Fluid Science and Engineering

(a) paint industry

(b) bottling industry

7. Capillary inversion used in

- 1. Viscosity is (a) an extensive property (b) an intensive property (c) an independent property (d) a chemical property 2. Force exerts on a body flowing through fluid in the direction of flow is (a) drag force (b) buoyancy force (c) pressure force of fluid (*d*) all of the above 3. Viscosity of fluid is due to I. cohesion II. molecular momentum III. adhesion IV. shear stress due to change in velocity Find the answer (a) sl. no. I, III, IV (b) sl. no. I, II, IV (c) sl. no. I, IV (d) sl. no. I, III 4. S.I. unit of Absolute Viscosity is $(a) \text{ N/m}^2$ (b) Pa.sec (c) N-m/sec (d) m²/sec 5. Capillary inversion when liquid jet pass through (a) pipe (b) venturi meter (c) round orifice meter (d) elliptical orifice meter 6. S.I. unit of kinematic viscosity is $(a) \text{ N/m}^2$ (b) Pa.sec
 - (c) N-m/sec (d) m^2/sec

- (c) insecticides industry (d) both (a) and (c)8. For dilatants apparent viscosity (a) decrease with rate of deformation (b) increase with rate of deformation (c) constant with rate of deformation (d) irregular with rate of deformation 9. Toothpaste is an example of (a) bingham plastics (b) pseudo plastic (c) dilatants (d) newtonian 10. Which of the following factor have maximum effect on absolute viscosity of fluid (a) pressure (b) temperature (c) density (d) volume **11.** S.I. unit of surface energy is (b) Joule/m² (a) Joule/m (c) N/m (d) N-m/m
 - 12. Shape of rain drops is spherical due to(a) gravity
 - (*b*) low surface energy per unit area
 - (c) surface tension
 - (d) high surface energy per unit area
 - 13. Insects could walk on water due to
 - (*a*) cohesive force
 - (b) adhesive force
 - (c) surface tension
 - (d) shape of leg of insects

14. For pure water angle of contact is $(a) > 10^{\circ}$ $(b) = 0^{\circ}$

$$(c) < 90^{\circ}$$
 $(d) = 90^{\circ}$

15. At critical temperature of water, surface tension

(b) > 1

- (a) < 1
- (c) 0
- (*d*) None of the above
- **16.** Bulk modulus of elasticity is
 - (a) Compressive stress/volumetric stress
 - (b) Compressive stress/volumetric strain
 - (c) Compressive strain/volumetric stress
 - (d) Compressive strain/volumetric strain
- **17.** Capillary effect is due to
 - (a) surface tension (b) viscosity
 - (c) cohesive force only
 - (d) adhesive force only
- **18.** Meniscus in capillary tube is
 - (a) concave surface of liquid
 - (b) convex surface of liquid
 - (c) curved free surface of liquid
 - (d) surface of tube from where capillary actions start
- **19.** Volume expansion coefficient (β) is
 - $(a) (d\rho/\rho)/\Delta T$ at const. pressure
 - $(b) (d\rho/\rho)/\Delta T$ at const. volume
 - $(c) (dV/V)/\Delta P$ at const. temperature
 - $(d) (d\rho/\rho)/\Delta P$ at const. volume.
- **20.** Isothermal compressibility (∞) is (a) $1/\rho (d\rho/dP)$ at const. pressure
 - (b) $1/\rho (d\rho/dP)$ at const. temperature
 - (c) $1/P (d\rho/dP)$ at const. temperature
 - (d) $1/\rho \left(\frac{dP}{d\rho}\right)$ at const. temperature
- **21.** Bulk modulus of elasticity of fluid is (a) increases with increase in pressure (b) decreases with increase in pressure (c) increases with decrease in volume (d) both (a) and (c)
- 22. Capillary action is negligible when diameter of pipe is
 - (a) > 15 mm(b) > 10 mm
 - (c) > 5 mm(d) < 10 mm
- 23. To reduce capillary action of manometer (a) diameter of tube increase

- (b) length of tube is increase (c) diameter of tube decrease (d) length of tube is decrease **24.** Bulk modulus of elasticity is defined as (a) - V (dP/dV) at const. temperature (b) - P (dP/dV) at const. temperature $(c) - (dV/V)/\Delta P$ at const. temperature $(d) - (d\rho/\rho)/\Delta T$ at const. pressure 25. Vapor pressure behave with temperature as (a) increases with decrease in temperature (b) increases with increase in temperature (c) decreases with increase in temperature (d) its fixed at constant atm pressure **26.** A liquid will wet the surface when $(a) \Phi > 90^{\circ}$ $(b) \Phi = 90^{\circ}$ (c) $\Phi < 90^{\circ}$ $(d) \Phi > 120^{\circ}$ **27.** A liquid will wet the surface when (a) $\Phi > 90^{\circ}$ $(b) \Phi = 90^{\circ}$ $(c) \Phi < 90^{\circ}$ $(d) \Phi > 120^{\circ}$ 28. With increase in temperature viscosity of gas will (*a*) decrease (*b*) increase (c) remain same (d) slightly decrease 29. Blood is an example of (a) pseudo plastic fluid (b) bingham fluid

 - (c) newtonian fluid
 - (d) dilatants fluid
- **30.** Continuum is
 - (a) continuous, non homogeneous matter with no holes
 - (b) continuous, homogeneous matter with no holes
 - (c) continuous, non homogeneous matter with some holes
 - (d) random, homogeneous matter with no holes
- 31. For a Continuum properties could be taken as
 - (a) arbitrary function

	(b) path function (c) point function			
	(d) none of the above			
32.	During measurement of Relative density,			
	water density taken at			
	$(a) 0^{\circ} C \qquad (b) 4^{\circ} C$			
	(c) $15^{\circ}C$			
	(d) At any temperature $< 100^{\circ}$ C			
33.	Volume expansion coefficient (β) for an Ideal gas at <i>T</i> is			
	(a) $1/T$ (b) $1/T^2$			
	(c) $1/T^3$ (d) $1/\log T$			
34.	S.I. unit of kinematic viscosity is			
	(a) N/m^2 (b) Poise			
	(c) Stoke (d) M^{3}/sec^{2}			
35.	S.I. unit of dynamic viscosity is			
	(a) N/m (b) Poise			
	(c) Stoke (d) M^3/sec^2			
36.	S.I. unit of surface tension is			
	(a) N/m (b) J/m^2			
	(c) N/m^2 (d) $N-sec/m^2$.			
37.	Ratio of dynamic viscosity and kinematic viscosity is			
	(a) density (b) 1/density			
	(c) density ² (d) Sp gr.			
38.	$Followings \ is/are \ related \ with \ cavitations$			
	(a) vapor pressure.			
	(b) pitting action			
	(c) both (a) and (b)			
	(d) none of the above			
39.	With increase in temperature Bulk modulus of elasticity of fluid is affected as			
	(a) for liquid it decrease and for gas it increase			
	(b) for liquid it increase and for gas it decrease			
	(c) for liquid it constant and for gas it increase			
	(d) for liquid it decrease and for gas it constant			
40.	Capillary rise (h) in glass tube is			
	(a) $4\Delta/\omega d$ (b) $4\Delta d/\omega$			
	(c) $4\Delta/\omega$ (d) $2\Delta/\omega d$			
		1		

41. Dimensional formula of surface tension is

	3
	(a) $M L^0 T^2$ (b) $M L^0 T^{-2}$
	$(c) \ M \ L^2 T^{-2} \qquad (d) \ M^2 \ L^0 T^{-1}$
42.	Manometer used to measure
	(a) moderate and large pressure difference
	(b) small and big pressure difference
	(c) moderate and small pressure
	difference
10	(d) any range of pressure difference
43.	Characteristics of pressure at any point in fluid is
	(a) same in different direction
	(b) different in different direction
	(c) same in opposite direction only
	(d) same in perpendicular direction only
44.	In pressure transducer pressure signal
	convert to
	(a) mechanical deformation
	(b) electrical signal
	(c) digital signal
	(d) change in current only
45.	Bourdon pressure gauge is
	(a) mechanical type (b) electronic type
	(c) digital type (d) solid state type
46.	Most common type mechanical pressure gauge is
	(a) bourdon tube pressure gauge
	(b) bellow pressure gauge
	(c) dead-weight pressure gauge
	(d) not a specific one is an example
47.	1 Torr is
	(a) 760 mm Hg (b) 10 mm Hg
	$(c) 1 \text{ mm Hg} \qquad (d) 10 \text{ cm Hg}$
48.	"Pressure in a point of a fluid remain constant in all directions" is law of
	(a) pascal (b) archimedes
	(c) torricelli (d) hoop
49.	Buoyant force applied on a submerged body
	(a) vertically upward
	(b) vertically downward
	(c) in all direction equally
	(d) in horizontal direction
	.,

- **50.** Stability of a floating body is measured by (*a*) geocentric height
 - (b) meta centric height
 - (c) size and shape of the body
 - (d) all of the above
- **51.** Restoring moment applied on body during
 - (*a*) stable position
 - (b) neutrally stable position
 - (c) unstable position
 - (d) meta stable position
- **52.** When small angular displacement given to a floating body its starts oscillating about
 - (a) centre of pressure
 - (b) meta centre
 - (c) centre of gravity
 - (d) any one of above
- 53. When meta centric height is negative
 - (a) body cannot float vertically
 - (b) body can float vertically
 - (c) body should submerge vertically
 - (d) body can float horizontally
- **54.** For small angle of tilt position of meta centre will
 - (a) change accordingly
 - (b) remains constant
 - (c) go downward (d) go upward
- 55. Total force on a curved surface area

(a)
$$P = \sqrt{P_H^2 + P_v^2}$$
 (b) $P = (P_H^2 + P_v^2)^{1/3}$

(c)
$$P = (P_H^2 + P_v^2)^{2/3}$$
 (d) $P = (P_H^2 + P_v^2)$

- **56.** Centre of pressure (h) for an inclined immersed surface is
 - (a) $I_G \sin^2 \theta / A + A \overline{x}$
 - (b) $I_G \sin \theta / \overline{Ax} + \overline{x}$
 - (c) $I_G \sin^2 \theta / A \overline{x} + \overline{x}$
 - (d) $I_G \cos^2 \theta / \overline{Ax} + \overline{x}$
- 57. A dam may fail due to
 - (*a*) sliding along its base
 - (b) shear at the weaker section
 - (c) over turning
 - (d) all of the above

- **58.** Which of the following gate provide in cannel for navigation?
 - (a) lock gate
 - (b) sluice gate
 - (c) all the above
 - (d) no gate provided for navigation
- 59. Piezometer used to measure
 - (*a*) vacuum pressure and gauge pressure.
 - (b) vacuum pressure only
 - (c) gauge pressure only
 - (d) atmospheric pressure only
- **60.** Piezometer used to measure
 - (a) large pressures in the lighter liquids
 - (b) gas pressure
 - (c) moderate pressure of fluids
 - (d) moderate pressure of liquids
- **61.** For high accuracy measurement of pressure difference following is used
 - (a) inverted U-tube differential manometer
 - (b) U-tube differential manometer
 - (c) vertical single column manometer
 - (d) piezometer
- **62.** Which one is correct
 - (a) $P_{\text{abs}} = P_{\text{atm}} P_{\text{gauge}}$
 - (b) $P_{\text{abs}} = P_{\text{atm}} P_{\text{vacuum}}$

$$(c) P_{abs} = P_{atm} + P_{vacuum}$$

(d)
$$P_{\text{gauge}} = P_{\text{atm}} - P_{\text{abs}}$$

- **63.** To describe motion of a fluid particle one should concentrate on the movement of a single particle in
 - (a) eulerian method
 - (b) laplace method
 - (c) langrangian method
 - (d) both (b) and (c)
- **64.** To describe motion of a fluid particle one should concentrate on a point in the fluid system
 - (a) eulerian method
 - (b) bernoulli's method
 - (c) langrangian method
 - (d) both (a) and (b)
- **65.** The type of flow in which velocity of fluid does not change at a point with respect to time is called

- (a) uniform flow (b) steady flow
- (c) laminar flow
- (d) incompressible flow
- **66.** The type of flow in which velocity of fluid does not change at a given time with respect to space is called
 - (a) uniform flow (b) steady flow
 - (c) laminar flow
 - (d) incompressible flow
- **67.** If $(\Delta V / \Delta S) = 0$ at constant time its indicates
 - (a) uniform flow
 - (b) non uniform flow
 - (c) laminar flow
 - (d) steady flow
- **68.** Flow through a non-prismatic channel at constant flow rate is an example of
 - (a) uniform flow
 - (b) steady flow
 - (c) laminar flow
 - (d) incompressible flow
- 69. Flow through a reducer is an example of (a) one dimensional flow
 - (b) two dimensional flows
 - (c) three dimensional flows
 - (d) multi dimensional flow
- 70. Flow through a prismatic pipe at constant flow rate is an example of(a) uniform flow
 - (b) non uniform flow
 - (c) laminar flow
 - (d) steady flow
- **71.** Flow through a straight prismatic pipe of fixed diameter is an example of
 - (a) uniform flow
 - (b) non uniform flow
 - (c) laminar flow
 - (d) steady flow
- **72.** Flow through a prismatic pipe bend of fixed diameter is an example of
 - (a) uniform flow
 - (b) non uniform flow
 - (c) laminar flow
 - (d) steady flow

- 73. Flow through main stream of ganges river could be (a) one dimensional flow (b) two dimensional flows (c) three dimensional flows (d) multi dimensional flow 74. In laminar flow change of momentum is (a) very high (b) very low (c) zero (d) none of the above 75. In high turbulent flow change of momentum is (a) very high (b) very low (c) zero (d) none of the above 76. Supersonic aerodynamic flow is an example of (a) non-compressible flow (b) compressible flow (c) none of the above (d) non predictable 77. Sub-sonic aerodynamic flow is an example of (a) non-compressible flow (b) compressible flow (c) none of the above (d) can't be predictable **78.** Potential flow is (a) steady and rotational (b) unsteady and rotational (c) steady and irrotational (d) unsteady and irrotational 79. In stream line flow, stream line space related with its velocity as below (a) stream line space \propto stream line velocity (b) stream line space \propto 1/stream line velocity (c) stream line space \propto 1/stream line
 - velocity² (d) stream line space ∞ stream line velocity²

80. Flow through Pipe is laminar when Re is 88. Streak line and stream lines are different in (a) < 2500(a) uniform flow (b) steady flow (b) < 2000(c) unsteady flow (d) both (a) and (b)(c) > 2000 but < 400089. In case of unsteady flow the streamline (d) < 4000pattern 81. Flow through pipe is turbulent when Re (a) may remain same is (b) will not remain same (a) < 2500(b) < 2000(c) may or may not remain same (c) < 4000(d) > 4000(d) always remain same 82. Flow through pipe is transitional when 90. Vorticity is Re is (a) circular $\int V \cos \theta \, ds$ (a) < 2500 but > 1500(b) circular $\int V \sin \theta \, ds$ (b) < 2000(c) circular $\int V \operatorname{cosec} \theta \, ds$ (c) > 2000 but < 4000(d) circular $\int S \cos \theta \, dv$ (d) > 4000**91.** For an rotational flow 83. Streamline flow occur during (a) vorticity is one (a) uniform flow (b) vorticity is zero (b) non uniform flow (c) vorticity is < 1(c) laminar flow (d) vorticity is > 0(d) unsteady flow 92. Potential function is exist 84. Converging of a stream line along a (a) for irrotational flow only particular direction is indicates (b) for both rotational and irrotational (a) constant velocity flow in that direction flow (b) decelerated flow in that direction (c) for rotational flow only (c) accelerated flow in that direction (d) not exist for both type of flow (d) none **93.** Stream function is applicable to 85. Whose theorem could be used as (a) for irrotational flow only alternative derivation in place of (b) for both rotational and irrotational Reynolds transport theorem? flow (a) Leibnitz method (c) ffor rotational flow only (b) Laplace method (d) not exist for both type of flow (c) Langrangian method **94.** Following relationship is hold good for (d) both (a) and (c) $u = -d\varphi/dx = d\psi/dy$; $v = -d\varphi/dy = d\psi/dx$ 86. Stream tube should not have (a) rotational and compressible flow (*a*) finite dimension (b) irrotational and compressible flow (b) flow parallel to stream line (c) rotational and non compressible flow (c) flow across the surface (d) irrotational and non compressible (*d*) All of the above. flow 87. If streak line and path lines are originate 95. Stream line and equi potential line are at same point then they (a) parallel to each other (*a*) will coincide at a point (b) perpendicular to each other (b) not-coincide at a point (c) intersect each other at any angle (c) may coincide at a point (d) either parallel or perpendicular to (d) always they are parallel each other

96.	Stream line and equi potential line are			
	(a) parallel to each other			
	(b) intersect each other orthogonally			
	(c) intersect each other obliquely			
	(d) either parallel or perpendicular to			
	each other			
97.	Flow net method is used to study			
	(a) one dimensional rotational flow			
	(b) two dimensional rotational flows	106		
	(c) three dimensional rotational flows	100.		
	(d) two dimensional irrotational flows			
98.	Flow net use to analyze			
	(a) equipotential lines only			
	(b) streamlines only			
	(c) both (a) and (b)			
	(d) none of the above			
99.	Quantity of seepage below a hydraulic			
	structure could be determine by			
	(a) flow net method			
	(b) laplace method			
	(c) langrangian method			
	(d) both (a) and (b)			
100.). Flow net method is used to study			
	(a) one dimensional rotational flow			
	(b) two dimensional rotational flows			
	(c) three dimensional rotational flows			
101	(a) two unitensional positional flows 108			
101.	Bulk modulus of fluid is related with			
	(a) froude number			
	(b) mach number			
	(c) reynolds number $(l) = l_{1} c_{1} c_{2} c_{3} c_{4} c_{5}$	100		
100	(a) euler's number	109.		
102.	In case of streak-line for unsteady flow all particles are pass through			
	(a) common point			
	(b) one point to another			
	(c) zigzag nath			
	(d) either (a) or (b)			
103	Streak line and stream lines are different	110.		
100.	in	1100		
	(a) uniform flow (b) steady flow			
	(c) unsteady flow (d) both (a) and (b)			
104.	In dynamic equation of fluid it assume as			
	(a) compressible and non-viscous			

(b) incompressible and non-viscous (c) compressible and viscous (d) incompressible and viscous Bernoulli's equation follow following principle (a) conservation of linear momentum (b) conservation of energy (c) conservation of mechanical energy (d) both (a) and (c)Bernoulli's equation is applicable to 1. in-viscous fluid flow 2. compressible flow 3. incompressible flow 4. viscous fluid flow 5. steady flow 6. unsteady flow Choose the answer: (a) only (1)(b) both (1), (3) and (5) (c) both (2), (4) and (5)(d) both (1), (2) and (6) In Bernoulli's equation Pr. E, K.E. and Potential energy is constant across (a) the stream line (b) the perpendicular to stream line (c) the equipotential line (d) the velocity gradient Which represents Euler's equation (a) $dp/\rho + V/dV + g dZ = 0$ (b) $dp/\rho + V.dV + g/dZ = 0$ $(c) dp/\rho + VdV + g dZ = 0$ (d) dp/p + V/dV + g dZ = 0Variation of pressure with elevation in steady, incompressible fluid flow in compare to same stationary fluid is (a) same (b) different (c) varies exponentially (d) varies logarithmically For unsteady compressible flow the Bernoulli's equation is (a) $P/\rho + V^2/2 + gz = 0$ $(b) \int dP / \rho + V^2 / 2 + gz = 0$ (c) $dp/\rho + VdV + g dZ = 0$

 $(d) \int dP/\rho + \int dS * dV/dt + V^2/2 + gz = 0$

111. For steady flow the Bernoulli's equation	(c) dynamic pressure
is	(d) hydrostatic pressure
(a) $P/\rho + V^2/2 + gz = 0$	120. Where stagnation pressure is more than
$(b) \int dP / \rho + V^2 / 2 + gz = 0$	atmospheric pressure there
$(c) dp/\rho + VdV + g dZ = 0$	(a) only pitot tube is used
$(d) \int dP/\rho + \int dS^* dV/dt + V^2/2 + gz = 0$	(b) both piezometer and Pitot tube used
112. For steady, incompressible flow the	(c) only piezometer is used
Bernoulli's equation is (a) $P/\rho + V^2/2 + gz = 0$	(d) both static pressure tap and pitot tube can't be used
$(b)\int dP/\rho + V^2/2 + gz = 0$	121. To measure stagnation pressure of
$(c) dp/\rho + VdV + g dZ = 0$	flowing gas which one can't be use
$(d) \int dP/\rho + \int dS^* dV/dt + V^2/2 + gz = 0$	(a) piezometer
113. Stagnation pressure is	(b) static pressure taps
(a) static pressure – dynamic pressure	(c) pitot tube
(b) static pressure	(d) both (a) and (c)
(c) total pressure – dynamic pressure	122. At stagnation point velocity of flowing fluid particle is
(d) total pressure – hydrostatic pressure	(a) maximum (b) minimum
114. Stagnation pressure represents as	(c) zero (d) none
(a) $P + \rho V/2$ (b) $P + \rho V^2/2$	123. During stagnation pressure measu-
(c) $P + \rho gh$ (d) $\rho gh + \rho V^2/2$	rement number of stagnation streamline
115. Total pressure represents as $(x) \mathbf{D} = \frac{V^2}{2} \mathbf{D} = \frac{(k)}{2} \mathbf{D} + \frac{V^2}{2} \mathbf{D}$	appear in vertical plane is
(a) $P + \rho V^2/2$ (b) $\rho g n + \rho V^2/2$ (c) $P + a g h + a V^2/2$ (d) $P + a g h + a V^2/2$	(a) always one (b) always two
(c) $r + pgn + pv/2$ (a) $r + pgn - pv/2$ 116 Stagnation prossure is	(c) more than one (d) infinite
(a) static pressure \pm Dynamic pressure	124. Kinetic Energy correction factor (α) is
(b) static pressure (b) static pressure	(a) ratio of K.E. per second based on
(c) static pressure + Hydrostatic pressure	actual velocity to Avg. velocity.
(d) hydrostatic pressure + Dynamic	(0) ratio of K.E. per second based on avg.
pressure	(c) ratio of KE per second based on
117. Piezometer indicates	actual velocity to P.E.
(a) stagnation pressure	(d) ratio of K.E. per second based on avg.
(b) static pressure	velocity to local velocity.
(c) dynamic pressure	125. Hydraulic gradient Line represents
(d) hydrostatic pressure	(a) static head + Dynamic head
118. Pitot tube indicates	(b) static head + Hydrostatic head
(a) stagnation pressure	(c) hydrostatic + Dynamic head
(b) static pressure	(d) hydrostatic head only
(c) dynamic pressure	126. For a two-dimensional flow stagnation
(d) hydrostatic pressure	point is a (r) line only
119. Difference between pitot tube and piezometer reading indicator	(a) line only (b) line parallel to Z arris
(a) stagnation program	(0) The parallel to Z-axis (a) surface percellel to Z axis
(a) stagnation pressure	(c) surface parallel to Σ -axis (d) none of the above
(0) static pressure	(a) home of the above

127.	Energy gradient line represents				
	(a) static head + dynamic head				
	(b) static head + hydrostatic head				
	(c) static head + hydrostatic + dynamic				
	head				
	(d) hydrostatic head only				
128.	Impulse momentum equation used in				
	(a) pipe bends (b) jet propulsion				
	(c) nozzle flow (d) both (a) and (b)				
129.	For a two-dimensional flow stagnation				
	stream line is a				
	(a) line only (b)				
	(b) surface parallel to Z-axis				
	(c) surface perpendicular to Z-axis				
	(d) none of the above				
130.	Along a stationary reservoir				
	(<i>a</i>) E.G.L. and H.G.L. are same on water surface.				
	(b) E.G.L. is below the surface but H.G.L.				
	is along the surface.				
	(c) H.G.L. is below the surface but E.G.L.				
	is along the surface.				
	(d) E.G.L. and H.G.L. both are same below the surface.				
131.	Pitot static tube used to measure				
	(a) static pressure only				
	(b) stagnation pressure only				
	(c) both (a) and (b)				
	(d) dynamic pressure only				
132.	Distance between E.G.L. and H.G.L. is				
	always				
	(a) hydrostatic head				
	(b) dynamic head				
	(c) static head				
	(d) stagnation pressure head				
133.	EGL is always				
	(a) above H.G.L.				
	(b) below H.G.L.				
	(c) either above or below H.G.L.				
	(d) coincide with H.G.L.				
134.	In an Open channel flow				
-	(a) H.G.L. is on the free surface but				
	E.G.L. is above free surface at a distance of dynamic head of flow.				

	distance of dynamic head of flow.		
	(c) E.G.L. and H.G.	L. are same on water	
	surface.		
	(d) H.G.L. is on the E.G.L. is below	ne free surface but	
	E.G.L. 18 Delow	ric hood of flow	
195	Threat ratio of a yor	turimeter is	
199.			
	(a) 0.25 - 0.66	(b) 0.2 - 0.75	
100	(c) 0.25 - 0.75	(a) 0.5 - 0.75	
136.	Mass flux is	•,	
	(a) mass flow rate p	er unit area	
	(b) mass flow rate		
	(c) mass flow per un	it time	
	(d) all of the above		
137.	Co-efficient of ventu	rimeter is	
	(a) $A_1/A_2\sqrt{A_1^3 - A_2^3} \times$	$<\sqrt{2gh}$	
	(b) $A_1 A_2 / \sqrt{A_1^3 - A_2^3} \times$	$\sqrt{2gh}$	
	(c) $A_1 A_2 / \sqrt{A_1^2 - A_2^2} >$	$<\sqrt{2gh}$	
	$(d) \ A_1 / A_2 \sqrt{A_1^2 - A_2^2} >$	$<\sqrt{2gh}$	
138.	Co-efficient of vent range of	urimeter lies in the	
	$(a) \ 0.91 - 0.95$	(b) 0.96 - 0.98	
	(c) 0.9 - 0.98	(d) 0.6 - 0.9	
139.	If kinetic energy co	rrection factor (α) is	
	= 1 then flow is		
	(a) uniform flow	(b) steady flow	
	(c) laminar flow	(d) both (a) and (c)	
140.	If kinetic energy co = 3 then flow is	rrection factor (α) is	
	(a) uniform flow	(b) steady flow	
	(c) laminar flow	(d) both (a) and (c)	
141	If Kinetic Energy cor	rection factor (α) is > 1	
111,	but < 3 then flow is		
	(a) non-uniform flow	v(b) turbulent flow	
	(c) laminar flow	(d) both (a) and (c)	
142.	(c) laminar flow The pressure at a pot that lies above H.G.	(d) both (a) and (c) bint in a fluid section L. of flow is	

(b) E.G.L. is on the free surface but H.G.L. is above free surface at a

	(c) either positive depends on visco	or negative which sity of fluid	151.	If momentum correction then flow is	tion factor (β) is = 4/3
	(d) zero	•		(a) uniform flow	(b) steady flow
143.	Gauge pressure at th	ne point where H.G.L.		(c) laminar flow	(d) both (a) and (c)
	cut fluid flow line		152.	Momentum correction	on factor (β) is related
	(<i>a</i>) is negative	(b) is zero		as	
	(c) is positive			(a) open channel flow	w > flow through pipe
	(d) is either positive	or negative		(b) open channel flow	w < flow through pipe
144.	Diameter of orifice	/diameter of pipe is		(c) open channel flow	w = flow through pipe
	mainly lies between			(d) no specific relativ	on is existing
	(a) $0.3 - 0.9$	(b) 0.4 - 0.7	153.	Rotameter is also ca	lled
	(c) 0.4 - 0.85	(d) 0.5 - 0.85		(a) constant area flo	w meter
145.	Which of the following	ing could be used for		(b) variable area flor	w meter
	measuring flow of flu	(1)		(c) parabolic area flo	ow meter
	(a) venturi meter	(b) or find the meter (d) with the track of the base of the track of the base of the		(d) reducing area flo	w meter
140	(c) both (a) and (b) Small on long Ori	(a) pitot static tube	154.	Coriolis coefficient i	s also called
140.	means of	life is classified by		(a) momentum corre	ection factor
	(α) depth of orifice of	nlv		(b) kinetic energy co	rrection factor
	(b) head above the	centre of the orifice		(c) dynamic head co	rrection factor
	only			(d) both (b) and (c)	_
	(c) discharge flow ra	ite	155.	Free vortex also call	ed
	(d) both (a) and (b)			(a) irrotational vorte	ex
147.	Which of the followi	ing could be used for		(b) rotational vortex	
	measuring flow of lie	quids only		(c) potential vortex	
	(a) orifice meter	(b) pitot static tube	1	(d) both (a) and (c)	
	(c) both (a) and (b)	(d) venturi meter	156.	Force vortex also cal	lled
148.	Net force acting or	n a mass of fluid is		(a) irrotational vorte	ex
	equal to	/T \ T /T \/T		(b) rotational vortex	
	(a) d (mv)/dt	(b) $d (I\omega)/dt$		(c) potential vortex (l) hoth (l) and (l)	
	(c) $d (mv)/dt$ and $d ($	$I\omega)/dt$	155	(a) both (a) and (c)	forter (a) could be
1 40	(<i>d</i>) change in velocit	y of that mass	197.	represent as	factor (α) could be
149.	Momentum correction	on factor (β) is			
	(<i>a</i>) linear momentum	n per second based on avg. velocity.		(a) $1/A \rfloor (u/\overline{u})^3 dA$	(b) $A \rfloor (u/\overline{u})^3 dA$
	(b) angular moment	um per second based		$(c) \int (\overline{u}/u)^3 dA/A$	$(d) \ 1/A \int (u/\overline{u})^2 dA$
	on actual velocity	y to avg. velocity.	158.	Momentum correcti	on factor (β) could be
	(c) angular moment	um per second based		represent as	
	on avg. velocity t	o Actual velocity.		(a) $1/A \left[\left(u/\overline{u} \right)^3 dA \right]$	(b) $A \int (u/\overline{u})^3 dA$
	(d) linear momentum	n per second based on			
	avg. velocity to a	ctual velocity.		$(c) \mid (\overline{u}/u)^3 dA/A$	$(d) \ 1/A \rfloor (u/\overline{u})^2 dA$
150.	If momentum correct	$ (\beta) = 1 $	159.	Drop of liquid level a	at centre when closed
	(α) uniform flow	(b) steady flow		sealed cylinder rotat	te about its axis is $d =$
	(c) laminar flow	(d) both (a) and (c)		(a) $\omega^2 K^2/g$	$(0) 0^{2} K^{2}/2g$
	(c) laminar flow	(d) both (a) and (c)		$(c) \omega^2 R/2g$	$(d) 2\omega^2 R^2/g$

160. Whirlpool in a river is an example of		(a) sharp edge orifice
(a) irrotational vortex		(b) bell-mounted orifice
(b) rotational vortex		(c) square orifice
(c) potential vortex		(d) not defined
(d) both (a) and (c)	170.	Friction loss is mini
161. Whirlpool in a washing machine without		orifice?
cloth is an example of		(a) sharp edge orifice
(a) irrotational vortex		(b) bell-mounted orifice
(b) rotational vortex		(c) square orifice (d)
(c) potential vortex	171.	Torricelli's equation is
(d) both (a) and (c)		$(a) 2a \sqrt{b}$ (b)
162. Free surface during vortex is example of		$(a) 2gyn \qquad (b)$
(a) paraboloid (b) cylindrical		(c) $2\sqrt{gh}$ (d)
(c) ellipsoid (d) hyperboloid	172.	Which of the followin
163. Elbow meter used to measure		value
(a) flows at pipe bend		(a) coefficient of dischar
(b) flow at horizontal pipe section		(b) coefficient of velocity
(c) flow at vertical pipe section		(c) coefficient of contrac
(d) flow at any position in pipe		(d) coefficient of resistant
164. Shape of orifice depends on shape of	173.	Which of the followin
(<i>a</i>) downstream edge		value
(b) upstream edge		(a) coefficient of dischar
(c) both (a) and (b)		(b) coefficient of velocity
(d) shape of water flow outlet		(c) coefficient of contrac
165. Vena contracta found in flow path of		(d) coefficient of resistant
(a) orifice (b) mouthpiece	174.	Which one is correct?
(c) nozzle (d) all of the above		$(a) C_v > C_c > C_d \qquad (b)$
166. Pressure head at Vena Contracta		$(c) \ C_d \le C_v > C_c \qquad (d)$
compared to atmospheric is	175.	In a running full interna
(a) high (b) low		(a) diameter of jet is less
(c) same		mouthpiece.
(d) higher or lower depends on shape of edge		(b) diameter of jet is mo of mouthpiece.
167. At vena contracta velocity head is		(c) diameter of jet i
(a) maximum (b) minimum		diameter of mouthpi
(c) not change		(<i>d</i>) no definite relation i
(d) change very slightly	176.	In a running free intern
168. At Vena Contracta Pressure head is		(a) diameter of jet is less
(a) minimum (b) zero		mouthplece. (L) diameters f is the
(c) less than atmospheric pressure		(<i>o</i>) diameter of jet is mo
(d) not change		(c) diameter of jot i
169. For same size discharge is maximum for		diameter of mouthpi
following orifice		(d) no definite relation i

ninimum for which

(d) not defined

a)
$$2g\sqrt{h}$$
 (b) $\sqrt{2gh}$

(c)
$$2\sqrt{gh}$$
 (d) \sqrt{gh}

wing has maximum

charge

traction

- istance
- wing has maximum

charge (C_d)

ocity (C_v)

traction (C_c)

- istance (C_r)
- ?
- ernal mouthpiece
 - less than diameter of
 - more than diameter
 - t is equal to the thpiece.
 - on is there.
- ernal mouthpiece
 - less than diameter of
 - more than diameter
 - t is equal to the thpiece.
 - on is there.

177.	Borda's mouthpiece is an example of	184.	For sharp edge orifice C_v is
	(a) external mouthpiece		$(a) \ 0.95 \ {\rm to} \ 0.98 \qquad (b) \ 0.65 \ {\rm to} \ 0.77$
	(b) internal mouthpiece		$(c) \ 0.61 \ {\rm to} \ 0.70 \qquad (d) \ 0.90 \ {\rm to} \ 0.92$
	(c) external convergent-divergent mouth- piece	185.	Weir and Notches are different according to
	(d) internal running free mouthpiece		(<i>a</i>) rate of flow
178.	Re-entrant mouthpiece is an example of		(b) position with respect to surface of
	(a) external mouthpiece		tank
	(b) internal mouthpiece		(c) water surface level with respect to
	(c) external convergent-divergent mouth-		(d) size
	piece (d) internal running free mouthniece	186.	Orifice and Notches are different
179.	Borda's mouthpiece will be running full		according to
1.00	type if length of tube is		(a) rate of flow (b) must be made to confidence of
	(a) 3.5 times of its diameter		(b) position with respect to surface of tank
	(b) 2.5 times of its diameter		(c) water surface level with respect to
	(c) 3.0 times of its diameter		upper edge
	(d) 5 times of its diameter		(d) size
180.	Coefficient of discharge for running free	187.	Nappe is
			(<i>a</i>) top of weirs over which water flows.
	(a) less than running full mouthpiece		(b) bottom surface of water sheet flows
	(a) aqual to supping full mouthpiece		(c) shoot of water flowing over Weirs
	(c) equal to running full mouthpiece		(d) sheet of water reaches the weir before
181	Discharge through a mouthniece		it flows over it.
101.	compared to orifice (for same size) is	188.	Crestis
	(a) always low (b) always high		(<i>a</i>) top of weirs over which water flows.
	(c) always same (d) slightly less		(b) bottom surface of water sheet flows
182.	Discharge through mouthpiece is more		over the weirs.
	compared to orifice (for same size) due to		(c) sheet of water flowing over weirs.
	(a) decrease of pressure at vena contracta is higher.		(<i>d</i>) sheet of water reaches the weir before it flows over it.
	(b) decrease of pressure at vena contracta is lower.	189.	Most accurate Notch for low flow measurement is
	(c) decrease of velocity at vena contracta		(a) rectangular notch
	is higher.		(b) triangular notch
	(d) less frictional loss in mouthpieces.		(c) cippoletti notch
183.	The flow velocity found by Torricelli's		(d) steeped notch
	equation is	190.	Wide range of flow accurately measure by
	(a) average velocity		(a) rectangular notch
	(o) actual velocity (a) theoretical velocity		(b) triangular notch
	(c) theoretical velocity (d) $\mathbf{P} \mathbf{M} \mathbf{S}$ volcoity		(c) cippoletti notch
			(d) steeped notch

191.	Discharge flow measurement will be more erroneous for same error in measurement of head is	199.	(a) V_a^2/g (b) $V_a^2/2g$ (c) $V_a/2g$ (d) $2V_a^2/g$ Due to end contraction
	(a) rectangular noten		(a) effective length decrease.
	(b) triangular notch		(b) effective length may increase or
	(c) trapezoidal notch		(a) officiative length increase
	(d) steeped notch		(d) effective length will not effect
192.	Error in discharge measurement will how	200	(a) effective religin will not affect.
	much for every % error in nead	200.	(a) officiative length overall decrease $10%$
	(a) 2.5% (b) 1.5%		(a) effective length over all decrease 10% .
			decrease and its depends on its shape.
109	$(c) 0.15\% \qquad (a) 0.25\%$		(c) effective length overall increase 20% .
195.			(d) effective length overall decrease 20% .
	(a) decrease discharge rate	201.	End contraction is not applicable (while
	(b) increase discharge rate		Francis's formula use (d) to
	(c) does not have any effect on discharge		1. cippoletti weir
	(d) none of the above		2. triangular weir
10/	(a) none of the above		3. rectangular weir
134.	(a) regtongular weir		4. suppressed triangular weir
	(a) rectangular weir		5. non-suppressed trapezoidal weir
	(a) transpidel weir		6. suppressed trapezoidal weir
	(c) trapezoidal weir (d) trapezoidal weir with aposial patie of		Select answer:
	slant edge and height		(a) sl. no. 1
195.	For suppressed weir crest length is		(b) sl. no. 1, 4 and 6
	(<i>a</i>) would to width of the channel		(c) sl. no. 1, 3 and 6
	(b) 0.5 times width of the channel	000	(d) sl. no. 2, 3 and 5
	(c) 2 times width of the channel	202.	Error in discharge measurement will be more for every % error in Head
	(d) 5 times width of the channel		measurement is for
196.	End contraction will		(a) rectangular notch
2000	(<i>a</i>) decrease discharge rate		(b) triangular notch
	(b) increase discharge rate		(c) both are same for (a) and (b)
	(c) does not have any effect on discharge rate		(d) always for rectangular notch it is maximum.
	(d) none of the above	203.	For a Narrow crested weir
197.	According to whose formula end		$(a) 2L < H \qquad (b) 2L > H$
	contraction should be consider for		$(c) \ 2L \ge H \qquad (d) \ 2L = H$
	discharge measurement through weir	204.	Discharge over Narrow Crested wire is
	(a) francis formula		equal to
	(b) bazin's formula		(a) alsonarge over Ogee weir
	(c) manning formula		(<i>o</i>) discharge over rectangular weir
	(d) both (a) and (b)		(c) unscharge over Uppoletti weir (d) both (c) and (b)
198.	Head added due to approach velocity is		(a) both (a) and (b)

205.	Magnitude of pressure raise during water hammer depends on	212.	A pipe with uniform cross-section the slope of the hydraulic gradient line is (a) more than energy gradient line
	2 diameter of nine		(b) less than energy gradient line
	2. velocity of liquid flow		(c) equal to energy gradient line
	1 density of liquid		(d) it may cross each others
	5. clastic property of pipe material	213.	In Chezy's equation $V = C (mi)^{1/2}$
	6. Compressibility of liquid		(a) here V is maximum velocity
	Choose answer:		(b) here V is minimum velocity
	(α) sl no 1 2 3 and 5		(c) here V is mean velocity
	(a) si. no. 1, 2, 5 and 5 (h) sl. no. 1, 3 and 5		(d) RMS of above three types of velocity
	(c) sl no $1, 2, 3$ and 4	214.	Turbulent flow is mainly due to
	(c) si. no. 1, 2, 3 and $\frac{1}{2}$		(a) momentum transfer
206	Valvo closuro will be called as gradual		(b) velocity transfer
200.	closure when		(c) energy transfer
	(a) $T > 2L/V$ (b) $T \ge 2L/V$		(d) mass transfer
	(c) $T < 2L/V$ (d) $T < 2L/V$	215.	Velocity distribution is more uniform for
	where T is time. L is length of pipe and V		(a) laminar flow (b) viscous flow
	is velocity of pressure wave		(c) logarithmic flow (d) both (b) and (c)
207.	Power transmitted through a pipe will be maximum when ratio of head of water		Valve closure will be called as gradual
			closure when $(1) / (1)$
	flow and loss of head due to friction inside		$ (a) I > 2L/V (b) I \ge 2L/V (c) T = 2L/V (c) T \le 2L/V $
	pipe is		(c) $I < 2L/V$ (d) $I \le 2L/V$ Where T is time L is length of pine and V.
	$(a) 4 (b) \frac{1}{3}$		is velocity of pressure wave
	(c) 3 (d) 2/3	217.	Convective turbulence flow occur when
208.	Dupit's equation is		(a) K.E. is converted to P.E.
	(a) $L/D^3 = L_1/D_1^3 + L_2/D_2^3 + L_3/D_3^3$		(b) P.E. is converted to K.E.
	(b) $L/D^3 = L_1/D_1^3 + L_2/D_2^3 + L_3/D_3^3$		(c) Flow as jets
	(c) $L/D = L_1/D_1 + L_2/D_2 + L_3/D_3$		(d) there is a immediate vicinity of solid
200	$(d) L/D_2 = L_1/D_1^2 + L_2/D_2^2 + L_3/D_3^2$		surface
209.	In Chezy's equation $V = C (mi)^{1/2}$		Darcy-Weisbach equation is applicable to
	(a) here v is maximum velocity (b) here V is maximum velocity		(a) turbulent flow only
	(b) here V is minimum velocity		(b) laminar flow only
	(c) here v is mean velocity (J) DMS of the set three three stars of scalarity		(c) all types of flow through channel
010	(a) KMS of above three types of velocity		(d) all types of flow through pipes
210.	A line is drawn joining the plezometric	219.	Ratio of Hydraulic diameter to Hydraulic
	(a) total energy line		radius
	(<i>h</i>) hydraulic gradient line		(a) 2 (b) 0.5
	(c) total head line		(c) 4 (d) 0.25
	(d) mean gradient line	220.	Hydraulic mean depth is
911	Difference between F G L and H G L is		(a) A^*P^{-1} (A = area of flow and P = wetted
<i>4</i> 11,	(a) velocity head (b) prossure Head		perimeter)
	(a) verticity field (0) pressure field (a) alovation Hoad (d) both (a) and (b)		$(b) AP \qquad (c) P/A$
	(c) elevation fread (a) both (a) and (b)		$(d) \perp AP$

14

 229. Total shear stress in turbulent flow is (a) shear stress due to viscosity + shear stress due to turbulence. (b) shear stress due to viscosity - shear stress due to turbulence.
 (c) shear stress due to turbulence – shear stress due to viscosity (d) shear stress due to turbulence only. 230. Kinematic viscosity during turbulent flow is called (a) kinematic eddy viscosity (b) kinematic turbulent viscosity
 (c) eddy diffusivity of momentum (d) all of the above 231. Turbulent shear stress is proportional to (a) R.M.S of the product of the fluctuating
 velocity components. (b) average of the product of the fluctuating velocity components. (c) line average of the product of the fluctuating velocity components. (d) modulus of the product of the
 fluctuating velocity components. 232. Turbulent shear stress is equal to (a) - ρ × Average of the product of the fluctuating velocity components. (b) ρ × Average of the product of the
 fluctuating velocity components. (c) sum of the product of the fluctuating velocity components. (d) p × Average of the product of the fluctuating velocity components.
 233. Mixing length theory introduced by (a) prandtl law (b) boussinesq's theory (c) reynolds theory (d) prandtl-Karman universal law
 234. Entrance effect is insignificant after (a) 10D (D is diameter of pipe) (b) 5D (c) Full length of pipe (d) 1.359D × Re^{1/4} 235. For liquid flow circular flow section select due to

- (a) this flow section is easily available as pipe.
- (b) this cross section reduces pressure loss.
- (c) this cross section is highly efficient for flow measurement.
- (d) it could withstand large pressure difference of inside and outside without much distortion.

236. Hydraulic diameter of square duct is

- (a) side of the square
- (b) $2 \times$ side of the square
- (c) 1/4 side of square
- (d) 4 diagonal of square
- 237. Hydraulic diameter of pipe is
 - (a) diameter of pipe
 - (b) $2 \times \text{diameter of pipe}$
 - (c) 1/4 diameter of pipe
 - (d) 4 diameter of pipe
- 238. Critical Reynolds number depends on
 - (a) geometry of flow section only
 - (*b*) flow condition only
 - (c) flow condition and density of fluid
 - (d) both (a) and (b)
- **239.** Critical Reynolds number for laminar flow through circular pipe section is $(a) \le 2300$ (b) ≥ 4000

(a)
$$\leq 2300$$
 (b) ≥ 4000

 (c) ≤ 2000
 (d) $\leq 3 \times 10^5$

- **240.** Ratio of maximum and average velocity in case of laminar flow is
 - $\begin{array}{ccc} (a) \ 4 & (b) \ 2 \\ (c) \ 3 & (d) \ 8 \end{array}$
- **241.** Darcy friction factor is
 - $\begin{array}{ll} (a) \ 8\tau_{w} \ /\rho V_{avg}^{2} & (b) \ 32\tau_{w} \ /\rho V_{avg}^{2} \\ (c) \ 16\tau_{w} \ /\rho V_{avg}^{2} & (d) \ 64\tau_{w} \ /\rho V_{avg}^{2} \end{array}$
- **242.** Which one is correct for fully developed laminar flow through pipe
 - (*a*) friction factor (f) = 32/Re
 - (b) friction factor (f) = 16/Re
 - (c) friction factor (f) = 64/Re
 - (d) friction factor (f) = 8/Re
- **243.** During turbulent flow through pipe is assumed fully developed up to

- (a) 10D (D is diameter of pipe)(b) 5D
- (c) Full length of pipe
- (d) $1.359D \times Re^{1/4}$
- **244.** Friction factor for fully developed laminar flow through pipe
 - (a) depends on Re number only
 - (b) independent of Re number
 - (c) depends on Re number and roughness of pipe surface
 - (d) depends on roughness of surface only
- **245.** Pumping power required for flow through pipe is
 - 1. proportional to length of pipe
 - 2. inversely proportional to viscosity of flowing fluid
 - 3. proportional to viscosity of flowing fluid
 - 4. inversely proportional to fourth power of the radius of pipe
 - 5. proportional to fourth power of the radius of pipe
 - 6. proportional to square of the length of pipe

Select answer:

- (*a*) sl. no. 1, 3 and 4 (*b*) sl. no. 1, 2 and 4
- (c) sl. no. 2, 5 and 6 $\,(d)$ sl. no. 3, 4 and 6
- **246.** For triangular duct friction factor will be maximum when it is
 - (a) isosceles triangle
 - (b) equilateral triangle
 - (c) right angle triangle
 - (d) obtuse angle triangle
- **247.** Hydrodynamically developed flow is equivalent to fully developed flow when fluid in the pipe
 - (a) in thermal equilibrium
 - (b) in mechanical equilibrium
 - (c) got maximum speed
 - (d) in chemical equilibrium
- **248.** In fully developed flow region wall shear stress
 - (a) changed steadily
 - (b) remain constant
 - (c) remains minimum
 - (d) changed randomly

249. At entrance region of a pipe flow pressure	(c) approximately double
(a) your law (b) zono	(d) same
$ \begin{array}{c} (a) \text{ very low} \\ (b) \text{ zero} \\ (c) \text{ very high} \\ (d) \text{ regligible} \end{array} $	257. In case of fully developed flow in
(c) very nigh (a) negligible	norizontal now
laminar flow is	(<i>a</i>) viscous force is equal to pressure force.
(a) parabolic with max. at centre line and	(b) Viscous force is \geq pressure force
min. at pipe wall.	(c) Viscous force is \leq pressure force.
(b) parabolic with min. at centre line and	(d) Viscous force always > pressure force.
max. at pipe wall.	258. Velocity profile at viscous sub-layer is
(c) logarithmic with max. at centre line	(a) linear (b) parabolic
and min. at pipe wall.	(c) logarithmic (d) either (a) or (b)
(<i>d</i>) logarithmic with min. at centre line and max at nine wall	259. Flow profile at viscous sub-layer is
251. Hydrodynamic entry length for turbulent	(a) zig zag (b) streamlined
flow is	(c) divergent (d) either (b) or (c)
(a) approx $0.05 \times Re \times D$	260. The velocity component in the direction of
(b) approx $1.35 \times Re^{1/4} \times D$	normal to flow in laminar flow is
(c) approx $0.05 \times Re^{1/4} \times D$	(a) zero
(d) approx $0.5 \times Re \times D^{1/4}$	(b) a non-zero component with finite
252. During turbulent flow Buffer layer is	(a) higher than herizontal component
located at	(d) infinite
(a) next to viscous sub-layer	(a) minute 261 In turbulant flow (U, u) is called
(b) below viscous sub-layer	(a) velocity difference
(c) above inertial sub-layer	(a) velocity difference
(d) above turbulent layer	(c) velocity descent
253. Mass transfer co-efficient is maximum for	(d) both (b) and (c)
(a) laminar flow (b) turbulent flow	262 Hydrodynamic entry length for laminar
(c) transitional flow	flow is
(d) parabolic flow	(a) approx $0.05 \times Re \times D$
254. Most widely used flow meter to measure	(b) approx $1.35 \times Re^{1/4} \times D$
liquid volume directly is	(c) approx $0.05 \times Re^{1/4} \times D$
(a) nutating disc flow meter	(d) approx $0.5 imes Re imes D^{1/4}$
(b) orifice meter	263. Between nozzle and orifice meter C_d of
(c) venturi meter (d) piezometer tube	nozzle is
255. At the end of hydro dynamically entry	$(a) > C_d$ of orifice $(b) < C_d$ of orifice
developed value is	$(c) = C_d$ of orifice (d) either (a) or (b)
(a) about 2% (b) about 1%	264. Pump should run at
$(a) \operatorname{about} 2\% \qquad (b) \operatorname{about} 1\%$	(a) system curve and supply curve
256 Kinetic energy correction factor for fully	intersecting point.
developed turbulent flow in compare to	(0) performance curve and supply curve
fully develop laminar flow is	(c) system curve and performance curve
(a) more	intersecting point.
(b) approximately half	(d) operating point.

- 265. Relative roughness is
 - (a) roughness height of the pipe to diameter of pipe.
 - (b) roughness height of the pipe to radius of pipe.
 - (c) diameter of pipe to Roughness height of the pipe.
 - (d) radius of pipe to Roughness height of the pipe.
- **266.** Friction velocity is

(a)
$$\sqrt{\tau_w/\rho}$$
 (b) $\sqrt{\rho/\tau_w}$
(c) $\sqrt{\tau_w \times \rho}$ (d) τ_w/ρ

(c)
$$\sqrt{\tau_w} \times \rho$$
 (a) τ_w / ρ

- **267.** Eddy viscosity is minimum at
 - (a) centre of pipe
 - (b) just above the pipe wall
 - (c) at buffer layer
 - (d) just before the centre line of pipe
- **268.** Moody chart indicates
 - (a) Darcy friction factor
 - (b) Moody friction factor
 - (c) Reynolds friction factor
 - (d) Prandtl friction factor
- 269. During laminar flow friction factor
 - (a) proportional to Reynolds number
 - (b) inversely proportional to Reynolds number
 - (c) does not depends on Reynolds number
 - (d) depends on surface roughness only
- **270.** During laminar flow friction factor
 - (a) proportional to Reynolds number
 - (b) proportional to square root of Reynolds number
 - (c) does not depends on Reynolds number
 - (d) independents on surface roughness
- **271.** Eddy motion loses its intensity near to wall due to
 - (a) no slip condition at wall
 - (b) high slip condition at wall
 - (c) high momentum transfer at wall
 - (d) low shear stress near the wall
- **272.** Eddy diffusivity is an
 - (a) property of fluid

(b) not a property of fluid (c) a property depends on flow condition (d) both (b) and (c)**273.** For a smooth pipe friction factor (f) is (a) f = zero(b) f > zero(c) 0 < f < 3(d) Always f = 1**274.** Relative roughness curve is nearly horizontal at (*a*) $\epsilon/D = 0.1$ (*b*) $\epsilon/D = 0.01$ (*d*) $\epsilon/D = 0.011$ (*c*) $\epsilon/D = 0.11$ **275.** Flow rate through the entire pipe system will remain same for (*a*) pipe in parallel connection (b) pipe in series connection (c) both in series and parallel connection (d) it never remains same for entire system 276. During laminar flow pressure drop occur due to (a) viscous effects only (b) momentum transfer only (c) both (a) and (b) (d) none **277.** During laminar flow pressure drop is (*a*) reversible (*b*) irreversible (c) always reversible (d) either (a) or (b)278. Eddy viscosity is zero at (a) centre of pipe (b) just above the pipe wall (c) at buffer layer (d) it never be zero 279. During turbulent flow Eddy motion losses its intensity at (*a*) centre of pipe line (b) close to wall (c) between centre and wall (d) just close to centre **280.** Relative roughness indicates (a) mean height of roughness of the pipe

to pipe diameter.(b) RMS height of roughness of the pipe to pipe diameter.

- (c) maximum height of roughness of the pipe to pipe diameter.(d) mean brinkt of more height of the pipe.
- (d) mean height of roughness of the pipe to pipe radius.
- 281. For the same aspect ratio = 2 friction factor is high for
 (a) rectangular duct
 - (b) ellipse section tube
 - (c) both have same friction factor
 - (d) can't tell
- **282.** Following equation represents Poiseuille's law
 - (*a*) volume rate = $\delta P \times \pi \times D^3/128 \ \mu L$
 - (b) volume rate = $\delta P \times \pi \times D^4/128 \ \mu L$
 - (c) volume rate = $\delta P \times \pi \times D^4/64 \ \mu L$
 - (d) volume rate = $\delta P \times D^4/128 \ \mu L$
- **283.** Thickness of viscous sub-layer is
 - (*a*) approx. $0.1 \times \text{dia. of pipe}$
 - (b) approx. $0.01 \times \text{dia.}$ of pipe
 - (c) approx. $0.001 \times \text{dia.}$ of pipe
 - (*d*) approx. $0.2 \times \text{dia.}$ of pipe
- **284.** Friction factor (*f*) for a smooth pipe is not zero due to
 - (a) non slip condition
 - (b) high slip condition
 - (c) as $R_e > 2000$
 - (d) no, f may be zero
- **285.** Head loss through the entire pipe system will remain same for
 - (*a*) pipe in parallel connection.
 - (b) pipe in series connection.
 - (c) both in series and parallel connection.
 - (d) it never remains same for entire system.
- **286.** In a pipe network following should be satisfy
 - $(a)\ {\rm conservation}\ {\rm of}\ {\rm mass}\ {\rm momentum}.$
 - (b) conservation of mass
 - (c) continuity equation
 - (d) both (b) and (c)
- **287.** The flow over a body is said to be two dimensional if
 - 1. body is very short.

3. body cross section remains constant.
4. flow is parallel to body.
5. flow is normal to body.
6. body is long.
Correct answer is:

(a) sl. no. 1, 2 and 4
(b) sl. no. 2, 5 and 6
(c) sl. no. 2, 4 and 6
(d) sl. no. 3, 5 and 6

288. Air flow over running bullet is

(a) two-dimensional and axisymetric flow
(b) three dimensional and axisymetric flows
(c) two-dimensional and non-axisymetric flow.

2. body cross section is decrease along

flow.

- (d) two-dimensional and non-symmetric flow.
- **289.** The expression for velocity of ideal fluid at any point on the surface of the cylinder is given by
 - (a) $2U\sin\theta$ (b) $4U\sin\theta$
 - $(c) \ 3U\sin\theta \qquad (d) \ 6U\sin\theta$
- **290.** Yawing and rolling moment are zero for a body of
 - (a) symmetry about the lift-drag plane
 - (b) symmetry about the lift force only
 - (\boldsymbol{c}) symmetry about the drag force only
 - $\left(d\right)$ asymmetry about the lift-drag plane
- **291.** A cricket ball flowing over air is an example of
 - (a) streamlined body
 - (b) bluff body
 - (c) blunt body
 - (d) both (b) and (c)
- 292. Streamlined body
 - (a) align its shape with the anticipated stream line in flow.
 - (b) align its X-axis with the anticipated stream line in flow.
 - (c) align its Z-axis with the anticipated stream line in flow.
 - (d) does not align its shape with the anticipated stream line in flow.

293.	Force exerts by flowing fluid on a body in flow direction is	301.	Lift force acting on a running bullet aligned with air flow is
	(a) hydrostatic force (b) drag force		(a) zero $(b) > drag force$
	(c) buoyancy (d) lift force		(c) = drag force $(d) < drag force$
294.	Drag and lift forces experienced by an object immersed in a fluid stream is due to	302.	Water flowing over a long pipe perpendicular to its axis when immersed inside a flowing fluid is (a) two dimensional flow
	(a) pressure and turbulence of fluid		(a) two-dimensional flows (b) three dimensional flows
	(a) pressure and viscosity of fluid		(c) single dimensional flow
	(c) pressure and gravity of fluid (d) viscosity and density of fluid		(d) depends on velocity of flow
295	Fluid force moment about the drag force	303.	Coefficient of lift depends on
200.	direction is called		(a) camber of airfoil
	(a) drag moment (b) rolling moment		(b) angle of attack only
	(c) angular moment (d) yawing moment		(c) both (a) and (b)
296.	Drag force for a thin flat plate aligned		(d) none
	parallel to flow is depends on	304.	Drag force exerts on a body inside a
	(<i>a</i>) wall shear only		flowing fluid is
	(b) pressure force only		(a) perpendicular to direction of flow
	(c) both wall shear and pressure force $(l) = \int_{-\infty}^{\infty} f(l) dl dl$		(b) parallel to direction of flow
907	(a) none of (a) and (b)		(c) in the direction of flow
491.	normal to flow is depends on		(d) shear force in the direction of flow but
	(a) wall shear only		direction
	(b) pressure force only	305.	A racing car is an example of
	(c) both wall shear and pressure force		(a) streamlined body
	(d) none of (a) and (b)		(b) bluff body
298.	Drag and lift coefficient are depends on		(c) blunt body
	(a) shape of body		(d) both (b) and (c)
	(b) Reynolds number	306.	Viscosity of fluid could be measured from
	(c) surface roughness (d) all of the above		(a) Magnus law (b) Stokes law
299	(a) an of the above Fluid force moment about the lift		(c) both (a) and (b) (d) none
200.	direction is called	307.	Lift force exerts on a body inside a flowing fluid is
	(a) arag moment (b) rolling moment		(a) shear force and pressure force in the
200	(c) angular moment (a) yawing moment In case of ideal fluid lift force may exist if		normal direction of flow.
300.	there is		(b) shear force in the normal direction of
	(a) Ppresence of circulation around the body		flow but pressure force in the flow direction.
	(b) non-presence of circulation around		(c) all force in the direction of flow.
	the body		(d) shear force and pressure force in the direction of flow
	(c) no viscosity	306	To calculate total drag force following
	(d) very high Reynolds number	000.	area is taken for calculation

	(<i>a</i>) whole body curved surface area		(c) very minute or negligible
	(b) frontal area		(d) very high
	(c) planform area	317.	Drag force depends on
	(d) area not taken for calculation		(a) Reynolds number (b) Mach number
309.	Drag force is related with fluid stream		(c) Froude number (d) all of the above
	velocity as (a) $F_D \propto U^2$ (b) $F_D \propto U$	318.	In laminar flow friction drag coefficient related with surface roughness as
	(c) $F_D \propto U^{1/2}$ (d) $F_D \propto 1/U^2$		(a) proportional
310.	Drag force for a thin flat plate aligned at		(b) inversely proportional
	angle θ to flow 1s depends on		(c) both independent
	(a) wall shear only		(d) $F_D \propto \varepsilon^{1/2}$
	(b) pressure force only	319.	When body fully submerged in fluid then
	(c) both wall shear and pressure force (l) sets $f(l) = 1$		Drag force depends on
011	(a) none of (a) and (b)		(a) Reynolds number (b) Froude number
311.	is taken for calculation	000	(c) only on (a) (d) all of the above (a, b, c)
	(a) whole body curved surface area	320.	In very high viscous fluid contribution of friction drag to total drag force on a blunt
	(b) frontal area (c) planform area		body is
	(d) area not taken for calculation		(a) very less
312.	Maximum velocity of a falling body is		(b) as same as pressure drag force
0120	called		(c) very minute or negligible
	(a) terminal velocity		(d) very high
	(b) streamline velocity	321.	In very high viscous fluid contribution of
	(c) choke velocity (d) none		pressure drag to total drag force on a
313.	Friction drag is zero when flat surface is		blunt body is
	(a) normal to the flow		(a) very less
	(b) parallel to the flow		(b) as same as friction drag force
	(c) makes 45° with direction of flow		(c) very minute or negligible
	(d) it does never be zero		(d) very high
314.	The expression for co-efficient of lift for an air-foil is given by	322.	Drag force will be maximum for a free falling body is at
	(a) $C_L = 2\pi \sin \alpha$ (b) $C_L = 4\pi \sin \alpha$		(a) just after starting free fall
	(c) $C_L = 2\pi \sin 2\alpha$ (d) $C_L = 2\pi \sin^2 \alpha$		(b) just before touching the ground
315.	Friction drag is maximum when flat		(c) at middle of journey
	surface is		(d) after attending 66% of maximum
	(a) normal to the flow		velocity
	(b) parallel to the flow	323.	Pressure drag is proportional to
	(c) makes 45° with direction of flow		(a) frontal area (b) planform area
	(d) it does never be zero		(c) full surface area
316.	In very less viscous fluid contribution of		(d) independent of surface area
	friction drag to total drag force on a blunt	324.	For an blunt body most dominating force
	(a) vorv loss		$\begin{array}{c} \text{III IIIII III} \\ \text{III} \\ \text{(a) programs drog } \\ \text{(b) } \\ \text{fristing drog } \\ \text{drog } \\ \text{(c) } \\ \text{fristing drog } \\ \text{(c) } \\ \text{fristing drog } \\ \text{(c) } \\ \text{(c) } \\ \text{fristing drog } \\ \text{(c) } \\ (c) $
	(h) as same as pressure dress force		(a) pressure arag (b) friction arag (c) both are some (d) near (d)
	(o) as same as pressure unag torce	l	(c) both are same (a) none

325.	Equation of skin drag is				
020.	$(a) \begin{bmatrix} \tau & dA \cos \theta & (b) \end{bmatrix}, \tau & dA \sin \theta \end{bmatrix}$				
	$(c) \int_{A} \tau_{o}^{2} dA \cos \theta \qquad (d) \int_{A} \tau_{o}^{2} dA \sin \theta$				
326.	Equation of pressure drag is				
	$(a) \int_{A} p dA \cos \theta \qquad (b) \int_{A} p dA \sin \theta$	334			
	$(c) \int_{A}^{A} p dA \cos \theta \qquad (d) \int_{A}^{A} p dA \sin \theta$				
327.	High pressure drag creates on a bluff				
	body inside flowing fluid due to				
	(a) low surface area of bluff body	~~~			
	(b) high surface area of bluff body	335			
	(c) large wake formation zone				
000	(d) surface coincides with stream lines				
328.	When Airplane is in steady state that				
	(a) weight of airplane – Drag force				
	(a) weight of all plane $=$ Drag love (b) thrust developed by engine $=$ Drag				
	force	336			
	(c) weight of airplane = Lift force				
	(d) both (b) and (c)				
329.	Velocity at the bottom of a spinning ball				
	is				
	(<i>a</i>) wqual to that at the top				
	(b) less than that at top				
	(c) higher than that at top (d) independent of spinning action				
990	(a) independent of spinning action				
JJU.	An anton will be stan when (a) angle of attack for				
	minimum lift				
	(b) angle of attack is = Angle of attack for				
	minimum lift	338			
	(c) angle of attack is < Angle of attack for				
	maximum lift				
	(d) angle of attack is > Angle of attack for maximum lift				
331.	Lift due to spinning of a cylindrical body				
0010	is called				
	(a) Stokes effect (b) Ferel effect	339			
	(c) Magnus effect (d) Kutta effect				
332.	A copper sphere of 5mm diameter falls in				
	milk at a terminal velocity of 0.05 m/sec				
	with $Re = 0.2$, assuming Stokes law C_D is				
	$ \begin{array}{c} (a) \ 120 \\ (b) \ 160 \\ (c) \ 60 \\ (d) \ 1200 \\ \end{array} $	0.40			
222	$(c) 00 \qquad (a) 1200$ In very less viscous fluid contribution of	340			
JJJ.	pressure drag to total drag force on a				
	blunt body is				

(a) very less (b) as same as pressure drag force (c) very minute or negligible (d) very high According to Stokes law ratio of skin friction drag and pressure drag on sphere will be (*a*) 1 : 2 (b) 2:1(c) 1:3(d) 1:1According to Stokes law contribution of friction drag on total drag force on a sphere is (a) very less (b) 2/3 of total drag force (c) 1/3 of total drag force (d) 1/4 of total drag force . According to Stokes law contribution of pressure drag on total drag force on a sphere is (a) very less (b) 2/3 of total drag force (c) 1/3 of total drag force (d) 1/4 of total drag force . Zero drag on bodies could be possible as per (a) d'Alembert's paradox (b) Magnus principle (c) Kutta-Joukowski equation (d) Stokes principle When an asymmetric body is immersed in an ideal flowing fluid then drag force will (*a*) increase (b) decrease compare to symmetric body (c) become zero (d) zero and it is also zero for symmetric body . Lift coefficient of a rotating cylinder is related to its tangential velocity as (a) $C_L \propto \text{Tangential velocity}$ (b) $C_L \propto (\text{Tangential velocity})^2$ (c) $C_L \propto ({\rm Tangential \ velocity})^{1/2}$ (d) $C_L \propto 1/$ Tangential velocity . Zero-lift drag coefficient can be define as (a) $CD + C_D$, $_i(C_D = \text{Total drag coefficient}$ for a given power. C_D , i = lift-induced

drag coefficient)

(c) C_D / C_D , i (b) $C_D - C_D$, i $(d) \ C_D \times C_D, _i$ **341.** Which one is correct? (a) $C_D/C_L = \tan \alpha$ (b) $C_D/C_L = \cot \alpha$ (c) $C_D/C_L = \sin \alpha$ (d) $C_D/C_L = \cos \alpha$ 342. Coefficient of drag is depends on (a) Mach number (b) Reynolds number (c) Fraud number (d) all of the above **343.** Parasite drag force is (a) total drag force + Induced drag force (b) total drag force – Induced drag force (c) drag force – Induced drag force (d) total drag + lift force 344. Which of the following drag depends on shape of body? (b) form drag (a) parasite drag (c) surface drag (d) both (b) and (c)**345.** Magnus effect could be explained by (a) Bernoulli principle (b) Magnus principle (c) Newton's third law (d) both (a) and (b)**346.** For a Bluff body wake formation is (*a*) very small (b) very large (c) zero (d) moderate **347.** Vibration and noise is less for (a) bluff body (b) blunt body (c) streamlined body (d) both (a) and (c)348. In case of open channel flow is related with (a) flow of fluids (b) flow of liquids only (c) flow of gas only (d) flow of fluid which have a free surface 349. In Open channel flow cause of flow is (*a*) gravity force only (b) gravity and pressure force (c) pressure force only (d) viscous force

350.	The shape of velocity profile in open channel flow is depends on
	(a) Reynolds number
	(b) channel roughness
	(c) both (a) and (b)
	(d) Froude number
351.	Flow rate in open channel is depends on
	(a) gravity force only
	(b) friction force due to roughness only
	(c) viscous force
	(d) both (a) and (b)
352.	In case of open channel flow velocity is
	zero at
	(a) top and bottom of flow
	(b) side and bottom of flow
	(c) side and top of flow
	(d) at just below the top surface of flow
353.	Prismatic channel have
	(a) constant bed slope and same cross section along the length.
	(b) constant bed slope and reducing cross section along the length.
	(c) constant bed slope and increasing
	cross section along the length.
	(d) variable bed slope and same cross section along the length.
354.	Maximum velocity of flow occur in open
	channel flow at
	(a) about $20 - 25\%$ of depth
	(b) on the surface
	(c) about $40 - 60\%$ of depth
	(d) at the bottom of channel
355.	Example of non-exponential channel is
	(a) trapezoidal channel
	(b) parabolic channel
	(c) triangular channel
	(<i>d</i>) all of the above
356.	In case of steady flow, flow depth is
	(a) constant at a location with time
	(b) proportional to length with time
	(c) constant along length with time
0 - -	(d) vary with time
357.	Normal depth is
	(<i>a</i>) flow depth in non-uniform flow in open channel.

	(b) flow depth in uniform flow in open channel.	
	(c) flow depth in unsteady flow in open channel	
	(d) flow depth in steady flow in open channel	3
358.	In open channel flow, flow is laminar when	
	(a) $Re > 500$ (b) $Re > 5000$	
	(c) $Re < 500$ (d) $Re < 2000$	3
359.	For tranquil flow through open channel	Ŭ
	$(a) Fr > 1 \qquad (b) Fr < 1$	
	$(c) Fr = 1 \qquad (d) Fr \le 1$	
360.	In open channel flow, flow is turbulent when	3
	(a) $Re > 2000$ (b) $Re > 5000$	
	(c) $Re > 500$ (d) $Re < 2000$	
361.	For supercritical flow through open	
	channel	
	$(a) Fr > 1 \qquad (b) Fr < 1$	
	$(c) Fr = 1 \qquad (d) Fr \le 1$	3
362.	Uniform flow could be occur in	
	(a) natural channel only	
	(b) artificial channel only	
	(c) prismatic channel only	
	(d) both (b) and (c)	3
363.	Wetted perimeter is	0
	(a) length of channel boundary in contact with the flowing water at any section.	
	(b) length of channel boundary not in	3
	contact with the flowing water at any section.	
	(c) length of channel boundary section.	3
	(d) none of the above.	
364.	Hydraulic radius of a pipe running full is	
	(a) d (b) d/2	
	(c) d/3 $(d) d/4$	
365.	Example of exponential channel is	
	(<i>a</i>) rectangular channel	
	(b) parabolic channel	3
	(c) triangular channel	
000	(<i>d</i>) all of the above	
366.	The ratio of the wetted area to the top width is	

	(a) hydraulic depth
	(b) hydraulic radius
	(c) hydraulic perimeter
	(d) none
367.	The most important parameter that
	governs the character of flow in open
	channel is
	(a) Weber number (b) Froude number
	(c) Mach number (d) Euler number
368.	Froude number could be expressed as
	(a) flow speed/wave speed
	(b) flow speed/sound speed
	(c) wave speed/flow speed
	(d) wave speed/sound speed
369.	Froude number square could be express
	as
	(a) inertia force/Viscous force
	(b) viscous force/Gravity force
	(c) inertia force/Gravity force
	(d) pressure force/Gravity force
370.	Afflux is
	(a) decrease of water level suddenly
	(b) increase of water level suddenly
	(c) constant water level for certain time
	in a disturb zone
	(d) none
371.	When $Fr < 1$ it is called
	(a) streaming flow (b) critical flow
	(c) torrential flow (d) steady flow
372.	At critical depth specific energy is
	(a) maximum (b) zero
	(c) minimum (d) $1/3$ of maximum
373.	The cross-section of a channel is said to be
	best if the
	(a) wetted perimeter is maximum for given area.
	(b) roughness co-efficient is minimum.
	(c) wetted perimeter is minimum for given area.
	(d) hydraulic depth is least.
374.	For maximum discharge through a
	circular channel, depth of flow should be
	equal to
	(a) 60% of channel diameter
	(b) 95% of channel diameter

	(c) 100% of channel diameter
	(d) 20% of channel diameter
375.	The hydraulic radius of most economical
	trapezoidal channel section has
	(a) $2 \times \text{depth of flow}$
	(b) $0.5 \times \text{depth of flow}$
	(c) $0.25 \times \text{depth of flow}$
	(d) Depth of flow
376.	Wave speed on ocean surface is
	(a) proportional to depth of liquid
	(b) inversely proportional of liquid
	(c) independent of depth of liquid
	(d) always constant
377.	Length of back water curve
	$(a) l = (E_0 - E_1) / (S_1 - S_1)$ where S_1 is the
	slope of channel bed and S, is slope of
	energy line.
	(b) $l = (E_2 + E_1) / (S_b - S_e)$ where S_b is the
	slope of channel bed and S_e is slope of
	energy line.
	(c) $l = (E_2 - E_1) / (S_b + S_e)$ where S_b is the
	slope of channel bed and S_e is slope of
	energy line. (d) $l = (E + E)/(E + C)$ where C is the
	$(a) l = (E_2 + E_1) / (S_b + S_e)$ where S_b is the slope of channel bed and S is slope of
	energy line.
378.	For a half full circular channel hydraulic
	depth is
	(a) $\pi R/2$ (b) $\pi R/4$
	(c) $\pi R/6$ (d) $2\pi R/3$
379.	Just after the sluice gate flow of water is
	(a) subcritical type
	(b) supercritical type
	(c) critical type
	(d) any kind of the above
380.	Infinitesimal surface wave speed depends
	on
	(a) gravity at that place
	(b) depth of liquid (c) both (a) and (b)
	(d) it is independent of depth of flow but
	depends on gravity
381.	Pressure and dynamic head of open
	channel flow together called

- (*a*) specific energy
- (b) absolute energy of flow

(c) total mechanical energy

- (d)(a) or (c)
- **382.** Specific energy in open channel flow become infinite when
 - (a) flow depth tends to zero
 - (b) flow depth is highly large
 - (c) kinetic energy is very small
 - (d) pressure energy is very high
- 383. Chezy coefficient in open channel flow is

(a)
$$C = 2\sqrt{gf}$$
 (b) $C = 2\sqrt{2g/f}$
(c) $C = \sqrt{2g/f}$ (d) $C = 2\sqrt{3g/f}$

- **384.** Minimum specific energy require to support specific flow rate is called
 - (a) critical energy
 - (b) absolute specific energy
 - (c) relative specific energy
 - (d) supercritical specific energy
- 385. Through an economical circular channel section discharge will be maximum when (a) (A³/P) is minimum
 (b) (A/P) is minimum
 - (c) (A^3/P) is maximum
 - (d) (A/P) is maximum
- **386.** Through an economical circular channel
- section flow velocity will be maximum when
 - (a) (A^3/P) is minimum
 - (b) (A/P) is minimum
 - (c) (A^3/P) is maximum
 - (d) (A/P) is maximum
- **387.** Large sewers bottom section are designed with shape of
 - (a) triangular shape
 - (b) semi circular shape
 - (c) trapezoidal shape
 - (d) both (a) and (c)
- 388. Large sewers are designed for(a) constant velocity and maximum discharge rate
 - (b) constant discharge and maximum velocity of flow
 - (c) constant velocity and minimum discharge rate
 - (d) minimum discharge and maximum velocity of flow

389.	At critical specific energy critical depth of flow is	396.	According to Manning's formula Chezy's constant
	(a) $1.5 \times \text{critical depth of flow}$		(a) $C = R^{1/6}/N$, where $N =$ Manning's
	(b) 3 × critical depth of flow		constant; R = hydraulic radius
	(c) $2 \times \text{critical depth of flow}$		(b) $C = R^{1/6}N$ (c) $C = R^{1/2}/6N$
	(d) $2.5 \times critical depth of flow$		(<i>d</i>) $C = R^{1/3}/N$
390.	Best rectangular open channel should have	397.	For maximum discharge through circular channel
	(<i>a</i>) width of channel = $1.2 \times \text{flow depth}$		(a) hydraulic radius = $0.305 \times \text{diameter}$
	(<i>b</i>) width of channel = $2 \times$ flow depth		(b) hydraulic radius = $0.29 \times \text{diameter}$
	(c) width of channel = $2 \times$ hydraulic radius		 (c) hydraulic radius = 0.81 × diameter (d) hydraulic radius = 0.95 × diameter
	(d) width of channel = flow depth	398.	For maximum velocity through circular
391.	Best trapezoidal open channel should		channel
	have		(a) hydraulic radius = $0.305 \times \text{diameter}$
	(a) width of channel = $1.2 \times \text{flow depth}$		(b) hydraulic radius = $0.29 \times \text{diameter}$
	(b) width of channel = $2 \times \text{flow depth}$		(c) hydraulic radius = $0.81 \times \text{diameter}$
	(c) width of channel = $2 \times \text{hydraulic}$		(d) hydraulic radius = 0.95 × diameter
	(d) width of channel = flow depth	399.	For maximum discharge through circular
392.	Best trapezoidal open channel should		(a) donth of flow $= 0.305 \times \text{diameter}$
	have trapezoidal angle		(a) depth of flow = 0.305 x diameter (b) depth of flow = 0.29 x diameter
	(a) $\theta = 45^{\circ}$ (b) $\theta = 60^{\circ}$		(c) depth of flow = $0.25 \times \text{diameter}$
	$(c) \ \theta = 30^{\circ} \qquad (d) \ \theta = 66.5^{\circ}$		(d) hydraulic radius = $0.95 \times \text{diameter}$
393.	Slope of free water surface during	400.	For maximum velocity through circular
	Gradual varied flow could be express as $(2 + 1)^{1/2} = (2 +$		channel
	(a) $dy/dx = (S_b - S_e)/(1 - Fr^2)$ (b) $dy/dx = (S_b - S_e)/(1 + Fr^2)$		(a) depth of flow = $0.305 \times \text{diameter}$
	(c) $dy/dx = (S_b - S_e)/(1 + Fr^2)$ (c) $dy/dx = (S_b + S_e)/(1 - Fr^2)$		(b) depth of flow = $0.29 \times \text{diameter}$
	(c) $dy/dx = (S_b + S_e)/(1 - Fr^2)$ (d) $dy/dx = (S_b - S_e)/(1 - Fr)$		(c) depth of flow = $0.81 \times \text{diameter}$
201	(a) $ay/ax = (S_b - S_e)/(1 - FT)$ Bost flow donth for $\theta = 60^\circ$ transzoidal		(d) hydraulic radius = $0.95 \times \text{diameter}$
JJ4.	angle will be	401.	The strength of hydraulic jump is govern
	(a) width of channel = $1.2 \times \text{flow depth}$		by
	(b) width of channel = $2/\sqrt{3} \times $ flow depth		(a) gradient of the bed
	(c) width of channel = $2/\sqrt{3} \times$ hydraulic		(a) valacity of unstroom
	radius		(d) velocity of downstream
~~~	(d) width of channel = $\sqrt{3} \times \text{flow depth}$	402	Alternate depth of flow in open channel
395.	Best flow depth for $\theta = 60^{\circ}$ trapezoidal angle will be	102.	flow has occur at
	( <i>a</i> ) width of channel = $1.2 \times \text{flow depth}$		(a) same specific energy $(b)$
	(b) width of channel = $1/\sqrt{3} \times $ flow depth		(b) same specific force
	(c) width of channel = $2/\sqrt{3} \times$ hydraulic		(c) same total energy
		400	(a) all of the above
	(a) width of channel = $1/\sqrt{3} \times \text{hydraulic}$ radius	403.	channel surface slope should be

FLUID SCIENCE AND ENGINEERING

404. 405. 406. 407.	<ul> <li>(a) 1</li> <li>(c) Infinite</li> <li>Carrying capacity of by</li> <li>(a) conveyance factor</li> <li>(b) friction factor</li> <li>(c) slope of bed</li> <li>(d) manning's factor</li> <li>Rugosity co-efficient</li> <li>(a) Chezy's constant</li> <li>(c) Bazin's constant</li> <li>At no slip condition solid boundary is</li> <li>(a) &gt; as velocity of be</li> <li>(b) = as velocity of be</li> <li>(c) as velocity of be</li> <li>(d) none of the above</li> <li>Velocity distribution boundary layer is productive</li> </ul>	<ul> <li>(b) Zero</li> <li>(d) 100</li> <li>channel is measured</li> <li>r</li> <li>is</li> <li>(b) Manning's factor</li> <li>(d) Reynolds factor</li> <li>(d) Reynolds factor</li> <li>(e) velocity of fluid at</li> <li>bundary</li> <li>bundary<!--</th--><th>408.</th><th><ul> <li>(a) log law</li> <li>(b) power law</li> <li>(c) prandtle's 1/7 power law</li> <li>(d) all of the above</li> <li>According to boundary layer theory when fluid velocity increase in the downward direction</li> <li>(a) boundary layer growth is increase</li> <li>(b) boundary layer growth is decrease</li> <li>(c) boundary layer growth is constant</li> <li>(d) boundary layer growth is increase rapidly</li> <li>Large sewer bottom sections are designed for</li> <li>(a) maximum discharge rate</li> <li>(b) constant discharge rate</li> <li>(c) variable discharge rate</li> <li>(d) minimum discharge rate</li> </ul></th></li></ul>	408.	<ul> <li>(a) log law</li> <li>(b) power law</li> <li>(c) prandtle's 1/7 power law</li> <li>(d) all of the above</li> <li>According to boundary layer theory when fluid velocity increase in the downward direction</li> <li>(a) boundary layer growth is increase</li> <li>(b) boundary layer growth is decrease</li> <li>(c) boundary layer growth is constant</li> <li>(d) boundary layer growth is increase rapidly</li> <li>Large sewer bottom sections are designed for</li> <li>(a) maximum discharge rate</li> <li>(b) constant discharge rate</li> <li>(c) variable discharge rate</li> <li>(d) minimum discharge rate</li> </ul>
------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

## Answers

1.	( <i>b</i> )	2.	( <i>a</i> )	3.	( <i>b</i> )	4.	( <i>b</i> )	5.	(d)	6.	(d)
7.	(d)	8.	( <i>b</i> )	9.	<i>(a)</i>	10.	( <i>b</i> )	11.	( <i>b</i> )	12.	(c)
13.	( <i>c</i> )	14.	( <i>b</i> )	15.	( <i>c</i> )	16.	( <i>b</i> )	17.	<i>(a)</i>	18.	(c)
19.	<i>(a)</i>	20.	( <i>b</i> )	21.	(d)	22.	( <i>b</i> )	23.	( <i>b</i> )	24.	<i>(a)</i>
<b>25</b> .	( <i>b</i> )	26.	(c)	27.	(c)	28.	( <i>b</i> )	29.	<i>(a)</i>	30.	( <i>b</i> )
31.	(c)	32.	( <i>b</i> )	33.	( <i>b</i> )	34.	(c)	35.	( <i>b</i> )	36.	<i>(a)</i>
37.	<i>(a)</i>	38.	(c)	39.	<i>(a)</i>	40.	<i>(a)</i>	41.	( <i>b</i> )	42.	(c)
43.	<i>(a)</i>	44.	( <i>b</i> )	45.	<i>(a)</i>	46.	( <i>a</i> )	47.	(c)	48.	<i>(a)</i>
<b>49</b> .	<i>(a)</i>	50.	( <i>b</i> )	51.	(c)	52.	( <i>b</i> )	53.	<i>(a)</i>	54.	( <i>b</i> )
55.	(a)	56.	(c)	57.	(d)	58.	<i>(a)</i>	59.	(c)	60.	(d)
61.	(a)	62.	( <i>b</i> )	63.	(c)	64.	( <i>a</i> )	65.	( <i>b</i> )	66.	(a)
67.	(a)	68.	( <i>b</i> )	69.	(c)	70.	(d)	71.	<i>(a)</i>	72.	(b)
73.	(b)	74.	(c)	75.	<i>(a)</i>	76.	( <i>b</i> )	77.	<i>(a)</i>	78.	(c)
79.	(b)	80.	( <i>b</i> )	81.	(d)	82.	(c)	83.	(c)	84.	(c)
85.	(d)	86.	(c)	87.	<i>(a)</i>	88.	(c)	89.	(c)	90.	(a)
91.	(d)	92.	(c)	93.	( <i>b</i> )	94.	(d)	95.	( <i>b</i> )	96.	(b)
97.	(d)	98.	(c)	99.	(d)	100.	(d)	101.	<i>(a)</i>	102.	(a)
103.	(b)	104.	( <i>b</i> )	105.	(d)	106.	( <i>b</i> )	107.	(a)	108.	(c)
109.	<i>(a)</i>	110.	(d)	111.	( <i>b</i> )	112.	<i>(a)</i>	113.	(d)	114.	(b)
115.	(c)	116.	( <i>a</i> )	117.	( <i>b</i> )	118.	<i>(a)</i>	119.	(c)	120.	(c)
121.	(a)	122.	(c)	123.	<i>(a)</i>	124.	( <i>a</i> )	125.	(b)	126.	(b)
127.	(c)	128.	(d)	129.	( <i>b</i> )	130.	( <i>a</i> )	131.	(c)	132.	(b)
133.	(a)	134.	( <i>a</i> )	135.	(c)	136.	( <i>a</i> )	137.	(c)	138.	(b)

A TEXTBOOK OF OBJECTIVE MECHANICAL ENGINEERING

<b>139.</b> ( <i>a</i> )	<b>140.</b> ( <i>c</i> )	<b>141.</b> ( <i>b</i> )	<b>142.</b> ( <i>b</i> )	<b>143.</b> ( <i>b</i> )	<b>144.</b> (c)
<b>145.</b> ( <i>a</i> )	<b>146.</b> ( <i>d</i> )	<b>147.</b> (c)	<b>148.</b> ( <i>a</i> )	<b>149.</b> ( <i>a</i> )	<b>150.</b> ( <i>a</i> )
<b>151.</b> ( <i>c</i> )	<b>152.</b> ( <i>a</i> )	<b>153</b> . ( <i>b</i> )	<b>154.</b> ( <i>d</i> )	<b>155.</b> ( <i>d</i> )	<b>156.</b> ( <i>b</i> )
<b>157.</b> ( <i>a</i> )	<b>158.</b> ( <i>d</i> )	<b>159</b> . (b)	<b>160.</b> ( <i>d</i> )	<b>161.</b> ( <i>b</i> )	<b>162.</b> ( <i>a</i> )
<b>163.</b> $(a)$	<b>164.</b> $(b)$	<b>165.</b> $(d)$	<b>166.</b> ( <i>b</i> )	<b>167.</b> $(a)$	<b>168.</b> $(a)$
169 (h)	170 (b)	171 (b)	172 (b)	173 (d)	174 (a)
105. (c) 175. (c)	<b>176.</b> $(a)$	177 (b)	<b>172.</b> $(b)$ <b>178.</b> $(b)$	<b>179.</b> $(a)$ <b>179.</b> $(c)$	<b>194.</b> $(a)$
173. (c) 191 (b)	170. (u) 199. (v)	177.(0) 199.(a)	170. (0) 184. (m)	<b>175.</b> (c) <b>195.</b> (d)	<b>100.</b> $(u)$
181. ( <i>0</i> )	<b>182.</b> $(a)$	<b>105.</b> $(c)$	<b>184.</b> $(a)$	<b>185.</b> $(a)$	<b>180.</b> $(c)$
<b>187.</b> $(c)$	<b>188.</b> $(a)$	189. ( <i>b</i> )	<b>190.</b> ( <i>b</i> )	<b>191.</b> $(a)$	<b>192.</b> $(b)$
<b>193.</b> (b)	<b>194.</b> $(d)$	<b>195.</b> ( <i>a</i> )	<b>196.</b> $(a)$	<b>197.</b> ( <i>d</i> )	<b>198.</b> (b)
<b>199.</b> ( <i>a</i> )	<b>200.</b> $(d)$	<b>201.</b> ( <i>b</i> )	<b>202.</b> ( <i>b</i> )	<b>203.</b> ( <i>a</i> )	<b>204.</b> ( <i>d</i> )
<b>205.</b> ( <i>b</i> )	<b>206.</b> ( <i>c</i> )	<b>207.</b> ( <i>c</i> )	<b>208.</b> ( <i>a</i> )	<b>209.</b> ( <i>c</i> )	<b>210.</b> ( <i>b</i> )
<b>211.</b> ( <i>a</i> )	<b>212.</b> ( <i>c</i> )	<b>213.</b> (c)	<b>214.</b> ( <i>a</i> )	<b>215.</b> ( <i>d</i> )	<b>216.</b> ( <i>a</i> )
<b>217.</b> ( <i>b</i> )	<b>218.</b> ( <i>d</i> )	<b>219.</b> (c)	<b>220.</b> ( <i>a</i> )	<b>221</b> . ( <i>d</i> )	<b>222.</b> ( <i>b</i> )
<b>223.</b> ( <i>a</i> )	<b>224.</b> ( <i>b</i> )	<b>225.</b> ( <i>b</i> )	<b>226.</b> ( <i>b</i> )	<b>227.</b> (c)	<b>228.</b> (b)
<b>229.</b> ( <i>a</i> )	<b>230.</b> ( <i>d</i> )	<b>231.</b> ( <i>b</i> )	<b>232.</b> ( <i>a</i> )	<b>233.</b> ( <i>a</i> )	<b>234.</b> ( <i>a</i> )
<b>235.</b> ( <i>d</i> )	<b>236.</b> ( <i>a</i> )	<b>237.</b> ( <i>a</i> )	<b>238.</b> ( <i>d</i> )	<b>239.</b> ( <i>a</i> )	<b>240.</b> ( <i>b</i> )
<b>241.</b> ( <i>a</i> )	<b>242.</b> (c)	<b>243.</b> (c)	<b>244.</b> ( <i>a</i> )	<b>245.</b> (b)	<b>246.</b> ( <i>b</i> )
<b>247.</b> ( <i>a</i> )	<b>248.</b> (b)	<b>249.</b> (c)	<b>250.</b> ( <i>a</i> )	<b>251.</b> (b)	<b>252.</b> ( <i>a</i> )
<b>253.</b> $(b)$	<b>254.</b> $(a)$	<b>255.</b> $(a)$	<b>256.</b> $(b)$	<b>257.</b> $(a)$	<b>258.</b> $(a)$
<b>259.</b> $(b)$	260. (a)	<b>261</b> . $(b)$	<b>262.</b> $(a)$	<b>263.</b> $(a)$	<b>264</b> . $(d)$
<b>265.</b> $(a)$	266 (a)	<b>267</b> $(b)$	<b>262.</b> $(a)$ <b>268.</b> $(a)$	269 (h)	<b>270</b> $(d)$
<b>200.</b> $(a)$ <b>271</b> $(a)$	<b>200.</b> $(d)$ <b>272.</b> $(d)$	<b>273</b> $(b)$	<b>274</b> (c)	<b>275</b> $(b)$	<b>276</b> $(a)$
<b>271.</b> $(a)$ <b>277</b> $(b)$	<b>272.</b> $(a)$ <b>278</b> $(b)$	<b>279.</b> $(b)$	<b>214.</b> (c) <b>280</b> (a)	<b>210.</b> $(b)$ <b>281</b> $(b)$	<b>210.</b> $(a)$ <b>282.</b> $(b)$
<b>211.</b> $(b)$ <b>983</b> $(b)$	<b>218.</b> $(0)$ <b>984</b> $(a)$	<b>215.</b> $(0)$ <b>985.</b> $(a)$	<b>280.</b> $(d)$	<b>201.</b> $(d)$	<b>202.</b> $(0)$ <b>988</b> $(a)$
<b>203.</b> $(0)$	<b>204.</b> $(u)$	<b>205.</b> $(u)$ <b>901</b> $(d)$	<b>200.</b> $(u)$	<b>201.</b> $(u)$	<b>200.</b> $(u)$
<b>289.</b> $(a)$	<b>290.</b> $(a)$	<b>291.</b> $(a)$	<b>292.</b> $(a)$	<b>293.</b> $(0)$	<b>294.</b> $(0)$
<b>295.</b> ( <i>b</i> )	<b>296.</b> ( <i>a</i> )	<b>297.</b> (b)	<b>298.</b> ( <i>a</i> )	<b>299.</b> $(a)$	<b>300.</b> $(a)$
<b>301.</b> $(a)$	<b>302.</b> $(a)$	<b>303.</b> (b)	<b>304.</b> ( <i>c</i> )	<b>305.</b> $(a)$	<b>306.</b> ( <i>b</i> )
<b>307.</b> ( <i>a</i> )	<b>308.</b> (b)	<b>309.</b> $(a)$	<b>310.</b> ( <i>c</i> )	<b>311.</b> $(c)$	<b>312.</b> $(a)$
<b>313.</b> ( <i>a</i> )	<b>314.</b> ( <i>a</i> )	<b>315.</b> ( <i>b</i> )	<b>316.</b> ( <i>c</i> )	<b>317.</b> ( <i>d</i> )	<b>318.</b> (c)
<b>319.</b> (c)	<b>320.</b> ( <i>d</i> )	<b>321.</b> ( <i>a</i> )	<b>322.</b> ( <i>b</i> )	<b>323.</b> ( <i>a</i> )	<b>324.</b> ( <i>a</i> )
<b>325.</b> ( <i>b</i> )	<b>326.</b> ( <i>a</i> )	<b>327.</b> (c)	<b>328.</b> ( <i>d</i> )	<b>329.</b> ( <i>b</i> )	<b>330.</b> ( <i>d</i> )
<b>331.</b> (c)	<b>332.</b> ( <i>a</i> )	<b>333.</b> ( <i>d</i> )	<b>334.</b> ( <i>b</i> )	<b>335.</b> ( <i>b</i> )	<b>336.</b> ( <i>c</i> )
<b>337.</b> ( <i>a</i> )	<b>338.</b> ( <i>d</i> )	<b>339.</b> ( <i>a</i> )	<b>340.</b> ( <i>b</i> )	<b>341.</b> ( <i>a</i> )	<b>342.</b> ( <i>b</i> )
<b>343.</b> ( <i>b</i> )	<b>344.</b> ( <i>b</i> )	<b>345.</b> ( <i>a</i> )	<b>346.</b> ( <i>b</i> )	<b>347.</b> (c)	<b>348.</b> (b)
<b>349.</b> ( <i>a</i> )	<b>350.</b> ( <i>b</i> )	<b>351.</b> ( <i>d</i> )	<b>352.</b> ( <i>b</i> )	<b>353.</b> ( <i>a</i> )	<b>354.</b> ( <i>a</i> )
<b>355.</b> ( <i>a</i> )	<b>356.</b> ( <i>a</i> )	<b>357.</b> ( <i>b</i> )	<b>358.</b> (c)	<b>359.</b> ( <i>b</i> )	<b>360.</b> ( <i>a</i> )
<b>361.</b> ( <i>a</i> )	<b>362.</b> ( <i>d</i> )	<b>363.</b> ( <i>a</i> )	<b>364.</b> ( <i>d</i> )	<b>365.</b> ( <i>d</i> )	<b>366.</b> ( <i>a</i> )
<b>367.</b> ( <i>b</i> )	<b>368.</b> ( <i>a</i> )	<b>369.</b> (c)	<b>370.</b> ( <i>b</i> )	<b>371.</b> ( <i>a</i> )	<b>372.</b> (c)
<b>373.</b> (c)	<b>374.</b> (b)	<b>375.</b> (b)	<b>376.</b> (c)	<b>377.</b> $(a)$	<b>378.</b> (b)
<b>379.</b> (b)	<b>380.</b> (c)	<b>381.</b> ( <i>d</i> )	<b>382.</b> $(a)$	383. (b)	<b>384.</b> $(a)$
385. (c)	<b>386.</b> ( <i>d</i> )	387. (d)	388. (a)	389. (a)	<b>390.</b> $(h)$
<b>391</b> . (c)	<b>392.</b> $(h)$	393. (a)	394 (b)	<b>395.</b> $(d)$	<b>396.</b> $(a)$
<b>397.</b> $(b)$	<b>398.</b> $(a)$	<b>399</b> . (c)	<b>400</b> (c)	<b>401.</b> $(h)$	<b>402.</b> $(a)$
403 (b)	<b>404</b> $(d)$	<b>405</b> (d)	<b>406</b> $(d)$	<b>407</b> $(d)$	402. ( <i>u</i> ) 408 ( <i>b</i> )
<b>400.</b> $(J)$	<b>101.</b> $(u)$	<b>HUD.</b> ( <i>U</i> )	<b>HUU.</b> $(u)$	<b>HUI.</b> ( <i>U</i> )	<b>HUG.</b> (0)
40 <b>3.</b> ( <i>a</i> )					