CHAPTER

Theories of Failure

>
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In practice, engineering materials have been observed to fail
either by yielding or fracture. Yielding or permanent deformation
is a pronounced sliding on planes through the crystalline grains
of the material. It takes place without the actual rupture of the
material. The functional utility for most machine parts is lost after
a particular amount of yielding has taken place. Therefore, for all
practical purposes yielding may be considered the criterion of
failure for ductile materials. Fracture, on the other hand, is a
failure in which separation occurs on a cross-section normal to the
direction of tensile stress. The fracture criterion of failure is
applicable to brittle materials. In practice, a limit of about 5 per
cent elongation is usually taken as parting line between ductile
and brittle materials.

For a machine part subjected to a uniaxial system of stress,
the limiting allowable stress for design may be obtained from the
mechanical testing of materials in simple tension. Usually the
yield point stress is the deciding factor in such cases. But in
majority of the cases, the parts are subjected to complex stress
system and as such this simple approach is not applicable because
the behaviour of material is greatly affected by the state of stress,
type of loading, heat treatment process etc. Therefore, it is
important to establish criterion for behaviour of materials under
combined state of stress.

In a simple tensile test when specimen just starts yielding
the following quantities are attained simultaneously :

(a) The principal stress ¢ reaches the yield point stress

g, or 6, of the material.

max
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(b) The maximum shear stress ['tmax =ﬁl2‘ﬂl} reaches the

. . . c
yield point stress in shear Tp = -—2-y£-
(c) The tensile strain € reaches the yield point strain ¢ .

(d) The total strain energy U absorbed by the unit volume
. 1
of material reaches the value pr =55 Oyp-
(e) The strain energy of distortion U, absorbed per unit

volume of material reaches a value U, = ——¢g?2 .
P 3E yp

(f) The octahedral shearing stress reaches the value

‘[pr = ("/2_/3)0_)’1) = 0.47 Gyp'

In case of multi-axial state of stress the above values will
not be attained simultaneously and as such it is of utmost
importance in design to choose any one of the above quantities to
calculate the limiting load which will not cause the inelastic action
in the material with greatest possible econumy.

We will now discuss, one by one, the theories of failure based
on the above quantities.

1.1 MAXIMUM PRINCIPAL STRESS THEORY

This theory put forward by Rankine asserts that failure or
fracture of a material occurs when the maximum principal stress
at a point in a complex system attain a critical value regardless
of the other stresses. The critical value of stress ¢, is usually
determined in a simple tensile test, where the failure of a specimen
is defined to be due to either excessively large elongation or
fracture, usually the latter is implied.

For complex stress system the major principal stress

c,+0 1 . -
o= == Y +§J(0x -0,)? +41°
= 0, in simple tension ..(1.1)

The maximum principal stress theory can be represented
graphically by a square ABCD (Fig. 1.1) the sides being defined
by

S +1 and
Ot G i

O9

=*1 .(1.2)
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Failure occurs if point GLA
falls on the periphery of the Sun
square ABCD. B A1, 1)

Experimental work
indicates that this theory gives
quite good results for brittle
materials in all ranges of
stresses, provided that both the 1,-1)C b
principal stresses are of tensile

nature. Failure is by fracture Fig. 1.1. Graphical representation
in such cases of maximum principal stress theory.

1.2 MAXIMUM SHEARING STRESS THEORY

This theory by Guest and Tresca is based on the observation
that in ductile material slipping occurs during yielding along
critically oriented planes. It is assumed in this theory that the
maximum stress alone produce inelastic action and that the equal
tensile stresses (0; = 6,) have no influence in starting inelastic
action. This implies that failure will occur when the maximum
shearing stress 7, in the complex system reaches the value of
the maximum shearing stress in simple tension at the yield point.

Assuming biaxial stress system as shown in Fig. 1.2 (a), we
have

_01-6 _
Tnax = 9 - Typ
_ Gyp . . 1 .
= in simple tension ...(1.3a)
or 0,-0,=0, when o, and o, are tensile ...(1.3b)
or — (o, -0,) = S, when o, and 6, are compressive ...(1.3¢)

Equations 1.3 (b) and (¢) may be combined together as given
below

0,-0,=%0, ...(1.3d)
or %1 _9%2 -4 ..(1.4)
Ow Oy
When 6,=0,0,=% o,
and when 0,=0,0,=1% 0,

Equation (1.4) represents étraight lines in II and IV
quadrants and may be expressed graphically as shown in Fig. 1.3.
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Fig. 1.2 Fig. 1.3. Graphical representation

of maximum shearing stress theory.

Now consider plane AEHD as shown in Fig. 1.2 (b). For
yielding to occur in this plane

to,=0, ...(1.5a)
Similarly yielding to occur in plane ABFE
to, =0, ...(1.5b)

Equations 1.5 (a) and (b) represent straight lines as shown
graphically in quadrants I and III of Fig. 1.3.

If a point having co-ordinates as o, and o, lies inside the
hexagon of Fig. 1.3, it may be presumed that no yielding of
material has occurred. When this point falls on the periphery of
hexagon, one should take it for granted that the material has
undergone inelastic deformation.

If the state of stress consists of triaxial tensile stress of
nearly same magnitude, shearing stress in such a case will be of
very small magnitude and failure would be by fracture rather than
by yielding and hence maximum principal stress theory should be
applied.

The maximum shearing stress theory gives fairly good
results for ductile materials and for state of stress in which
comparatively large shearing stresses are developed. However, for
the pure shear as in torsion test, where maximum shear stress is
developed, the shearing elastic limit of ductile metals is on an



THeories of FAILURE 5

average found to be 0.57 of the tensile elastic limit. Hence in such
cases, the maximum shearing stress theory gives results on the
positive side.

1.3 MAXIMUM STRAIN THEORY

This theory suggested by St. Venant states that yielding at
a point in a material begins when the maximum strain
corresponding to a particular complex state of stress exceeds the
strain corresponding to the yield point. If 6, and o, are the two
principal stresses (o, > 0,), then the strain in the direction of o,
is given by

g, = % - % ..(1.6)

0 )
The limiting value of €, should not be more than % in

simple tension. Hence we may write

01 _Hoz _ Oy -
E E - & or O; — {0, =0,

In Eq. (1.7) if 6, and o, both are tensile then ¢, can be
higher than ¢, but if o, is compressive then o, will have a value
smaller than o . Therefore, in the former case, according to this

wo, . . . .
theory, o, can lge increased beyond S, without causing yielding

in the material.
Maximum strain theory is

an improvement over the - % a
maximum principal stress 2
theory, even then it doesn’t give y
satisfact-ory results for ductile Ty hl o
materials. It is primarily used in d © Syp
cases where failure occurs by f g
brittle fracture. Syp

e

This theory is represented
graphically as shown in Fig. 1.4, Fig. 1.4. G-raphical rgpresentation
where the different portions of of maximum strain theory.
the graphs are governed by the equations as given below :

O, — Mo, =0, for ab
0, — U0, = 0, for ah
0; — HO, = -0, for ed

G, — Mo, =—-o,, foref.
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For unlike stresses, we have

O, + U0, =0, for cb
Oy + U0, = — 0, for cd
Oy + [0, = Gy, for gh
Oy + Oy = -0, for gf.

1.4 TOTAL STRAIN ENERGY THEORY

This theory proposed by Haigh states that inelastic action
or yielding at a point in a material begins only when the energy
per unit volume absorbed at a point is equal to the energy under
uniaxial state of stress as in the case of simple tensile test. Thus
in this case failure doesn’t depend on the state of stress but
governed by the energy stored in the material per unit volume.

Let us consider triaxial stress system (6, > 6, > 05). For this
state of stress, we have

1
€ =E[01 - (o, +03)]

ey =10, ~(0; +0y)] | (18)

-

1
€y = 5[63 - (o +0,)]

Strain energy per unit volume can be expressed as

U= $0,8 +305€5 +303€3 ...(1.9a)
Substituting strain in terms of stresses from Eq. (1.8), we

get
U= —Z—IE[G% + 035 +02 - 2(0,0 + G503 + G30,)] ...(1.9b)

For biaxial stress system put o, = 0 and the strain energy
expression is modified as under.

1.,
= EE[G% +05 —210,0,] ..(1.9¢)

For uniaxial stress system at yield point, we have
6,=0;=0 and 0,=0
o2

= w
= EE_ ...(1.9d)

Thus for failure by total strain energy theory, expressions
(1.96) or (1.9¢), as the case may be, should be equated to (1.9d).
For triaxial stress system, we have
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9, 2

For biaxial stress system, we have
o} +03 - 20,0, = 0%, ...(1.10b)

Equation (1.10b) represents an ellipse with major and minor
principal axes at 45° to 6, and o, axes.

for 6, = 0, 6,=%0,
for o, = 0, O, =%0,,
Oy
foro,=0,=0, 0=t-——=
J2a-w
Assuming p =%, c = 0.8660,,.
If 6, = 0 and 0, = — 0 as in the case of unlike stresses, we
have
c=* —Ow
V2 +p)
For H=g,0=2%06130,,

The plot of this ellipse representing total strain energy
theory of failure is shown in Fig. 1.5.

N
N =106130,,
e ’

Fig. 1.5. Graphical representation of maximum strain energy theory.

1.5 MAXIMUM DISTORTION ENERGY THEORY

The total strain energy of a body consists of two parts, one
associated with the volumetric changes in the body and the other
due to change in shape or distortion. According to this theory by
Von Mises and Hencky the inelastic action or yielding at any point
in a body under any combination of stress begins only when the
strain energy of distortion per unit volume absorbed at the point
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is equal to the strain energy of distortion per unit volume
corresponding to the yield point stress in simple tension test.

For a triaxial state of stress at a point, we have total strain
energy from Eq. 1.9 (b).
U= —L[of + 03 + 03 —2L(0,04 + G404 + 030,)]

2E
...(1.9b)

Neglecting small quantities of second and third order, the
volumetric strain may be expressed as

€, =& + & + & ...(1.11a)
Substituting from Eq. (1.8), we get
1-2
&= "% M(01+02+03) ..(1.116)

Equation 1.11 (b) states that volumetric strain is propor-
tional to the summation of the three principal stresses. If this
summation is zero, the volume change vanishes and the body is
subjected to only distortion.

Therefore, the condition for zero volumetric change is
0, +0,+0,=0 -(1.12)

If 6, = 6, = 04 = p, then there will be no distortion in the
body. We have from the above

G, +0, +0y
3

The triaxial stress system of Fig. 1.6 (a) is equivalent to the
superimposed stresses of Fig. 1.6 (b) and (¢c). Thus we have

6,=p+0,/;0,=p+0, and o,=p+0;

O 14 03
—— 0] = TP + —-—-»0‘]
/o, /v Jo
(a) (b) ©
Fig. 1.6

Adding all the three principal stresses of Fig. 1.6, we have
0, +0,+0;=3p +0, +0, +0,
or o0, +0, +0,=0
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Which shows that the state of stress in Fig. 1.6 (¢) will cause
only distortion and no volumetric change.

Let us put 0, = 0, = 5, = p in Eq. (1.95) for the total strain
energy, which will result in the expression for volumetric strain
energy.

3(1-2
U = ( }l)pz

y ok ..(1.13a)
Since p= S1+09 %03
we have no substitution ]
= 1;E2p. (61 +0y +03)2 ...(1.13b)

The distortion energy may now be obtained by subtracting
Eq. (1.13b) from Eq. (1.9b).

U,=U-U,
= —21E-[c§ +02 + 02 - 2u(0104 + 0203 +636,)]
- 1;E2u (6, +04 +03)2
= 13}:“ [0? + 03 + 63 — 0,0, — 0403 — 0304]
...(1.14a)
_ L

[(oy —0‘2)2 +(o, —03)2 +(o3 - 01)2]

...(1.14b)
Distortion energy for uniaxial state of stress, as in simple
tension test, at yield point may be obtained by putting

(7

c6,=0,=0
and 6, =0, in Eq. (1.14q)
_1l+p o
vd,, = 3 O ...(1.14¢)

Then the condition for yielding according to maximum
distortion energy theory is

(0, = 0% + (6, = 6,)* + (6, — 6,)% = Zcip ...(1.15q)
For plane stress o; = 0 and Eq. (1.15a) be may written as

under

2

o2 +0% - 010, = czp ...(1.15b)

This is an equation for ellipse. It may be plotted as shown
in Fig. 1.7.
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A good agreement has
been found between the
maximum distortion energy
theory and experimental
results for ductile materials.
The maximum principal
stress theory appears to be
the best for brittle materials
but can be unsafe for ductile
materials.

If one of the principal  Fig. 1.7. Graphical representation of
stresses, at a point is large in maximum distortion energy theory.
comparison with the other, all theories lead practically to the same
results. The discrepancy between the theories is greatest in the
second and fourth quadrants, when both principal stresses are
numerically equal.

1.6 OCTAHEDRAL SHEARING STRESS THEORY

Eichinger has shoewn y

that the condition for yielding TB

as given by the maximum

distortion energy theory [Eq. A

(1.15a)] may also be obtained Py G,

by considering the shearing

stress acting on an octahedral 04

plane such as ABC in Fig. 1.8.
0,, 0, and o, are the L2707 r=a A

principal stresses acting on an C

element. From geometry it can Z i"Z

be seen that the cosine of the Fig. 1.8

angle between the normal n to

the octahedral plane and the co-ordinate axes x, y and z is equal

to 1/4/3. If S is the unit resultant stress acting on the octahedral
plane and S, is the normal component of the stress S, shearing
stress (1)) on the octahedral plane is given as

T,= 8? - 82 ...(1.16)

Resolving the resultant unit stress S into three components
S, Sy, S, and considering equilibrium, of the octahedral element
we find
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S,=-% 5=72 §5:-%2 L(L17)

V3’ NN
and the resultant stress acting on the octahedral plane is given
as

S=S2+82+8?
1
-7 Jol? +02 + o2 ...(1.18)
The normal component S, of the stress S may be obtained

by resolving S, Sy and S, [Eq. (1.17)] in the direction of the normal
n, which gives

&l

S - (3] + Gg+ O3
" 3
Substituting S and S, from Egs. (1.18) and (1.19) in Eq. (1.16),
the shearing stress on the octahedral plane is obtained as

...(1.19)

T = E1‘/3(6% +02 +02) (0, + 0y +03)°

Ty = 1oy - 0)% + (05 - 05) + (03 ~0p)%  -.(1.20)
The octahedral shearing stress theory gives the same results

as the distortion energy theory and hence may be called as
equivalent stress theory.

On comparing Eq. (1.20) with Eq. (1.15a) it can be seen that
the condition for yielding based on the distortion energy theory is
equivalent to the statement that yielding begins when the
octahedral shear stress reaches a critical value equal to

V2
(tg)er = -3—0”, = 0.47Gy‘p ..(1.21)

Thus an octahedral stress theory may be stated as follows :

Inelastic action at any point in a body under any combi-
nation of stresses begins only when the octahedral shearing stress
T, becomes equal to 0.47c_ where o,, is the yield strength of
material as determined from the standard tension test.

The octahedral shearing stress theory of failure enables us
to apply the distortion energy theory of failure by dealing only with
stresses instead of dealing with energy. This procedure seems to
be more convenient because stress is a more familiar quantity in
engineering design than the energy.
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1.7 GRAPHICAL COMPARISON OF THEORIES OF
FAILURE

Figure 1.9 shows the graphical comparison of different
theories of failure discussed above, for a material having the same
yield point stress in tension and compression and subjected to two
dimensional stress system.

0;=0
Maximum
Maximum strain theory
principal stress theory
2 D= 1
N\
6 \
|
I
I
Al 0 A

—>+ 0,

- Maximum

shear stress

8
- B theory
Bl

Maximum
distortion
energy theory

Maximum
o, strain energy theory

7
Fig. 1.9

The curves in Fig. 1.9 represent the limiting values of o,
and o, according to various theories of failure at which yielding
begins. The maximum stress theory is represented by the square
1234 and the maximum strain theory is represented by rhombus
5678. Since tension in one direction reduces the strain in the
perpendicular direction, the strain theory indicates that twe equal
tensions will cause yielding at much higher value (point 5) then
indicated by the maximum stress theory (point 1). The co-ordinates
of the point 5 from Eq. (1.7) are

0 — M0, = G,
or 0, - Mo, =0,
or 0, =0, = csyp/(l -
for point 5 the two principal stresses are equal in magnitude and
sign. In case of unlike stresses, the maximum strain theory
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indicates yielding begins at points 6 and 8 which have co-ordinates
equal to o, /(1 + p). The values of stresses at these points are,
therefore, fower than those indicated by the maximum stress
theory (points 2 and 4).

The irregular hexagon A1B4'3B’A, which is constructed on
the basis of Eq. (1.3d) represents the maximum shearing stress
theory. This theory coincides with the maximum stress theory
whenever both principal stresses have the same sign, but there is
a considerable difference when the principal stresses have opposite
sign.

By plotting Eq. (1.10b), we obtain the ellipse shown in
Fig. 1.9. The ellipse deviates by only a comparatively small amount
from the hexagon representing the maximum shearing stress
theory.

ILLUSTRATIVE PROBLEMS

Example 1.1. The major principal stress on an element of
a steel member is 2000 kg/lcm? and the minor principal stress is
compressive. If tensile yield point of steel is 3000 kg/cm?, find the
minor principal stress at which failure will occur, according to
following theories of failure :
(a) Maximum strain theory
(b) Maximum shearing stress theory
(¢) Maximum strain energy theory
(d) Maximum distortion energy theory
u = 0.25.
Solution. (¢) For maximum strain theory of failure, the
criteria of failure is given by Eq. (1.7)
G) = MOy = G,
for o, compressive this equation becomes
o) + Ho, = 0,
or o, = (oyp -o/u
= (3000 — 2000)/0.25 = 4000 kg/cm?.
(b) For maximum shearing stress theory, governing equation
is
o, +0,=0,

or o, = o,, — ¢; = 3000 — 2000 = 1000 kg/cm?.
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(¢) In case of maximum strain energy theory, using Eq.
(1.106), we get {putting o, = — ve)

o?+ (5% +2U004 = cf,p

(2000) + o2 + 2 x 0.25(2000)c, = (3000)?

or 62 + 10000, — 5 x 106 = 0

-1£4y1+20
. oy <18 [0
or 6, = 1790 kg/cm?.

(d) For maximum distortion energy theory using Eq. (1.15b),
we get

G% + G% + 0109 = C'?,p

(2000)% + o2 + 20000, = (3000)?

or o2 + 20000, — 5 x 106 = 0
or o, = 1450 kg/cm?.

Example 1.2. A cylindrical shaft made of steel for which
o,, in tension is 7000 kglem?, is subjected to static loads consisting
o)‘Pa bending moment M = 1200 kg/m and a torque T = 3600 kg/m.
Determine the diameter d which the shaft must have for a factor
of safety of 2. Apply distortion energy, maximum shear stress and
octahedral shearing stress theories.

Solution.
Md 1200 x100d _ 384 x 10* 0
c=""= = 1 kg/cm
1 2x nd? nd
64
) 4
_ Td _ 3600x120d _ 576 x310 kg/cm?
21, 2xmd” md
32

Maximum shear stress

2 [ 4\2 42
(0‘) 9 (384x10 576 x 10
—| +1° = +
2 \ 2nd® nd®
19210 x 10* 192 x 3.16 x 10*
nd? nd?®
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Let us now determine the two principal stresses ¢, and o,

o (0)2 , _ 384x10% 192x3.16x 10*
‘r =

%17 -2-+ 2 2nd® ¥ nd3
_ 192x4.16 x 10*
- nd®
. (Ej“’ L2 o 384x 10*  192x3.16x 10*
2 2nd? nd?

_ 192x 216 x 10*
nd®
(a) Now Eq. (1.15b) gives

. [cyp 12[192 x 4.16 x 10* JZ

FS | nd?
2
192 + 2.16 x 10* 192 x 4.16 x 10*
+ 3 + 3
nd nd
 192x216x10* (7000)2
nd? - 2

(192 x 10*
or —_—

2
7 ) [(4.16) + (2.16)% + 4.16 x 2.16] = (3500)?

U

o o= (192 x 10*
n x 3500
d = 9.906 cm.
(b) Let us now determine the diameter by maximum shear
stress theory which gives somewhat conservative figure.
Equating the maximum shear stress to shear stress
corresponding to Oypr We have

192x 3.16 x 10* [ 7000 ] _ 7000

2
] x 30.95

nd3 2x FS 4
192 x 3.16 x 4 x 10*
or d3 =
7t x 7000
or d =10.34 cm.

(c) Let us now determine the diameter of the shaft by
octahedral sharing stress theory.
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For plane stress 6; = 0 and Eq. (1.20) may be written as

1 2 2 2
Ty = 5\/(01—02) +05 + 07

~— o} +05 -0,0,

Equating the maximum octahedral shear stress with the
safe octahedral shear stress in simple tension (Eq. 1.21), we get

2
== Jo? + 6% - 0,0, =§(oyp/FS)
or 6} +03 - 0,0, = (0,,/FS)*.
Substituting 6, and o, and calculating the diameter d of the

shaft, we will get the diameter same as determined by maximum
distortion energy theory.

Example 1.3. A load P of 5000 kg on the crank pin of the
crank shaft as shown in Fig. 1.10 is required to turn the shaft at
constant speed. The crank shaft is made of ductile steel having a
yield strength of 2800 kglcm? as determined in simple tensile test.
Calculate the diameter of the shaft based on a factor of safety of 2.5.

Fig. 1.10

Solution. The load P acting at A will subject the crank shaft
to bending moment M and twisting moment T.

M=Px 20
= 5000 x 20 = 100,000 kg/cm.
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T=Px15
= 5000 x 15 = 75,000 kg/cm.
Bending stress at n

32M  32x10° )
e nd?3 - nd?3 kg/em”
Shearing stress at n
.. 16T _16x7500 _ 12x10°
- Ttd3 Tl.'d3 - n'd3
We will determine the diameter by applying maximum
shear stress theory.

2
_ (oY, o _ |(32x10°) [12x10%)°
T = — | +1° = +
e 2 2nd® l\ nd®

20 x 10°
= — kg/cm?
nd?® 8

kg/cm?.

T, = 2—8;9 = 1400 kg/cm?
20x10° T, 1400
nd? FS 25
g5 = 20x 105 x 25
14007

d = 10.44 cm.

Example 1.4. Compare the permissible diameter of the steel
circular shaft, subjected to torsion, according to following theories
of failure, p = 0.3.

(a) Maximum stress theory,

(b) Maximum strain theory,

(¢) Maximum shearing stress theory,

(d) Maximum strain energy theory.

Solution. Assuming that the material has the same yield
point in tension and compression, the conditions for yielding
according to the stress theory, strain theory, shear stress theory
and strain energy theory respectively are

Gl = G_yp

We have

0y — HO, = O,
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G, — 0y =0,
2, 2 -
6] +05 — 210,09 = ()'sz
This being a case of pure shear, we have
0;=— 0y =1
and the above equations can be written as,
YW = Oy
Typ = cyp/(l +
Tp = Gyp/Z

Tp = Oy [ 2(1+p)
Putting p = 0.3 for steel we find the following results :

Maximum stress theory Tp = O
Maximum strain theory Tp = 0.7 7°yp
Maximum shear stress theory T, = 0.50,,

Maximum strain energy theoryt , = 0.620,,.

For the design of a circular shaft in tension, the allowable
value of working stress in shear can be assumed as 1, = ryp/FS
and the diameter of shaft can be determined by the following
equation :

_ 16M,
e
Using maximum stress theory, we have

_ Tw _16M, Oy

T, = 7S —n?d—f— 7S ..(A)
Using maximum strain theory, we have
16M, _ 0.77csyp
nd}  FS
Oy __16M,
or FS 077 nd3 ~(B)
Comparing Egs. (A) and (B), we have
d,:d,=1:109
Using maximum shear stress theory, we get
16M, 050,
nd3 ~ FS
or S _ 16M, .(C)

FS  05nd3
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or

Comparing Egs. (4) and (C), we get
d, :dy;=1:126

By strain energy theory, we have
16M, _ 0.620,,

nd: =~ FS
Oy _ 16M, D)
FS ~ 062nd}

Comparing Egs. (A) and (D), we have
d, :d,=1:117
Hence considering the four theories of failure the following

ratios of the diameters are obtained :

1:1.09:1.26:1.77. Ans.

SUPPLEMENTARY PROBLEMS

1.5.

1.6.

1.7.

1.8.

A piece of material is subjected to two perpendicular stress o,
tensile and o, compressive. Find an expression for the strain
energy per unit volume.
If a stress of 1250 kg/cm? acting alone gives the same value of
strain energy as the expression already found, find the value of
o, when o, is 1100 kg/cm?. Poisson’s ratio = 0.33.

[Ans. o, = 332 kg/cm?|
A cylindrical bar 25 mm in diameter is subjected to an end thrust
of 2000 kg and is encased in a closely fitting sheath which
reduces lateral strain by one-third of its value if free. Determine
the strain energy per unit volume E = 2 x 106 kg/em?; p = 0.3.

[Ans. 3.818 x 102 kg/cm?|

The load on a bolt consists of an axial pull of 1000 kg together
with a tranverse shear force of 500 kg. Estimate the diameter
of bolt required according to :

1. Maximum shear stress theory and

2. Distortion energy theory.

Elastic limit in tension is 2800 kg/cm? and a factor of safety of
2.5 is to be applied. [Ans. (1) 1.377 and (2) 1.735 cm|
A thin-walled tube with an internal diameter of 35 cm and a wall
thickness 6 mm subjected to an internal pressure of 70 kg/cm?,
an axial tensile load of 10,000 kg and a twisting moment. The
yield point stress in tension is 2800 kg/cm?2. Determine the
maximum twisting moment that can be applied, based on the
maximum shear stress theory. |Ans. T = 14,400 kg/cm]
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