body
diagram of C. Resolving perpendicular to S,
we get

P sin 45° = S, sin 75°

\

_ sin 75° » 200 sin 75° P
~ sin 45° sin 60°

Fig. 1.1SF-53
=304.7 N. Ans.

Ex. 6. Cords are looped around a small spacer separating two
cylinders each weighing 400 N and pass over frictionless pulleys to weights
0f 200 N and 600 N. Determine the angle 8 and the normal reaction R berween
the cylinders and the smooth surface inclined 15° to the horizontal as shown
inFig. 1.1SE-6.1.
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Total w =800N 600N

200N ’

I5\
o4 - T R
200N 800N
Fig. 1.15E-6.1 Fig. 1.15 E-6.2

Sol. When a cord passes over a smooth pulley, its tension remains
unchanged. Accordingly, the FBD of the cylinders shall be as shown in Fig.
1.15E-6.2.

Resolving the forces perpendicular to R, we write

600 sin (75° + 0) = 800 sin 15° + 200 sin 75°.

This equation gives

sin (75° + 0) = % = sin 41.85°
75° + 0= 180° - (41.85°) = 138.15°
0 =63.2°. Ans.
Resolving vertically, we get
R cos 15° + 600 sin 6 = 800
R cos 15° = 800 - 600 sin 63.2° = 264.4
R =274 N. Ans.

Ex. 7. Three cylinders are piled in a rectangular ditch as shown in Fig.
1.15 E-7.1. Neglecting friction, determine the reaction between cylinder A and
the vertical wall.

Sol. B 1s at a distance of 120 mm from the right wall and C is at a
distance of 100 mm from the left wall.

Hence the horizontal distance between B and C

=360 — (100 + 120) = 140 mm.
BC =120 + 100 = 220 mm.
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Fig. 1.1I5E-7.1
0, the inclination of BC to horizontal is given by

140 R
cos 0 = 220 0=50.5

Similarly. ¢, the inclination of AB to horizontal
= cos™} 1(—?3 =36.9°
R, the force exerted by B on C, will act along the line BC. The
frec-body diagram of cylinder C is shown in Fig. 1.15 E-7.2. The force S,
exerted by the wall on C is horizontal.
By Lami’s theorem
R; 5y 40
sin 90° ~ sin (90 - 50.5)  sin 50.5°
R, =518N S1=33N.
Fig. 1.15 E-7.3 is the FBD of cylinder B. R; is the action of A on B
inchined at 36.9” (o the horizontal. S, in the force exerted by the wall on B.
Resolving vertically, we write
R;sin 36.9° = 80 + 51.8 sin 50.5°
R, =200N.
Resolving horizontally, we obtain
5> =51.8 cos 50.5° + 200 cos 36.9°
=193 N.
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Fig. 1.15E-7.2 Fig. 1.15E-7.3
Considering the three cylinders to be a free-body (Fig. 1.15 E-7.4),

Fig. 1.15E-7.4
we see that §3 = reaction of the wall on A
=5,-5,=193-33 =160 N. Ans.

2nd method. From Fig. 1.15 E-7.4, we see by resolving vertically, that
R;=40+80+30=150N

The free-body diagram of cylinder A is shown in Fig. 1.15 E-7.5.
Resolving vertically and horizontally, we get

R, sin ¢ = 150 - 30 = 120

Rycos ¢ =53

whence S3/120 = cot ¢ = 4/3
S:=160N. Ans.
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In this method it is nat necessary to calculate Sy, S;, Ry, R.

cos ¢ = —1-99 ==
200 5
cotgp = i‘—
3

R3:150N

Fig. 1.15E-7.5

EX. 8. A rope AB, 9 m long, is connected at A and B to two points on
the same level, 8 m apart. A load of 300 N is suspended from a point C on the
rope, 3 m from A. What load connected to a point D on the rope, 2m from B,
will be necessary to keep the portion CD level ? (Madras)

Sol. Let the load to be at-
tached to D be W N.

Let E be the middle point of r
AB, so that A

EB and CD are equal and 2 <
i N e
parallel. Hence ECDB is a paral- DR PHU—

lelogram. VM N

EC=BD=2m. 300N w

K
AE=EB=4m. /\
C

In the triangle ACE, Fig. 1.15E-8
AE*+ACP-CE* 47+3°-2" 7
JAEAC  2x4x3 8’
7V Vi3
SinA = 1 - o e
Let the vertical CM through C meet AE at K. Then

LACM = LCKA + LCAK=90° +A
7
Sin ACM = sin (90° + A) = cos A = 3

COSA =

LACD =180° - LBAC [ ABisparallelto CD]

sin ACD = sin BAC = 3
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If T be the tension in C'D, we have bv Lami’s theorem,
T 300

sin ACM ~ sin ACD
_ 300> sinACM 300 = 7> 8 2100
SINACD  — 8xV15 0 vIs
AE is equal and parallel to CD. Hence AEDC is a parallelogram
ED=AC=3m

in the triangle FBD,

BE?+ BD? - 1D 32402132 1
cos B =——rri 33T

2RI ED 2x 42 16
Let DN be the vertical through D. It is easy to see that
ZBDN =9 + AFBD
s BON = cos EED = 1106.
LOCDB = 1R0° — LEBD

sin CDB =sinEBD =V 1| 1 | = 3VIS,

116! 16
/

Applving Lami’s theorem to the equilibnum of I
w T
sin BDC ~ sin BDN
_TsinBDC 2100 3Vi5 16
T sinBDN T VI 1611
Ex. 9. A heavy spherical ball of weight W rests in a V-shaped trough,
whose sides are inclined at angles «and {3 to the horizontal. Find the pressure
on each side. If a second equal ball be placed on the side of inclinadon o, so
as to rest above the firsi, find the pressure of the lower bali on the side .
(Kerala)
Sol. Let XY be the horizontal and OA, OB the sides of the trough
inclined at angies «, 3 to the horizontal.

Let C be the centre of the ball
and E, F the points of contact with
the sides of the trough.

Let R, and R, be the reactions
at £ and F, passing through the centre
C.

Let CM be vertical through
C. Then CM is the line of action of
the weight W ot the ball.

Now EC is perpendicular to
OA and CM is perpendicular to OX.
LECM = LXOA = .
Similarly, LFCM = LYOB = ).

Fig. 1.15E-9.1
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The angle between the positive directions of Ry and W = 180° - o
The angle between the positive directions of R, and W =: 180° - B.
The angle between the positive directions of R, and Ry = o + B.

By Lami’s theorem,

Rl _ Rg _ %4
sin (180° - B) ~ sin (180° —a) ~ sin (« + B)
_ _Wsinf _ _Wsina

Tsin(a+p)’ 7 sinfa+p)’
Next let a second ball be placed on the side «t. £ is the point of contact
of the 2nd ball with the plane.
The two balls may be assumed to form a single body which is 1
cquilibrium under the action of the following forces :

(1) The weights W each /'—d’\’d BALL
of the balls acting vertically \ /I;\
N |
AN

through the centres O, and O, of
the balls.

(2) Reactions Ry and R; g
atE and E acting at right angles
to the side .

(3) Reaction R; at F ac- Y

ting at right angles to side p. 0 X
The line 0,0, is parallel M l J

to the side o, since the balls are w W

equal. R, Rz are perpendicular

10 0,0-. Fig. 1.15E-9.2

The angle between Ry and R is a + 5. Hence R, is inclined to 040, at
angle 90° — (o + ).

Resolving along O,0,,

R; cos {90° — (o + B)} = Wsin o + Wsin a
: R, = (2W sin a)/sin (o + P).

l‘,x 10. A string ACB of length | hangs between two vertical walls as
shown in Fig. 1.15 E-10.1. Along this string a small pulley C, from which is
suspended a load P, can roll without friction. In the particular case, where |
= 2a = 4b, what configuration of equilibrium will the string assume

Sol. Let the vertical through C meet the horizontals through A and B
in M and N [See Fig. 1.15 E-10.2].

As the pulley C is smooth, tensions in BC and CA are equal and the
resultant of these tensions will bisect ZA CB. But this resultant should have the
same line of action as P ; hence the line of action of P namely the vertical
CNM. will bisect LACB.

Let LACN = /NCB=06,BC=x
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SN

\

Fig. 1.15 E-10.1 Fig. 1.15 E-10.2
Then AC=l-x=4b—-x
AM =ACsin 0 = (4b-x)sin 0
BN =BCsin®=xsin0
a=AM + BN = (4b —x) sin 0 + x sin 0 = 4b sin 6.

or 2b=4bsin 0 [ 2a=4b,ora=2b]
sin@=1,ie 0=30°

NM=CM—-CN=AC cos 0 —BC cos 0
or b=(4b-x)cosB—-xcos0

2V3 -
=2bV3 — /3 whence x = L\El b.
Hence in the position of equilibrium, ZACB =60° and
2V3 -1
BC = A b.

PROBLEMS

1. Aheavy box weighing 2000 N is supported by two wire ropes, one end of each
of' which is tied to the same point of the box. The other end of one rope, which
is inclined to the vertical at 45°, is attached to a staple in a wall, while the other
end of the second rope, which is inclined to the vertical at 30°, is tixed to a
hook in the ceiling. Find the tensions in the ropes. ~ [Ans. 1035 N, 1464 N]

2. Two masses, each equal to 100 kg are attached to the extremities of a string
which passes over two smooth pegs in the same horizontal line and distant 1
m apart. If a mass of 4 kg be attached to the string half-way between the pegs,
find the depth to which the string will descend: [Ans. 10 mm]

3. Abody is free to slide on a smooth vertical circular wire and is connected by
a string, equal in length to the radius of the circle, to the highest point of the
circle ; find the tension of the string and the reaction of the circle.

[Ans. Each is equal to the weight of the body|
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4.

N

A body of weight 200 N is suspended by two strings 70 and 240 mm  long,
their ends being fastened to the extremities of 3 rod of length 250 mm. If the
rod be so held that the body hangs immediately below its middle point, find
the tensions of the strings. |Ans. 56 N and 192 Nj
Three weightless strings AC, BC and AB are knoued together to form an
isosceles triangle whose vertex is C. If a weight W be suspended from C and
the whole be supported with AB horizontal, by two forces bisecting the angles
atA and B, tind the tension of the string AB. [Ans. W/(2 cos C/2)]
Two smooth spheres, each of radius 200 mm and weight 200 N, rest in a
horizontal channel having vertical walls, the distance between which is 720
mm. Find the pressures at E, F and G.

[Ans. Rg = 267 N, Rg = 400 N, R(; = 267 N

-
-
e T720m F
-4 -
3 E
3 =
-
3 =
o
3 200mm 6
= ~
3 =
E 3
3 200N -
- -t
£ mm -
o -
= o
3 3
- =
-
= 200N 2
-
1

(A
F

Fig. 1.15 P-6

7. Three cylinders weighing 100 N each and 160 mm in diameter are placed in a

channel rectangular in section as shown in Fig. P-7. What is the pressure

>
|\

ALLLLILLALL AL L LA\
\13R503550 80N RARRRRNAIN

777777777 7777777777777777 7777
360 mm

S

Fig. 1 15 P-7
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11.

12.
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exerted by A on B 7 What is the pressure exerted by the Jower two cyhinders
on the channel base and walls at the contact poinis ?
jAns. Pressure of A on B =64 N
Pressure of B on the base = 150N
Pressure of B on the wall = Pressure of C on the wall = 40 N
Three equal rings of weight W each rest on a smooth vertical circular wire at
the corners of an cquilateral friangle of which one side is vertical, the uppermost
heing connected with the other two by means of strings. Find their teasions.
[Ans, Tension in the vertical string 1
Teasion in the other string = 207
Twa equal spheres of 30 mm radius, are in equilibrivro within 1 smooth
spherical cup ot 90 mm radius. Show that the action between the cep and once
sphere is double that between the two spheres. (Madras)
A sojid sphere of weight Wrests upon two parallet bars which arc in the same
horizontal plane, the distance between bars being equal to the radius of the
sphere . find the reaction of each bar. {Ans. VA3
Twa rollers of weights P and (2 are connected by a tlexible string DF and rest
on two mutually, perpendicular planes AB and BC as shown in Fig. 1.15 P-11.

Fig. 115 P-11

Find the tension 8 in the string and angle ¢ that it makes with the horizontal
when the system is in equilibrium, given P = 600 N, Q = 1000 N, a = 30°.
Assume that the string is inextensible and passes freely through slots in the
smooth inclined planes AB and BC. (Roorkee)

[Ans.S =721 N, ¢ = 16°6]

‘Two identical rollers, each of weight Q = 1 kN are supported by an inclined
plane and a vertical wall as shown in Fig. 1.15 P-12. Assuming smooth
surfaces, find the reactions at A, B and C.

|Ans. R, =866 N; R, = 1440 N 1 R, = 1150 N}

A weight O is suspended trom point B of a cord ABC, the ends ot which are
pulled by equal weights P overhanging small pulleys A and C which are on the
same level as shown in Fig. 1.15 P-13. Neglecting the radii of the pulleys,
determine the sag BD it =12m, P = 200N, Q = 100 N. (Nagpur)

|Ans. BN) = 1.55 m}
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7
4
4
A

7B
7

% o
30
> o w ow o - v - - @B

Fig. 1.15 P-12

Fig. 1.15P-13
14. Three bars in cne plane. hinged at their ends as shown in Fig. 1.14 P-14 are
submitted to the action of a torce P = 100 N applied at B. Determine the
magnitude of the force Q) that will be necessary to apply at the hinge C in order
to keep the system of  bar in equilibriuni in the position shown. (Bangalore)
|Ans. Q = 163 N|

Fig. 1.15P-14
1.16. Law of Polygon of Forces

[fany number of forces ucting at a point can be represented indirection
and magnitude by the sides of a polygon taken in order. then the forces are in
equilibrium.
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Let the forces Py, P, Ps, P4, Ps acting at O be represented in direction
and magnitude by the sides AB, BC, CD, DE, EA of the polygon ABCDE. Join
AC, AD. N o S

Then AB+BC=AC

—> — -
AC+CD=AD
—> —> -
AD + DE =AE
—> —> —>
AE+EA=0.
Hence the system is in equilibrium

Fig. 1.16 A

Cor. It is clear that the resultant of the forces represented by AB, BC,
CD, DE is represented by AE.

Note. The converse of the polygon of forces is not true. Thus suppose that the
forces Py, P,, P3, P4, Ps are in equilibrium. Then we can construct an infinite number
of polygons whose sides are respectively parallel to the forces but their ratios are all
different. However a polygon can be con: tructed whose sides are respectively parallel
and praportional to the forces.

1.17. Graphical Methods

The triangle of forces and the polygon of forces can be used to obtain
graphically the resultant of forces acting at a point.

(a) Let the forces P; and P,
act at a point. To find their resultant,
B draw a line AB parallel and propor-
1 C tional to Py on a suitably chosen scale ;
P SUaAN then AB represents P; in direction
B and magnitude. Similarly draw BC 10
represent P5. Join AC. Then AC rep-
A 4 B resents the resultant of the forces in
{a) (b) direction and magnitude. AC and the
Fig. 1.17 A-1 LCAB can be easily measured.
(b) In Fig. 1.17 A-2 are shown two forces Py, P; acting at O. The spaces
about these forces have becn named as A, B, C. The force Py, which lies
between spaces A and B is then named as AB. The force P; is named as BC,

5 et
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single it lies between the spaces B and C. This diagram showing the position
of the forces is called a space diagram.

Draw a vector to represent P;. [A vector is a straight line representing
a force in magnitude and direction]. Since in the space diagram P, has been
named as AB, the vector representing P; is named by the corresponding small
letters ab. Similarly the vector representing P, or BC is named as bc. We thus
obtain Fig. 1.17 A-3 representing the two forces. Join ac. Then ac represents
the resultant. This diagram which shows the magnitudes and directions of the
forces, is called a vector diagram or a force diagram.

k

C B p C b a

N P ESULTA“ 1
w.-0 RS /4

ﬂﬁ??f g 4 Res““
a b c

Space diagram Vector diagram Vector diagram
Fig. 1.17 A2 Fig. 1.17 A-3 Fig. 1.17 A-4

In the vector diagram, ab represents P;. The sense of ab must be same
as that of P;. Thus the arrow-head should point from a towards b. Similarly,
the sense of bc must be the same as that of P,.

In the space diagram the forces have been named as AB and BC, while
in the vector diagram they have been named as ab and bc.

We can also name the forces as BA and CB in the space diagram. Then
they must be named as ba and cb in the vector diagram. The sense of ba must
be the dame as that of P; and the sense of cb must be the same as that of P,.
Thus we obtain the vector diagram as shown in Fig. 1.17 A-4. The resultant is
then represented by ca.

Thus we see that we can move either anti-clockwise or clockwise. But
the movement must be uniform throughout ; i.e. either clockwise throughout
or anti-clockwise throughout. If P, is named as AB, then P, must be named as
BC and not as CB.

In the space diagram draw a line parallel to ac (shown dotted in Fig.
1.17 A-2). Then this line represents the direction and position of the resultant.
If the forces Py and P, are named as AB and BC then the resultant is named as
AC. i.e.if in naming the forces the movement is anti-clockwise, then in naming
the resultant the movement is clockwise.

In the vector diagram, if the forces are ab and bc then the resultant is
ac, i.e. the line joining the first and the last points taken in the sense opposite
to that of the forces.

This method of naming the forces in the space and vector diagrams is
called Bow’s notation.
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(¢) Next, let 1t be required to find the resultant of three forces Py, Py,
P53 acting at O. Name the spaces as shown in Fig. 1.17 A-5 (a). Draw vectors
uab, be, cd to represent AB, BC, CD. Join ad. Then ad represeats the resultant
(Art. 1.16, Cor.) ; ad is the hne joining the initial point of the first force and
terminal point of the last force. The position and ditection of the resultant have
been shown in the space diagram by a dotted line with two arrow-heads which
has been drawn parallel to ad. In the space diagram, the forces arc AB, BC, CD
and the resultant 1s AD.

}5\

\\ 8
C
0z b
NE
B D % ‘
\\" b
{d) Space diagram (b) Vectar diagram
Fig. .17 A-5

The.force which applied at O will produce equilibrium, is called the
equilibriant of the system. Evidently. the equilibnant is equal and opposite to
the resultant and in the present case it is represented by DA in the space
diagram, and by da in the vector diagram.

The method explained above is appicable to any number of forces.

(d) Finally, suppose that any number of forces say Py, P, P3, X, Ykeep
a particle O in equilibtium. If Py, P, P; be known in direction and magnitude
while X, Y be known in direction onlv. we can find the magnitudes of X, Y
graphically.

“

N\g X
=
S|

Fig. 1.17A 6



STATICS OF A PARTICEE 47

Name the spaces asA, B, C, D, £ as shown in Fig. 1.17 A- 6. Draw ab,
bc, cd 1o represent AB, BC. CD. Through a, draw al parallel to AE. Through
d, draw dm parallel to DE, meeting al in e. Then X is represented by de and Y
is represented by ea.

It should be noted that not more than two of the forces should be
unknown. To determine the forces X and Y, we must know their directions and
magnitudes (position being already known, for they act at O), (i.. in all four
quantities should be known : if any two of these are known the remaining two
can be determined by the method of this article.)

The method applies whether the forces converge or diverge. Suppose,
tor example, P, P, and X diverge trom O while P; and Y converge towards
O, as shown in the space diagram [Fig. 1.17 A-7 (a)]. The corresponding vector
diagram is then as shown in Fig. 1.17 A-7 (b).

m [4
(a) Space diagram (b) Vector diagram
Fig. 1.17 A-7
The space diagram must be so drawn that the unknown forces X, ¥
occur together ; no other force should come in between them. Consider the

p”

3

{a) Original space diagram (b} Modified space diagram
Fig. 1.17A 8
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space diagram |Fig. 1.17 A-8 (a)]. We note that Py falls between X and Y. The
space diagram should be so modified thatX and Y come together. The modified
space diagram is shown in Fig. 1.17 A-8 (h).

(¢) The lines in a vector diagram may intersect cach other as shown in
Fig. 1.17 A-9.

el )Y
%
¢
f
(a) Space diagram (b) Vector diagram
Fig. 1.17 A9
(f) It will be seen that the arrow-heads in the vector diagram follow the
same order throughout for all the given forces, but the arrow-head on the
resultant is in the opposite sense.

If, however, the equilibriant is required, then the sense of the arrow-
head is to be the same as that of the arrows on the given forces.

1.18. Graphical Condition of Equilibrium (concurrent forces)

In Fig. 1.18 A-1, the resultant of forces AB, BC, CD, DE is represented
by ae in the force polygon. If, however, ¢ coincides with a, i.e. the last point
falls on the first point as shown in Fig. 11.8 A-2, we obtain a closed polygon
and ge = ().

Then the resultant of the forces is zero.

a b ea b

(a) Space diagram (b) Force polygon Foroe_ polygon closes
Fig. 1.18 A-1 Fig. 1.18 A-2
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Hence a system of coplanar concurrent forces is in equilibrium if the
force polygon closes.

Ex. L. The resultant of two forces, P and 100 N is 150 N inclined at
30° to the 100 N force. Find the magnitude and direction of P.

Sol. Draw OA to represent
the 100 N force on a suitable scale.

Draw OB to represent the
resultant, making ZAOB = 30°. Join
AB.

- — —

Since CA + AB = OB, it fol-
lows that AB represents P.

Produce OA to X. By meas-
urements,

P =81N, £/BAX = 68° 18’

These results can be easily verified by calculation. By trigonometry,

AB? = 0A” + OB? ~20A.0B cos AOB
P?=100% + 150> - 2 x 100 x 150 cos 30° = 652

Fig. 118 E-1

P=81N
sin OAB _ sinAOB
OB =~ AB
smlggx - 511182150 [ sin OAB = sin BAX]
LBAX = 68° 18".

Ex. 2. Fig. 1.18 E-2.1 shows a rafter joint O in a roof truss. The rafters
OA ard OB are inclined to the horizontal at 30° each. The forces acting at O
are

(i) a positive wind load of 500 kg acting normally 1 OA ;

(ii) a negative wind load of 300 kg normal to OB :

(iii) a vertical dead load of 1000 kg.

Find the resultant force acting at O.

Sol. The rafters OA and OB are inclined to the horizental at 30° and
the wind loads are normal to them. Hence the wind loads are inclined to the
vertical at 30°. The forces at O are shown in the space diagram |Fig 1.18 E-2.2
(@]

The spaces have been named A’, B', C', D'. The corresponding force
polygonisa' b’ ¢’ d' and a’ d' is the resultant.

By measurement. @’ d' = 1239 kg, inclination of ' &' to the vertical =
18° 51'. The resultant is shown in the space diagram by a dotied line bearing
LWO arrows.
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Fig. 1.18 E-2.1

(a) Space diagram. (b) Force polygon.
Fig. 1.18 E-2.2
Ex. 3. The known forces acting at the apex joint of a steel roof truss
are as shown in Fig. 1.18 E-3.1:
(i) a vertical dead load of 10 kN
(1) a positive wind load of 5 kN normal to OA
(iii) a negative wind load of 3 kN normal tc OB
(iv) a thrust of 20 kN in rafter OA
(v) a pull of 20 kN in the member C.
Find the nature and magnitude of the forces in OB and the member D.
Sol. The rafiers OA and OB are inclined to the horizontal at 30° while
members C and D are inclined at 60° to the horizontal.
The forces acting at O are shown in the space diagram [Fig. 1.18 E-3.2
(a)]. The force in OD is marked X and that in OB is marked Y.
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5kN

INCLINED TO INCLINED TO
HOR/Z(;IX TAL AT HORIZOSAéZKL AT

WCLINED TON
C /m/zo;vm AT

20KN

Fig. 1.18 E-3.1

The corresponding force diagram is shown in Fig. 1.18 E-3.2 (b). g'a’
is parallel to Y and f' g’ is parallel to X.

Moving in the anti-clockwise sense in the space diagram the forces X
and Y are respectively named as F' G’ and G’ A’. Hence in the vector diagram
they are represented by f g’ and g’ a’. The arrows on X and Y are to be marked
s0 as to be in the same sense as those on f' g’ and g’ a’ respectively. On marking
the arrows in this manner we see that both X and Y are compressive forces, i.e.
member D and rafter OF exert a thrust ai O.

By measurement, X = f'g’ = 21.7 kN (thrust)
Y =g' a’ =560 N (thrust)

]

[V

G\

(a) Space diagram (b) Force diagram
Fig. 1.18 E-3.2
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Ex. 4. In a simple jib crane, shown in Fig. 1.18 E-4, the vertical post
is 5 metres, the tie is 4 metres and the jib is 7 metres. If the crane supports a
load of 10 kN, find the magnitude and nature of forces in the jib and tie.
Sol. The sides of the triangle ABC are parallel to the forces acting at
C, and hence the forces in AB and BC are proportional to their lengths.
The load at C being vertically downwards,
L "/"C itis represented by AB. Then taking the sides of
the triangle in order, the other two forces are
represented by BC and CA. Since a force repre-
/ sented by BC will exert a thrust at C, and that
represented by CA will exert a pull at C, the
m force in BC is thrust while that in CA is pull.

? e

5

i 10KN Length of AB is 5 metres and it repre-
B

Y
\\’\

sents a force of 10 kN. Hence 1 metre represents
a force of 2 kN.

ForceinBC=7x2
Fig.1.18 E-4 =14 kN (Compression).
ForcesinAC =4 x 2
=8 kN (Tension).

1.19. Jib Crane

The essentials of a jib crane are shown in Fig. 1.19 A (a). AD is a
vertical post. AC is a rod called jib hinged at A so that it can turn round A in a
vertical plane. It is supported by a chain or rod DC called tie which is attached
to a point D in AD. At C there is a pulley over which passes a chain ECF ; the
load W to be lifed is attached to the end F, while the end E is wound round a
drum. The effort is applied at E to lift the load. Very often, CD is horizontal
and EC coincides with it.

a
C a

TIE
D U‘A\N
E ®

W
A @)
b
c th

Fig 119 A
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Supposing the pulley at C to be smooth, the tension in EC = tension in
CF=W.

Fig. 1.19 A (b) shows the vector diagram of the forces acting at C. The
names are not according to Bow’s rotation, ab represents W, bc represents the
tension in EC which s also W ; cd h.'s been drawn parallel to AC and ad parallel
to DC.

The figures have been drawn with the following data :

The jibAC =5 m, the tie CD =3.6 m,AD=24m,AE=1.6m, W=
20 kN.

It will be found by measurement that

force in AC = 50 kN, thrust.

force in CD = 18 kN, tension.

Ex. 1. In a jib crane, the height of the vertical post, as measured
between its joints with the jib and the tie, is 2.1 m. The jib is 4.5 m and the tie
is 3 m long. A load of 50 kN is suspended from a chain passing over a smooth
pulley supported on the crane head and the chain is fixed to the post at a point
0.9 m above its junction with the jib. Find graphically the stresses in the jib
and the tie. Find also graphically the stresses in the jib and the tie if (i) the
supporting chain is taken parallel to the tie, and (ii) it is parallel to the jib.

Sol. The crane and the forces acting at the crane head C are shown in
Fig. 1.19 E-1 (a). Let the thrust in the jib AC be P kN, and let tension in the
tie DCbe T'. The tension T in the chain EC is 50 kN, being equal to the weight.
The tension in the portion CM of the chain is also 50 kN. We can apply Bow’s
notation provided the two known forces in CM and CE are together, there being
no unknown forces between them.

A @ (c)

Fig. 1.19 E-1
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The force T = 50 kN in CE tends to move the point C towards E.
Produce EC towards the right hand side. Then T can be replaced by an equal
force acting along this line and pushing at C. Hence the free-body diagrams
of the crane head C can be drawn as shown in Fig. 1.19 £-1 (b) which may be
taken as the space diagram. The spaces have been named asA’, B, C' and D'.
Fig. 1.19 E-1 (c) shows the vector polygon.

By measuring ¢’ d' and @’ d’ we can find P and T. We get

P = 141.5 kN, thrust
T =555kN, pull.

(1) Let BE coincide with CD. Then the total ferce in the direction CD
is T+ T =50 + T. Hence at C, there are only three forces, viz., 50 kN along
CM, P along AC and 50 + T" along CD. Now the sides of the triangle ACD are
parallel to these forces.

or —= —=—

whence P =107.14 kN (compression)
T =21.43 kN (tension)
(1) Let CE coincide with AC. Then the forces acting at C are 50 kN
along CM, P —50 along AC, and T" along CD.
P-50 T 50
45 3721
P =157.14 kN (Compression)
T =71.43 kN (Tension).

PROBLEMS

1. Astring OA is attached to a fixed peint O and carries a weight of 100 N at. A
A hoerizontal force X is applied to the weight. If in the position of equilibrium
OA is inclined to the veitical ai 30° find graphically the magnitude of X and
the tension of the string. [Ans. X = 57.8 N. Tension = 115.5 NJ.

2. Find the resultant of the following system of forces acting at a point :

40 N towards the east.

100 N towards 30° north of east.

150 N towards north.

200 N towards south-west. [Ans. 61 N inclined 75° to north of west]
3. Find the resultant of forces shown in Fig. 1.19 P-3.

[Ans. The system is in equilibrium]

4. A and B are two points in the same horizontal line 1 m apart. OA and BO are

two strings of lengths 0.7 m and 0.5 m carrying at O a weight of 200 N : a third
string, attached to the weight at O, passes over 4 smooth peg C at the middle
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707N 50N 200N

Fig. 1.19 P-3 Fig. 1.19 P-4.1
point of AB and carries a weight of 50 N at the other end as shown in Fig. 1.19
P-4.1. Find the tensions in the strings AO and BO.
[Ans. Tension inAO =115 N

»  » BO=15TN]
The solution is shown in Fig. 1.19 P-4.2 (a) and {(b).
a
A C
50n
K ! y2007
0
2007
b
(a) Space diagram (b) Vector diagram

Fig. 1.19P-4.2
5. Inthe crane explained in Art. 1.19 the angle CDB = 45°, angle ACD =15°. The
chain EC coincides with DC. If W = 1000 N find the forces in BC and DC.
[Ans. Force in DC = 930 N tension,
Force inAC = 730 N thrust]
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