1 Fundamental
Concepts and Scope

1.1. Introduction

The subject matter of Mechanics of Solids consists in the study of
mechanical behaviour of solid deformable bodies under the action of
external forces taking into account the internal forces and deforma-
tions. It is based on the principles of the familiar Newtonian mechanics
and the mechanical properties of materials and has been a subject of
human interest since long. Although the use of the name Mechanics of
Solids may be only about half a century old, the subject has been
studied under the names Strength of Materials, Mechanics of
Materials, Structural Mechanics, Theory of Elasticity and Plasticity,
Structural Stability Theory etc. for a fairly long time.

Theory of Elasticity and Structural Stability Analysis have been
subjects of interest of mathematicians and physicists and have been
treated with mathematical rigour and general concepts involved in
each topic have been developed. Strength of Materials, however, has
been studied by practising engineers and academicians on the basis of
simplifying assumptions and experimental results of the tests related
to mechanical properties. The name Mechanics of Solids is of relatively
recent origin and is a compromise between the two streams and is an
outcome of the recent engineering community handling the subject
giving it a sound analytical footing while developing the relations and
formulae with simplifying assumptions. This is in fact, the modern
trend in all sciences.

A structure or a machine has varicus components that may be sub-
jected to one or more of the structural actions like axial pull or thrust,
shear, bending and twisting. Each component must be provided with a
proper size so that under the action of loads the stresses must not ex-
ceed the required strength for the components. Secondly, the deforma-
tions in each part must not exceed a permissible value in order to avoid
misfit of components, cracks etc. in any part or distortion in any zone.
This aspect is described as providing adequate stiffness. Thirdly, if any
part or zone of the machine or structure is in compression, buckling
may take place at stresses below the crushing strength. Hence the
designer must see that this kind of deformation is avoided, that is to
say, stability of the structure is ensured.

Lastly, if the loads are of dynamic nature, the components must
possess the capacity to absorb a certain amount of energy without
failure, which is said to be a measure of its toughness. The study of
solid mechanics helps in prescribing the size of components of a
machine or structure ensuring adequate strength, stiffness, stability
and toughness with minimum weight of material used.
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Mechanics of Solids has a vast scope in the engineering world and
has an interdisciplinary character. A mechanical engineer requires it
in machine design, a civil engineer in the design of structures, an
aeronautical engineer in the design of aircrafts and naval engineers in
the design of the ship. Metallurgists use it in the study of mechanical
properties of metals and electrical engineers in the design of transmis-
sion towers etc. It also encompasses the studies in material science and
physics of metals. The subject, though one of the oldest, has a vast
scope of growth and expansion.

1.2. Basic Assumptions

In the study of solid mechanics the following assumptions are
common to all topics.

() The material of the body under consideration is
continuous. This assumption implies that the space occupied by the
body is continuously filled by the material and there is no void i.e. mat-
ter of the body is continuously distributed over the volume and that no
cracks or holes develop on the application of loads. Such a medium is
called a "Continuum" hence sometimes the term continuum mechanics
is used. This continuum hypothesis enables us to isolate an infinitesimal
element of the body and form differential equations whose solution will
apply to the whole body subject to boundary conditions.

In reality, however, there is no perfectly continuous body ; inter-
grannular voids do exist. But analysis based on perfect continuity gives
error free results.

(b) The distribution of material in the body is homogeneous.
According to this assumption distribution of material in the body is
even and smallest element possesses the same physical properties as
the entire body. Engineering materials like metals are close to perfect
homogeneity. But analysis based on homogeneity for materials with
even less homogeneous character like concrete, timber etc. do not lead
to any appreciable error.

(c) Material of the body is isotropic. By isotropy is meant the
same mechanical properties in all directions. Again metals, though
crystalline, possess isotropy near to perfection, materials like timber
due to fibrous character or concrete due to imperfect homogeneity are
not perfectly isotropic. Still analysis based on isotropy gives results
without appreciable error and the formulae based on this assumption
are applicable in engineering practice.

(d) The deformations are small. Engineering analysis, in
general, is based on small deformations so that geometry of the struc-
ture remains unchanged and the basic laws like linear relation be-
tween load and deformation and superposition principle etc. are
applicable. However, if there is any deviation i.e. if any large deforma-
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tions or displacements are to be considered a mention may be made and
analysis carried out accordingly.

(e) The body under consideration is free from internal forces
before loading. This assumption enables the analyst to start with the
deformations and internal forces caused by the loading. However, there
may exist internal forces due to molecular disturbance and interaction
on account of uneven temperature distribution in metals, setting
in concrete etc; but these effects may be ignored if small. An experimental
determination may be required to include these effects if appreciable.

1.3. Types of Forces

Forces that act on a body may be broadly classified into (a) Exter-
nal forces and (b) Internal forces.

1.3.1. External forces. External forces are generated due to
interaction between two bodies. These may either be surface forces or
body forces. Surface forces are spread over an area of the surface and
may be contact pressure between two solid bodies or pressure of a fluid
on a solid body, frictional force etc. Body forces are distributed over the
entire volume of the body and act on each particle e.g. gravitational
force, magnetic force, inertia force, electrostatic force etc. Body force is
expressed as force per unit volume. Surface forces are generally ex-
pressed as force per unit area. Resultant of surface forces spread over
an area may be given as concentrated force or a concentrated force may
be applied by spreading it over a small area.

The external forces or loads may be either static or dynamic in
nature. Most of the topics covered in this text deal with static loads.

1.3.2. Internal Forces. A body is composed of particles called
molecules. When external forces act on the body, forces of interaction
develop between the particles to resist deformation caused by the
external forces. The interaction between particles is equal and opposite
and keeps them in equilibrium. As long as two particles are in contact,
the forces of interaction between them is internal but if they are
separated the interaction force acting on each becomes external force
for it.

1.4. Method of Sections

When a solid body is subjected to a set of external loads the body
undergoes deformation and internal resistance develops to balance the
effect of external loads. To study the nature of internal forces, first a
diagram showing the body acted upon by all the externally applied
loads, weight of the body, reactions of supports etc. is made isolating it
from the environment. Thus let a body shown in Fig. 1.1 (a) be subjected
to loads Py, Py, P3 ... Pg which includes all the forces described above.

This sketch of the body acted upon by all the loads is called its free
body diagram. Since the body is in equilibrium under the action of
these forces, they will satisfy the equations of equilibrium.
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To study the internal forces, we divide the body into two parts by
passing an arbitrary plane through it. This separation exposes two
ident.cal faces as shown in Fig. 1.1 (b) and (c). Since the body is in
equilibrium each part of it also must be in equilibrium. To keep any
such part in equilibrium there must act some forces on the section
Equal and opposite forces act on the exposed section of the other part.
The external forces acting on each part are balanced by the internal
forces which can be determined by the equations of equilibrium. This
is known as the method of sections. The distribution of forces on an
exposed section will result in general into a force and a moment which
equilibrate the external loads.

It is convenient to take a section perpendicular to one of the co-
ordinate axes x, y, or z. In Fig. 1.2, a section perpendicular to x-axis is
shown with resulting force P and moment M. The components of P in
x,y and z directions are P,, P, and P, and the components of moment

M about these axes are M,, M, and M, respectively.
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These forces and moments can be determined by using the six
equations of equilibrium, namely

SF,=0, 3F,=0, 3F,=0

IM,=0, M, =0, IM,=0 ..(1.1a)
In case of a planar problem these reduce to
IF, =0, ZF, =0, IM,=0 (110

1.5. Concept of Stress

It has been shown in Art. 1.4 that a section of a body subjected to
external loads has an internal force distribution over the area of the
section. This force distribution is, in general, of varying magnitude and
direction. It is desirable that the intensity of this force distribution on
the various portion of the section be determined.

In Fig. 1.3 (a) is shown a part of a body to one side of a section
m~n (say). The free body diagram of this part shows the external loads
and the distribution of internal forces on section m—n. Let at a point P
of this section the internal force over a small area AA be AP.
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Then stress at point P is defined as
AP
o= Lt AA ..(1.2)

A -0

Here AP will in general be inclined to the normal to area AA. This
stress will have two components-one along the normal, called the nor-
mal stress and the other tangential to the area, called the tangential or
shear stress. If AP, and APg be the normal and tangential components
of AP, then

AP,
normal stress Opn= Lt AA ...(1.3 a)
AA 50
APg
and shear stress 1,,= Lt —— (1.3 b)

A -0 AA
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Here normal and shear stresses have been denoted by letters
o and 7 respectively. The first suffix indicates the direction of the per-
pendicular to the plane on which the stress is acting and second suffix
gives the direction of the stress.

In the perceding discussion the orientation of the plane was
arbitrary. It is, however, convenient to cut sections perpendicular to
coordinate axes x,y and z and determine the stresses on these. For
example, in Fig. 1.3 (b) is shown a section perpendicular to x-axis. At
point P the force on small area AA has components AP,, AP, and AP, in
x, ¥, z directions respectively and the stresses in these directions are
given by

AP, AP,

o= Lt —% 1,= Lt —Z
om0 AT T a0 04

AP,
T,= Lt —Z .(1.4)
¥ am—o O0A

The suffixes of the stresses follow the same pattern as explained.
Each of the above stresses acts on the plane perpendicular to the x-axis,
hence the first suffix x in each case indicates the plane on which the
stress acts whereas the second suffixes are x, y, z respectively indicat-
ing the direction in which they act. Note that o, is normal stress

whereas 1., and 1,, are shear stresses.

In a similar manner stresses on planes perpendicular to y and z
axes can be given as (Oyy, Ty, Ty;) and (G, Ty, T;)) respectively. The
nine components of stress at a point may thus be given by the matrix
Oxx  Txy Txz
Bx Ty Tz
Lsz Tzy Oz

Some authors prefer to use a single letter for both normal and
shear stresses ; such as

-
Oxx Oxy Oy

GZI ozy c’ZZ

It is seen that repeated suffix appears in normal stresses and
different suffixes in shear stresses. Sometimes a single suffix will be
used for normal stress and double sufix for shear stress. Thus the
stress components may be given as

Or Ty T
Tyx Oy Ty
Tx Ty O
This is also known as state of stress at a point and can be shown

on the six faces of a rectangular element through the point as in Fig.
1.4.
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Fig. 14

Sometimes these stresses are given in the index form
1 (i,J =x, y, 2) which means that i and j can be designated by x, y and
z in turn and permuted to give all the nine stress components at a
point.

It will now be shown that the stress matrix is symmetric. For this
we use the moment equilibrium equations about the axes passing
through the centre of the element and parallel to the x,y, z axes.
Taking sides of the element in Fig. 1.4 as dx, dy, dz along x, y, z axes
and considering equilibrium of moments about a central axis parallel
toz axis gives

Ty (dy - d2) dx ~ 1y, (dx - dz) dy =0

or Tay = Tyx (1.5 a)
In a similar manner it can be shown that

Tyz = Tgy .(1.5d)

and Tz = Tox ..(1.5¢)

Thus there remain only six independent stress component
Oy, Oy, Oz Tay = Tyx, Tz = Tpx an‘d Ty, = T,y. This shows that the matrix
representing the stress tensor at a point is symmetric or suffixes of the
shear stresses are interchangeable.

This result can be interpretted by means of a simplified two-dimen-
sional case in which only shear stresses have been shown in Fig. 1.5. A

*A physical quantity obeying certain transformation law is called a tensor. A
scalar quantity is a zero order tensor, a vector is a first order tensor and the
stress matrix at a point represents a second order tensor.
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shear stress 1, acting on one face, say AB, decides that for equilibrium

the shear stresses on all the other faces will be the same and will act in
the directions as shown. This is also known as the "principle of com-
plementary shear". The arrowheads showing the direction of the shear
stresses will always meet at two opposite corners and their tails on the
other two opposite corners.

y

A three dimensional state of stress at a point can now be written as

Or Ty T
Ty Oy Tyz
Tz Tyz O

and two dimensional state of stress in the x—y plane can be given by

[ox ‘txy]
Ty Oy
1.6. Principal planes and principal stresses

In describing the state of stress at a point we have seen that three
stress components—one normal and two shear streses exist on each of
the three planes perpendicular to the axes. A plane may be so oriented
that only normal stress exists on it. Such a plane is called a principal
plane and the normal stress acting on it is called principal stress. In
fact three such planes exist at every point and normal stresses acting
on them constitute the principal stresses at the point. It is sometimes
convenient to orient the axes along the principal stress directions and
deal with the stresses in terms of principal stresses only. The same
may be done in case of two-dimensional stress system also. Principal
stresses may be represented in the matrix form as

(o3 ] 0 0

0 0 O] and {%1 (? }
0 0 o3 2

and are shown in Fig. 1.6 (a) and (b).

A detailed discussion on the two-dimensional case will be taken up
in Chapter 8.
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1.7. Concept of strain

It has been discussed in the preceding articles that deformations
take place when a set of external loads is applied on a body. Analogous
to study of internal forces in terms of intensity cf forces, we are inter-
ested in intensity of deformation or unit deformation. This sets out a
concept known as strain. Extension of a line element per unit length is
called longitudinal strain. Another type of strain that is encountered is
unit rotation in a plane containing the line element and is defined by
the change in right angle formed by the line element and a line perpen-
dicular to it in the aforesaid plane. This change in right angle is called
shear strain. A generalised mathematical description and analysis of
strain will now follow.

1.7.1. Components of strain at a point. Let displacemen§
components in the directions x,y,z at a point in a body be u, v, w
respectively. It is assumed that there is adequate restraint so that no
rigid body displacement takes place and that the displacements are
small. We consider an infinitesimal rectangular element ABCD of sides
dx and dy in x—y plane as shown in Fig. 1.7. The element deforms into
A’B’C’'D’ and displacement of various points in the two coordinate
directions are indicated.

Longitudinal strain in x-direction is

u+@-dx—u
X

___Ox = _odu
€4y = e =% ..(1.7 a)
Longitudinal strain in y-direction
v+ P dy-v
&y = " (1.7 b)
dy P (1

*Each of the displacements u, v and w is in general, function of x, y and z.
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The shear strain in the x—y plane is equal to the change in right
angle at A and can be given by

Thus ’ny=‘ny=91+92
ov ou
=”+axd"'”+“+aydy‘”=a_v+§g wro
dx dy ox oy

The first suffix in the longitudinal strain gives the orientation of
the line element and the second suffix is the direction in which strain
is considered. Thus a longitudinal strain will always have repeated suffix.
The two suffixes of the shear strain indicate the plane in which the
shear strain takes place.

Analogously we can write

-ow

&=, .(1.7d)
dw  d

Yes =YZ‘=§;+§S .(1.7e)

and szz'Yzy:%.*’%Z— 17D

The suffixes of the shear strain are exchangeable, since two
permutations give the same shear strain. The nine components of
strain at a point (although only six independent ones) are given by the
matrix

€xx Yoy Tz

Yoy &y Yyz
Yz Yyz &2z



12 A Textbook of Mechanics of Solids

and are used by engineers as state of strain at a point. However, mathe-

maticians use g, = %1, €z = % and g, = %z- as shear strains and thus
[ Yy Y
Exx 2 ?
Exx eJc_y €z Y Y
ty By Be|=| B g,
&z &7 &z
Yz Yyz o o
2 2 %

is the strain matrix used by them. The reason for this is that only in
this form it can be used as a strain tensor. A rigorous explanation and
discussion on this can be found in any of the textbooks on mathematical
theory of elasticity.

In further discussions only a single suffix for longitudinal or normal
strains will be used such as ¢,, &,.

N €
The planar strain at a point is given by | * Try
Yry &

1.8. Principal Strains

Analogous to principal stresses, we can define the principal strain
and their directions. The line segment along which there is only elon-
gation or contraction and no rotation is called a principal direction and
the longitudinal strain in this direction is called a principal strain. In
a two-dimensional case there are only two principal directions and
principal strains. The strain in the iwo cases may be given as

€1 0 0
0 €& O and [901 80 ]
0 0 &3 2

A detailed discussion on two-dimensional case will be taken up in
Chapter 8.

1.9. Saint Venant’s Principle

In 1855, the French mechanicist Barre de Saint Venant enunciated
an important principle which states that distribution of stress or strain
on sections of a body at a sufficient distance from the surface of applica-
tion of a load system is independent of the manner of distribution of the
load system. Thus any distribution of load can be replaced by a stati-
cally equivalent loading convenient for analysis of stresses or strains
not in the near vicinity of loading. The term sufficient or appreciable
distance, vaguely stated requires explanation. In practice it means a
distance comparable to the size of the body. For example, in case of a
bar it may be taken as three times its diameter or lateral dimension.

*Mathematical Theory of Elasticity, SOKOLNIKOFF, 1.S.
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Two systems of loads or force are said to be statically equivalent when
they result in the same force or couple or both.

When this principle is applied to the bending of a cantilever sub-
Jected to a bending moment applied at its end then the bending stress
distribution on a section at a distance greater than its lateral dimen-
sions will be independent of the distribution of the surface traction of
which the bending moment is the resultant. Another simple example of

m m
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Fig. 1.8

application of St. Venant’s Principle is the bar subjected to an axial
load P. In Fig. 1.8 the end loads in (a), (b) and (c¢) are equivalent to an
axial load P. If the cross-sectional area of the bar is at a distance
greater than three times the dia. of the bar, say, then the resultant
normal stress will be P/A uniformly distributed over the cross-section
for any of the three manners of loading.

1.10. Constitutive Laws

Although stress and strain have been separately considered in
defining and developing expressions for them, it may be logically con-
cluded that there must exist some relationship between them. The
relation between stress and strain depends upon the constitution of the
material of the body and hence the laws governing the stress-strain
relations are calied constitutive equations or laws. The constitutive
relations are closely related to the mechanical properties of the
material which depends on the molecular structure and hence upon its
microscopic behaviour and is subject matter of material science or solid
state physics. In the mechanics of solids we are concerned with the
average behaviour or the so called macroscopic manifestation of defor-
mation under load. This is also referred as pnenomonological approach
to mechanical behaviour.

The various types of mechanical behaviour exhibited by engineer-
ing materials are briefly described below.

(a) Elastic Behaviour
If deformations disappear with the removal of the load and tle
body regains its original dimensions, the material is said to be elastic.

This property is exhibited by most engineering materials upto a certain
limit of load known as eclastic limit. No material has been found to be
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perfectly elastic. Elastic behaviour may be of two types : linearly elastic
and non-linearly elastic. In case of linear elasticity the load is propor-
tional to displacement and is the basic statement of Hooke’s Law, to be
taken up separately. Non-linear elastic behaviour is described by a
non-linear relationship between load and displacement or stress and
strain.

(b) Plastic Behaviour

If the deformations set in a body are not recoverable after removal
of the applied loads, the deformations are said to be plastic and the
behaviour of the material is called plastic. Plasticity is exhibited by
most of the materials beyond elastic limit. Different modes of plastic
behaviour and related stress-strain diagrams will be discussed in the
end of the chapter.

(c) Viscous and Viscoelastic Behaviour

If deformation in a material is such that load is a function of rate
of deformation with respect to time rather than deformation and the
deformation is permanent that is not recoverable on the removal of the
load, the material is said to be viscous. At high temperature and under
dynamic loading conditions, solid materials may exhibit such fluid type
behaviour as in the case of Newtonian fluids.

A combination of viscous and elastic behaviour, that is, load being
a function of both, deformation and time rate of deformation, is known
as viscoelastic behaviour. Several metals and polymers exhibit this
kind of behaviour in different manners and degree. Some of the special
features of viscoelasticity are :

(1) Anelasticity. This behaviour also known as delayed elasticity
is marked by deformations not being recovered instantaneously. In fact
original undeformed shape is regained in infinite time.

(it) Stress Relaxation. In this deformation remains constant
while the load gradually decreases with time i.e. the stress relaxes
hence the name of the phenomenon.

(iti) Creep. This is a phenomenon related to viscoelastic materials
in which when the temperature is high compared to melting point of
the material, the stretch continues or creeps at constant load or stress.
The stretch or strain has two parts : elastic and viscous. The elastic
strain disappears suddenly whereas the viscous strain is recovered
gradually over an infinite time.

The stress-strain diagram under uniaxial loading for all the above
cases will be discussed in Art. 1.13.

1.11. Principle of Superposition

This states that the resultant effect such as stress, strain, deflec-
tion or any other internal force factor in a linearly elastic body sub-
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jected to a number of forces is the algebraic sum of such effects when
the forces are applied separately. The primary condition for this is that
the deformations be small so that the geometry of the structure or the
body is not altered and also the linear relationship between the stress
and strain or load and deformation is maintained. The above postulate
known as the principle of superposition also implies that the order in
which the loads are applied is immaterial.

Fortunately deformations or displacements in most of the struc-
tures or bodies considered in engineering analysis are small and hence
the principle of superposition is applicable. This serves as an important
tool in analysing the structures subjected to a system of forces. If
Py, Py, Py ..., P, be the forces and an effect such as deflection in a given

direction at a point C separately due to these forces be 8C;, 6C3,
8Cj...., 8C,, respectively then the resultant deflection at point C in the
same direction is given by 8C = 8C; + 8Cy + 8C3 + ... + 8C,,.

1.12. Hooke’s Law and Its General Form

Hooke’s law is the constitutive law for a linear elastic material also
called Hookean material. Robert Hooke, based on his experiments with
springs under axial load pronounced that the force varies as the stretch
(Ut tension sic vis) and also announced the notion of elasticity, a
property due to which the body regains its original undeformed shape
on removal of load. His above statement was later stated in the follow-
ing form :

"In a linearly elastic body deformations are proportional to the
force upto a certain limit". This is known as the Hooke’s law and the
load upto which the law is valid is known as the proportional limit.

The load displacement linear relationship can be given as

8=CP
where P is a force acting on a body constrained against any rigid body
displacement, 3 is displacement of a point and C is a constant depend-
ing on the material of the body, point at which the displacement is

considered, direction of the displacement and direction of P. It, how-
ever, does not depend on the magnitude of P.

Hooke’s law has also been used as stress-strain relationship for
linear elastic materials according to which stress is proportional to
strain upto a certain limit of stress known as proportional limit. Thus
for uniaxial stress

o=Ee ..(1.9)

where E is called Young’s modulus or modulus of elasticity and is a
constant for a given material. There are six components of stress and
six components of strain existing at a point. The strains being small,
the law of superposition can be extended to Hooke’s law for a general
state of stress in the form.
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This is known as the generalised Hooke’s law for an anistropic
material. The simpler cases and the general case of three-dimen-
sional stress in a linearly elastic isotropic material will be discussed in
Chapter 2.

1.13. Stress-strain Diagrams and Constitutive Laws for
Uniaxial Stress

As has been discussed in Art. 1.10 the constitutive relations
depend on the mechanical behaviour of the material under loading. Al-
though loading may be of many kinds, here we briefly discuss and
classify the materials on the basis of stress-strain diagram under
uniaxial tension and thus the relationship between the stress ¢ and the
strain €. The types of materials as classified in Art. 1.10 are taken up
and both loading and unloading aspects are covered .

(a) Elastic Material

In an elastic material when the load ceases to act the deformations
disappear and the body acquires its original shape and size. Although
no material is perfectly elastic, most of the engineering materials
exhibit elasticity upto a certain limit of stress called elastic limit. The
stress-strain curves for linearly and non-linearly elastic materials are
shown in Fig. 1.9 (a) and (b) respectively. The constitutive relation for
linearly elastic material is

oc=E¢ ..(1.11a)

which is known as Hooke’s law. For non-linearly elastic materials the
relation is given as

o =A¢" ..(1.11 b)
where A and n are the constants depending on the material.
o | L ad
S o
& °
Qb/ / QQ \'y -
Ny / > %\o
S o°
03 0(\\
& &
(@) b)

Fig. 1.9
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In both the cases it is seen that the strain is completely recovered
on unloading Fig. 1.9 (a) and (b)

(b) Plastic Materials

A material is said to be plastic when the deformations or strains
caused remain as a permanent set and donot disappear on removal of
the loads causing them.

Some materials have a small elastic deformation after which the
plastic zone starts. If the small initial elastic deformation is ignored,
the material may be treated as rigid and then plastic. Plastic deforma-
tion may be at constant stress or there may be stress hardening which
is also sometimes called strain hardening. Rigid-perfectly plastic and
Rigid-linearly strain hardening behaviour is shown by paths OP@Q in
Fig. 1.10 (a) and (). If elastic zone is not ignorable, the behaviour is as

- | - -
a P a
P Q P
0 R ¢ O R ¢ 0 R €
(a) Rigid-perfectly plastic  (b) Rigid-linearly strain (c) Elastic-perfectly plastic
hardening
C L Q
Q
P P
o] R £ (0] R £

(d) Elastic-linearly strain hardening (d) Elastic-nonlinearly strain hardening
Fig. 1.10

shown by OPQ in Fig. 1.10 (¢) and (d), known as ‘Elastic-perfectly plas-
tic and Elastic-linearly strain hardening respectively. In Fig. 1.10 (e)
the strain hardening is non-linear. Line @R is the recovery of strain on
removal of stress which shows no recovery in (a) and (b) whereas slight
elastic recovery in (c), (d) and (e). Analytical stress-strain equations for
plastic behaviour are much involved and only idealised simple curves
shown above are used by most practising engineers.

(¢) Viscoelastic Material

In a viscous material the time rate of deformation is a function of
the applied force. The deformation is not recoverable. Some of the
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solids exhibit viscous behaviour at high temperature or under dynamic
loading condition. The stress-strain relationship for a viscous material
may be given by

c=n§—§ ..(1.12 @)

as in the case of Newtonian fluids, the constant 1 being called the
coefficient of viscosity. Some materials exhibit non-linear viscosity for
which the constitutive law may be given as

_algE
o_A[dt]" (112 )

where A and n are constants.

Some engineering materials exhibit a combination of elastic and
viscous behaviour which may be called a viscoelastic behaviour. The
stress-strain relation or the so called constitutive relation for such
material can be given in the simplest form as

0=Ee+n% ..(1.12 ¢)

in which only linear viscosity has been taken into account. The vis-
coelastic behaviour is considered in detail in the subject known as
Rheology  but here it will be treated only in brief. Mechanical models
for elastic and viscous part are a Hookean spring and dash-pot raspec-
tively. The separate models and a number of their combinations are
known as "rheological models" and will now be taken up for explaining
the elastic, viscous and visoelastic behaviours.

In the absence of viscosity the elastic behaviour resembles that of
a Hookean spring and the stress-strain curve is a straight line. Fig.
1.11 (a). For a purely viscous behaviour, the material follows the
behaviour of the model represented by a dash-pot, Fig. 1.11 (b).
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*For a detailed study on this topic the reader may like to refer to Rheology,
Eirich, F.R. (Academic Press, New York, 1956).
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For the study of viscoelastic behaviour the following models have
been used :

(i) Maxwell model
In this a series combination of the Hookean spring and a linear

dash-pot represents the material. If we use suffixes s and d for spring
and dash-pot respectively, then for this model (Fig. 1.12 a)

Cs =04 =0
and £E=¢€s+ &g
Now for the spring 3 =2 [
’ S"E E
. O4d o
and for the dash-pot Eg=—=—
nn
Hence E=g +eg=o 4+l
- %s d"E 1
or 6+%G=Eé (119

When a constant stress ¢, is applied in the time range t =0 to
t =t;, Fig. 1.12 (), the strain response can be studied with the solution

ai
(14
\
t t
a
(a) )
€9 o
B__I. Jo1 Stress relaxation at
o / constant strain &
2 0
E 3
¢ D
o] t, Tt 0 X
(c) (d)
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o,
of the governing Eqn. 1.13 which reduces to de_% with initial condi-

dt
. 00 . o 0o
tion g, = z and ¢ = 0. On integration, € = ?]- t+A
c
where upon using the initial condition A = -E-q
G, O,
Thus E=—4+—2t .(1.14)
E n
This is shown in Fig. 1.12 (¢).
c
The instantaneous strain is E?, it increases linearly with slope

-10

o . . . G
tan F and upon removal of stress at time ¢;, the elastic strain —;

E

. . Y . .
disappears and the viscous strain — ¢, remains as permanent set. This

is an illustration of an elementary creep problem.

In case of a constant strain ¢, equation 1.13 modifies to
do E

@t Y 6 = 0 with the initial condition that 6 =g, at ¢t = 0.

The solution is log, 6 = % t+Cyoro=Cye ®Wt and using the

initial condition,
o=0,e EM? ...(1.15)

This is plotted in Fig. 1.12 (d) and describes a phenomenon known
as stress-relaxation.

(ii) Voigt-Kelvin Model

Another combination of the Hookean spring and the linear dashpot
in parallel presents the Voigt-Kelvin model. Fig. 1.13(a). In this case
the same strain g5 =€, =€ is induced in both elements and the total

stress is given by
7|

Ll

(a) b)
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€

Strain recovery

Creep
curve

P S ——

, t
(©
Fig. 1.13
0 =0, + 0y
and the governing equation becomes
de E o©
St TE=T ...(1.16
ar n (3 n (1.16)
Let a constant stress ¢, be applied in the time range ¢ = 0 to ¢;. Fig.
1.13 (b). Thus since ¢ = G,,, a constant, the equation may be written as
de E__%
dt n E

¢t ©
The solution of which is € = Ce” E/M 4 E‘g

The initial strain being zero, the constant can be obtained from this
condition.

G
0=C+ E
o
or C=—E°
e=[1-e-‘»5/ﬂ"}fl’§°— (117

As is shown in Fig. 1.13 (¢) the strain increases with time and
becomes asymptotic to a horizontal line showing the maximum strain
produced in the spring, a stage at which the spring takes all the applied
load and the dashpot becomes inactive. When the stress is removed the
strain decreases and the recovery curve becomes asymptotic to the
time axis. Since the strain recovery is delayed, the property of the
material is terraed as delayed elasticity and the material is also called
anelatic material.

(ii1) Standard Viscoelastic Model

A combination of Maxwell model and Voigt-Kelvin model in series
Fig. 1.14 (a) has been found to exhibit a more realistic behaviour of
some metals at high temperature. Under a constant stress o, in the
time range ¢ = 0 to t; as shown in Fig. 1.14 (), the strain response is
described by Fig. 1.14 (c)
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Fig. 1.14

OA is the initial strain, AB is the creep zone, BC is sudden elastic
strain recovery whereas CD is the depiction of delayed elasticity in
which strain recovery is time dependent and becomes asymptotic to the
time axis.

1.14. The SI Units

An international organisation known as "The Conference Generale
des Poids et Mesures" which governs all the matters related to metric
system of units recommended in 1960 the ‘Systeme Internationale de
Unites’ (The SI units) to be used the world over. This system of units
which is an improved and refined version of metric system was
approved by the ‘International Organisation for Standardisation’ in
1962. This is a logical and coherent system as all the derived units are
obtained from the fundamental units by multiplication or division
among the fundamental units without using any numerical factors.

The following physical quantities shown in Table 1.1 have been

recognised as fundamental quantities and the units assigned to them
as fundamental units.
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Table 1.1
Physical Quantity The SI Units Symbol
Length nmetre m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Luminous intensity candela Cd
Amount of substance mole mol
Plane angle radian rad
Solid angle steradian sr
Some of the derived units used in engineering practice are given in
Table 1.2
Table 1.2
Physical Quantity Name of the Unit Symbol
Acceleration metre per second squared m/s?
Area metre squared m?
Angular acceleration radian per second rad/s
Density kilogram per cubic metre kg/m3
Coefficient of linear expansion  per degree celcius rc
Current ampere A
Energy, work joule, kilojoule, mega joule J,kdJ, MJ
Watt hour, Kilowatt hour Wh, kWh
Electrical charge coulomb C
Force newton N
Frequency hertz Hz
Moment newton metre Nm
Power watt, kilowatt W, kW
Pressure Newton per metre squared N/m?
bar 10°N/m?
Potential difference volt \"
Resistance ohm Q
Resistivity ohm metre Qm
Specific heat capacity joule per kilogram degree celsius J/kg °C
Surface tension newton per metre N/m
Temperature kelvin K
degree celsius °C
Torque newton metre Nm
Velocity metre per second m/s
Volume cubic metre m?
Stress newton per metre squared N/m?
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Physical Quantity Name of the Unit Symbol
Pascal Pa
mega pascal MPa

Weight newton N
Weight density (Unit Weight) newton per cubic metre N/m?®
Elastic moduli E, G, K newton per metre squared N/m?
Momentum kilogram metre per second kgm/s
Angular momentum (Moment  kilogram metre squared per kgm2 /s
of momentum) second

Impulse newton second Ns
Mass moment of inertia kilogram metre squared kgm2
freamomentfnerta
Section modulus metre cubed, milimetre cubed m°, mm®

Multiples and submultiples of S.I. units suggested above may
sometimes be required to be used. For this, it is recommended that only
the powers of 10 which are multiples of + 3 be used. A list of such multiples
and submultipies is given below in Table 1.3.

Table 1.3
Multiple/Submultiples Name Symbol
10° kilo k
108 mega M
10° giga G
10'2 tera T
1073 milli m
1078 micro N
107° nano n
10712 pico p

Some examples of multiples or submultiples of SI units are :

kN/m? = 10°N/m?

MN/m? = 10°N/m®

MPa = 10°Pa

GN/m? = 10°N/m?

GPa = 10°Pa

kNm = 10°Nm

MW = 10°W (10watt)

kJ = 10%J (kilojoule) etc.
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1.15. Generalised Procedure for Solution

The solution of problems in mechanics of solids in general involves
the following steps :

(@) The whole structure and the system of forces acting on it is
idealised by making simplifying assumptions. The structure is approxi-
mated to that consisting of bars, plates, blocks and shells of simple form
and the force systems to that consisting of concentrated or distributed
loads of known pattern.

(b) A free body diagram of the whole structure is drawn and the
reactions are determined with the use of equilibrium equations. In case
of statically indeterminate problems additional equations arising out of
compatibility considerations may be used.

(c) A part of the structure or an element of it may then be considered
with the external and internal force factors (such as shear force, bending
moment or direct force) acting on an exposed face. Since the whole body
or structure is in equilibrium, such part or elements will also be in
equilibrium.

In Fig. 1.15 (a), a structure is shown with the external loads and a
particular kind of support system. A free body diagram of the structure
is shown in Fig. 1.15 (b) and in Fig. 1.15 (¢) and (d) f.b.d. of two parts
of the structure are shown separately.
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(d) Having determined reactions and internal force factors (S.F.,
B.M,, Torque etc.) at desired sections, stresses are determined using
the formulae derived for a particular kind of problem.

(e) We may also be interested in the determination of displacement
(e.g. slope and deflection in beams) for which differential equations of
elements will be used, the constants of integration being determined
from boundary conditions.

EXERCISE PROBLEMS

1.1. Discuss the subject matter of study in ‘mechanics of solids’ and briefly
explain how it compares with the theory of elasticity and strength of materials in
approach and rigour.

1.2. Elaborate cn the concept of providing adequate strength, stiffress,
stability and toughness while designing a structural member or a machine eleraent.

1.3. What are the basic assumptions made in the analyses covered in
mechanics of solids ?

1.4. What is continuum ? Is perfect continuity possible ?
1.5. Discuss the types of forces that act on a body.
"1.€. Write an elaborate note on the method of sections.

1.7. Discuss the general state of stress at a point showing various components
on a cubical element. What do the subscripts attached to the stresses stand for ?

1.8.Show that the stress matrix is symmetric or that the subscripts of shear
stresses are interchangeable.

1.9. In a two-dimensional system explain the concept of complementary shear.
1.10. What do you mean by principal planes and principal stresses ?
1.11. Briefly explain the terms normal strain and shear strain.

1.12. Deduce expressions for components of strain at a point in terms of
displacement components in the orthogonal coordinate directions.

1.13. Write the strain matrix usable in transformation equations. Write also
the strain matrix containing only the principal strains in three-dimensional and
two-dimensional cases.

1.14. State and explain St. Venant’s principle. Show that the principle,
although seemingly plausible, has proved to be an important tool for practical
solutions.

1.15. Write short notes on (i) Generalised Hooke’s Law, (ii) Principle of
superposition, (iii) Constitutive Laws (iv) Method of sections, (v) Hooke’s Law for
elastic isotropic materials, (vi) Rheological models, (vii) Generalised procedure for
solution of problems in solid mechanics and (viii) Purpose and scope of mechanics
of solids.
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