
Introduction to Software
Engineering

1
The nature and complexity of software have changed signiÀcantly in the last 30 years. In

the 1970s, applications ran on a single processor, produced alphanumeric output, and received
their input from a linear source. Today’s applications are for more complex; typically have
graphical user interface and client– server architecture. They frequently run on two or more
processors, under different operating system, and on geographically distributed mechanics.

Rarely in history has a Àeld of endeavor evolved as rapidly as software development.
The struggle to stay, abreast of new technology deal with accumulated development backlogs,
they can, just to stay in place. The initial concept of one “guru”,indispensable to a project
and hostage to its continued maintenance has changed. The software Engineering (SEI) and
group of “gurus” advise us to improve our development process. Improvement means “ready
to change”. Not every member of an organization feels the need to change. It is too easy to
dismiss process improvement efforts as just the Latest management fad. Therein we the seeds
of conÁict, as some member of a team embrace new ways of working, while other, matter
“overing dead body”. Therefore, there is an urgent need to adopt software engineering concepts,
strategies, practices to devoid conÁict, add to improve the software development process order
to deliver good quality maintainable software in time and within budget.

1.1. INTRODUCTION TO SOFTWARE
Software is described by its capabilities. The capabilities relate to the functions it executes,

the features it provides and the facilities it offers. Software written for sales order processing
would have different functions to process different types of sales orders from different market
segments. The features, for example, would be to handle multi-currency computing, updating
of product, sales and tax status in MIS reports and books of accounts. The facilities could be
printing of sales orders, e-mail to customers, reports and advice to the stores department to
dispatch the goods. The facilities and features could be optional and based on customer choice.

The software is developed keeping in mind certain hardware and operating system
considerations, known as platform. Hence, software is described alongwith its capabilities and
the platform speciÀcations that are required to run it.

2 An Integrated Approach to Software Engineering

1.1.1. De¿nition of Software
Software is a set of instructions to acquire inputs and to manipulate them to produce

the desired output in terms of functions and performance as determined by the user of the
software. It also includes a set of documents, such as the software manual, meant for users to
understand the software system. Today’s software comprises the Source Code, Executables,
Design Documents, Operations and System Manuals and Installation and Implementation
Manuals.

Software is:
(i) Instructions (computer programs) that when executed provide desired function and

performance.
(ii) Data structures that enable the programs to adequately manipulate information.
(iii) Documents that describe the operation and use of the programs.

OR
The term software refers to the set of computer programs, procedures, and associated

documents (Áowcharts, manuals, etc.) that describe the programs and how they are to be used.
To be precise, software means a collection of programs whose objective is to enhance the

capabilities of the hardware.
OR

DeÀnition of Software given by IEEE
Software is the collection of computer programs, procedure rules and associated

documentation and data.

1.1.2. Importance of Software
Computer software has become a driving force.
 It is engine that drives business decision-making.
 It serves as the basis for modern scientiÀc investigation and engineering problem

solving.
 It is embedded in all kinds of systems like transportation, medical, telecommunications,

military, industrial processes, entertainment, ofÀce products etc.
It is important as it affects nearly every aspect of our lives and has become pervasive in

our commerce, our culture and our every day activities software impact on our society and
culture is signiÀcant. As software importance grows, the software community continually
attempts to develop technologies that will make it easier, faster and less expensive to build
high-quality computer programs.

1.2. TYPES OF SOFTWARE
Computer software is often divided into two categories:
1. System software. This software includes operating system and all utilities that

enable the computer to function.
2. Application software. These consist of programs that do real work for users. For

example, word processors, spread sheets, and database management systems fall under the
category of applications software.

System software are low level programs that interact with the computer at a very basic
level there include operating system, computers utilities for managing resources. In contrast,
applications software includes database programs, word processors, and spread sheets.

Introduction to Software Engineering 3

Software

System software Application software

Operating

software

File magnitude

Assemblers Compliers

Debuggers Utilities

Image

processors

Word

processors

Data bases Spread sheets

Games Communication

software

Fig. 1.1 Types of Software
Application software sits a top of system software because it needs help of system software

to run. Fig. 1.1 gives an overview of the software classiÀcation and its types.
Now we will have an overview of these different classes of software one by one.
1. Operating Systems. It is basically the system which provides interface between the

user and the hardware. It manages hardware like, memory, CPU, input output devices Àles
etc. for the user. Most commonly used operation systems include Microsoft Windows, DOS,
XENIX, Mac OS, OS/2, Unix MVS, etc.

2. Utilities. Utilities are programs that perform the very speciÀcation tasks related
to managing system resources. Operating system in a number of utilities for managing disk
printers, other devices.

3. Compilers and Interpreters. Compiler is a program that translates source code
into object code. The compiler derives its name from the way it works, looking at the entire
piece of source code and collecting and reorganizing the instructions. Thus, a compiler differs
from an interpreter, which analyzes and executes each line of source code in succession,
without looking at the entire program. The advantage of interpreters is that they can execute
a program immediately. Compiler require some time before an executable program emerges.
However, programs produced by Compiler run much faster than the same programs executed
by an interpreter.

4. Word Processors. A word processor is a program that enables you to perform word
processing functions. Word processors use a computer to create, edit, and print documents. Of
all computer applications, word processors are the most common.

To perform word processing, you need a computer, the word processing software (word
processor), and a printer. A word processor enables you to create a document, store it
electronically on a disk, display it on a screen, modify it by entering commands and characters
from the keyboard, and print it on a printer.

The great advantage of word processing over using a typewriter is that you can make
changes without retyping the entire document. If you make a typing mistake, you simply
back up the cursor and correct your mistake. If you want to delete a paragraph, you simply
remove it, without leaving a trace. It is equally easy to insert a word, sentence, or paragraph
in the middle of a document. Word processors also make it easy to move sections of text from
one place to another within a document, or between documents. When you have made all the
changes you want, you can send the Àle to a printer to get a hardcopy. Some of the commonly
used word processors are Microsoft Word, WordStar, WordPerfect, AmiPro, etc.

4 An Integrated Approach to Software Engineering

5. Spread Sheets. A spreadsheet is a table of values arranged in rows and columns.
Each value can have a predeÀned relationship to the other values. If you change one value,
therefore, you may need to change other values as well.

Spreadsheet applications (often referred to simply as spreadsheets) are computer
programs that let you create and manipulate spreadsheets electronically. In a spreadsheet
application, each value sits in a cell. You can deÀne what type of data is in each cell and how
different cells depend on one another. The relationships between cells are called formulas, and
the names of the cells are called labels.

Once you have deÀned the cells and the formulas for linking them together, you can
enter your data. You can then modify selected values to see how all the other values change
accordingly. This enables you to study various what-if scenarios.

There are a number of spreadsheet applications in the market, Lotus 1-2-3 and Excel
being among the most famous. These applications support graphic features that enable you to
produce charts and graphs from the data.

Some spreadsheets are multidimensional, meaning that you can link one spreadsheet
to another. A three-dimensional spreadsheet, for example, is like a stack of spreadsheets
all connected by formulae. A change made in one spreadsheet automatically affects other
spreadsheets.

6. Presentation Graphics. Presentation Graphics enable users to create highly
stylized images for slide shows and reports. The software includes functions for creating
various types of charts and graphs and for inserting text in a variety of fonts. Most systems
enable you to import data from a spreadsheet application to create the charts and graphs.
Presentation graphics is often called business graphics. Some of the popular presentation
graphics software is Microsoft Power Point, Lotus Freelance Graphics, Harvard Presentation
Graphics, etc.

7. Database Management Systems (DBMS). A DBMS is a collection of programs
that enable you to store, modify, and extract information from a database. There are many
different types of DBMS, ranging from small systems that run on personal computers to huge
systems that run on mainframes. The following are some examples of database applications-
computerized library systems, automated teller machines, Áight and railway reservation
systems, computerized inventory systems, ete.

From a technical standpoint, DBMS can differ widely. The terms relational, network, Áat,
and hierarchical all refer to the way a DBMS organizes information internally. The internal
organization can affect how quickly and Áexibly you can extract information.

Requests for information from a database are made in the form of a query, which is a
stylized question. Different DBMS support different query languages, although there is a
semi-standardized query language called SQL (structured query language). Sophisticated
languages for managing database systems are called fourth-generation languages, or 4GLs
for short.

The information from a database can be presented in a variety of formats. Most DBMS
include a report writer program that enables you to output data in the form of a report. Many
DBMS also include a graphics component that enables you to output information in the form
of graphs and charts. Some examples of database management system are IDMS, IMS, DB2,
Oracle, Sybase, informix, Ingress, MS-SQL Server, MS-Access, ete.

8. Image Processors. Image processors or graphics programs enable you to create, edit,
manipulate, add special effects, view, and print and save images.

Introduction to Software Engineering 5

(i) Paint Programs. A paint program is a graphics program that enables you to draw
pictures on the display screen, which is represented as bit maps (bit-mapped graphics). Most
paint programs provide the tools in the form of icons. By selecting an icon, you can perform
functions associated with the tool. In addition to these tools, paint programs also provide easy
ways to draw common shapes such as straight lines, rectangles, circles, and ovals.

Sophisticated paint applications are often called image-editing programs. These
applications support many of the features of draw programs, such as the ability to work with
objects. Each object, however, is represented as a bit map rather than as a vector image.

(ii) Draw Programs. A draw program is another graphics program that enables you to
draw pictures, then store the images in Àles, merge them into documents, and print them.
Unlike paint programs, which represent images as bit maps, draw programs use vector
graphics, which makes it easy to scale images to different sizes. In addition, graphics produced
with a draw program have no inherent resolution. Rather, they can be represented at any
resolution, which makes them ideal for high-resolution output.

(iii) Image Editors. Image Editor is a graphics program that provides a variety of special
features for altering bit-mapped images. The difference between image editors and paint
programs is not always clear-cut, but in general image editors are specialized for modifying
bit-mapped images, such as scanned photographs, whereas paint programs are specialized for
creating images. In addition to offering a host of Àlters and image transformation algorithms,
image editors also enable you to create and superimpose lavers.

1.3. CLASSES OF SOFTWARE
Software is classiÀed into the following two classes:
1. Generic software. Generic software is designed for a broad customer market whose

requirements are very common, fairly stable and well understood by the software engineer.
These products are sold in the open market, and there could be several competitive products
in the market. The database products, browsers, ERP/CRM and CAD /CAM packages, OS and
system software are examples of generic software.

2. Customized software. Customized products are those that are developed for a
customer where domain, environment and requirements being unique to that customer cannot
be satisÀed by generic products.

Legacy systems, software written for speciÀc business processes that are typical of the
speciÀc industry are used when a customized software product is needed. Process control
systems, trafÀc management systems. hospital management systems and manufacturing
process control systems require customized software.

The developer manages a generic product and the customer manages a customized
product. In other words, requirements and speciÀcations in a generic product are controlled by
the developer, whereas in the case of customized product, these are controlled by the customer
and inÁuenced by the practices of that industry.

1.4. INTRODUCTION TO SOFTWARE ENGINEERING
Software has become critical to advancement in almost all areas of human endeavour.

The art of programming only is no longer sufÀcient to construct large programs. There are
serious problems in the cost, timeliness, maintenance and quality of many software products.

Software engineering has the objective of sowing these problems by producing good
quality, maintainable software, on time within budget. Producing good quality, maintainable
software, on time within budget. To achieve this objective, we have to focus in a disciplined
manner on both the quality of the product and on the procures used to develop the product.

6 An Integrated Approach to Software Engineering

Few important deÀnitions given by several authors and institutions are as under:
IEEE Comprehensive DeÀnition. Software Engineering is the application of a

systematic, disciplined, quantiÀable approach to the development, operation and maintenance
of software, i.e., the application of engineering to software.

According to Barry Boehm. Software engineering is the application of science and
mathematics by which the capabilities of computer equipment are made useful to man via
computer programs, procedures and associated documentation.

According to Fairley. Software Engineering is a methodological and managerial
discipline concerning tile systematic production and maintenance of software products that are
developed and maintained with in anticipated and controlled time and cost limits.

According to Fritz Bauer. Software Engineering is the establishment and use of sound
engineering principles in order to obtain economically software that is reliable and works
efÀciently on real machines.

According to Somerville. Software Engineering is concerned with the theories, methods
and tools that are needed to develop the software products in a cost effective way.

According to Dermis. Software Engineering is the application of principles, skills and
art to the design and construction of programs and systems of programs.

According to Morven Gentleman. Software Engineering is the use of methodologies,
tools and techniques to resolve the practical problems that arise in the construction, deployment,
support and evolution of software.

According to Stephen Schach. Software engineering is a discipline whose aim is the
production of quality software, software that is delivered on time, within budget, and that
satisÀes its requirements.

According to Pomberger and Blaschck. Software Engineering is the practical
application of scientiÀc knowledge for the economical production and use of high-quality
software.

According to Rafael J. Barros. Software Engineering is the application of methods
and scientiÀc knowledge to create practical cost-effective solutions for the design, construction,
operation and maintenance of software and associated products, in the seroice of mankind.

Other DeÀnitions. Software Engineering deals with cost effective solutions to practical
problems by applying scientiÀc knowledge in building software artifacts in the service of
mankind.

OR
Software Engineering is the application of methods and scientiÀc knowledge to create

practical cost-effective solutions for the design, construction, operation and maintenance of
software.

OR
Software Engineering is a discipline whose aim is the production of fault free software that

satisÀes the user’s needs and that is delivered on time and within budget.
OR

The term Software Engineering refers to a movement, methods and techniques aimed at
making software development more systematic. Software methodologies like the OMG’ s UML
and software tools (CASE tools) that help developer’s model application designs and then
generate code are all closely associated with Software Engineering.

OR

Introduction to Software Engineering 7

Software Engineering is an Engineering discipline which is concerned with all aspects of
software production.

1.4.1. Software Engineering Principles
Ask any student who has had some programming experience the following question:
You are given a problem for which you have to build a software system that most students

fed will be approximately 10,000 lines of (say C or Java) code. If you are working full time or
it, how long will it take you to build this system?

The answer of students is generally 1 to 3 months. And, given the programming expertise
of the students there is a good chance that they will be able to build a system and demo it to
the progress within 2 months. With 2 months as the completion time, the productivity of the
student will be 5,000 lines of code (LOC) per person month.

The principles deal with both the process of software engineering and the Ànal product.
The right process will help produce the right product, but the desired product will also affect
the choice of which process to use. A traditional problem in software engineering has been the
emphasis on either the process or the product to the exclusion of the other. Both are important.

The principles we develop are general enough to be applicable throughout the process
of software construction and management. Principles, however, are not sufÀcient to drive
software development. In fact, they are general and abstract statements describing desirable
properties of software processes and products. But, to apply principles, the software engineer
should be equipped with appropriate methods and speciÀc techniques that help incorporate
the desired properties into processes and products.

In principle, we should distinguish between methods and techniques. Methods are
general guidelines that govern the execution of some activity; they are rigorous, systematic,
and disciplined approaches. Techniques are more technical and mechanical than methods;
often, they also have more technical and mechanical than methods; often, they also have more
restricted applicability. In general, however, the difference between the two is not sharp. We
will therefore use the two terms interchangeably.

Sometimes, methods and techniques are packaged together to form a methodology. The
purpose of a methodology is to promote a certain approach to solving a problem by preselecting
the methods and techniques to be used. Tools, in turn, are developed to support the application
of techniques, methods, and methodologies.

Fig. 1.2 shows the relationship between principles, methods, methodologies, and tools.
Each layer in the Àgure is based on the layer(s) below it and is more susceptible to change,

due to passage of time. This Àgure shows clearly that principles are the basis of all methods,
techniques, methodologies, and tools.

Tools

Methodologies

Methods

and techniques

Principles

Fig. 1.2. Relationship Between Principles, Techniques, Methodologies, and Tools

8 An Integrated Approach to Software Engineering

In software engineering we are not dealing with programs that people build to illustrate
something or for hobby (which we are referring to as student systems). Instead the problem
domain is the software that solves some problem of some users where larger systems or
businesses may depend on the software, and where problems in the software can lead to
signiÀcant direct or indirect loss.

1.5. SOFTWARE COMPONENTS
A software component is a system element offering a predeÀned service and able to

communicate with other components. Clemens Szyperski and David Messerschmitt give the
following Àve criteria for what a software component shall be to fulÀll the deÀnition:

 Multiple-use
 Non-context-speciÀc
 Cornposable with other components
 Encapsulated i.e., non-investigable through its interfaces
 A unit of independent deployment and versioning.
A simpler deÀnition can be: A component is an object written to a speciÀcation. It does not

matter what the speciÀcation is: COM, Java Beans, etc., as long as the object adheres to the
speciÀcation, It is only by adhering to the speciÀcation that the object becomes a component
and, gains features like reusability and so forth.

Software components often take the form of objects or collections of objects (from object-
oriented programming), in some binary or textual form, adhering to some Interface Description
Language (IDL) so that the component may exist autonomously from other components in a
computer.

When a component is to be accessed or shared across execution contexts or network links,
some form of serialization (also known as marshalling) is employed to turn the component or
one of its interfaces into a bit stream.

It takes signiÀcant effort and awareness to write a software component that is effectively
reusable. The component needs:
 to be fully documented;
 more thorough testing;
 robust input validity checking;
 to pass back useful error messages as appropriate;
 to be built with an awareness that it will be put to unforeseen uses;
 a mechanism for compensating developers who invest the (substantial) effort implied

above.

1.6. SOFTWARE CHARACTERISTICS
The software has a very special characteristic e.g., “it does not wear out”. Its behavior and

nature is quite different than other products of human life. Both activities require different
processes and have different characteristics.

Now we have a better understanding of the problem domain that software engineering
deals with, let us orient our discussion to software Engineerings itself. Software engineering
is deÀned as systematic approach to the development, operation, maintenance, and retirement
of the software.

The key characteristics of software are as under:
1. Most software is custom-built, rather than being assembled from existing

components. Most software continues to be custom built, although recent developments tend

Introduction to Software Engineering 9

to be component based. Modern reusable components encapsulate both data and the processing
applied to data, enabling the software engineer to create new applications from reusable part.
For example, today GUI is built using reusable components that enable the creation of graphics
windows, pull-down menus, and a wide variety of interaction mechanisms. The data structure
and processing detail required to build the interface are contained with a library of reusable
components for interface construction.

2. Software is developed or engineered; it is not manufactured in the classical
sense. Although some similarities exist between software development and hardware
manufacture, the two activities are fundamentally different. In both activities, high quality
is achieved through good design, but the manufacturing phase for hardware can introduce
quality problems that are nonexistent for software. Both activities depend on people, but
the relationship between people applied and work accomplished is entirely different. Both
require the construction of a “product”. But the approaches are different. Software costs are
concentrated in engineering. This means that software projects cannot be managed as if they
were manufacturing projects.

3. Software is Áexible. We all feel that software is Áexible. A program can be developed
to do almost anything Sometimes, this characteristic may be the’ best and may help us to
accommodate any kind of change. Reuse of components from the libraries help in reduction of
effort. Now-days, we reuse not only algorithms but also data structures.

4. Software doesn’t wear out. There is a well known “bath-tub curve” in reliability
studies for the hardware products. Fig. 1.3 depicts failure rate as a function of time for
hardware. The relationship, often called the “bath-tub curve”. Note that, wear out means
process of loosing the material.

Wear out

phaseUseful life phase

Burn-in

phase

F
a
il

u
re

 i
n

te
n

s i
t y

Time

Fig. 1.3. Bath Tub Curve
There are three phases for the life of a hardware product. Initial phase is burn-in phase,

where failure intensity is high. It is expected to test the product in the industry before
delivery. Due to testing and Àxing faults, failure intensity will come down initially and may
stabilize after certain time. The second phase is the useful life phase where failure intensity
is approximately constant and is called useful life of a product. After few years, again failure
intensity will increase due to wearing out of components. This phase is called wear out phase.
We do not have this phase for the software, as it does not wear out. The curve for software is
given in Fig. 1.4

10 An Integrated Approach to Software Engineering

Time

F
a
il

u
re

 i
n

te
n

s i
t y

Fig. 1.4. Software Curve
Important point is software becomes reliable overtime instead of wearing out. It becomes

obsolete, if the environment, for which it was developed, changes. Hence software may be
retired due to environmental changes, new requirements, new expectations, etc.

1.7. SOFTWARE CRISIS
The software crisis has been with us since 1970s. As per the latest IBM report, “31% of

the projects get cancelled before they are completed, 53% over-run their cost-estimates by an
average of 189% and for every 100 projects, there are 94 restarts”.

When software is developing then during development many problems are raised up that
set of problem is known as software crisis. When software is developing then on the different
steps of development, problems are encountered associated with those steps. Now we will discuss
the problem and causes of software crisis encounter on different stage of software development.
1.7.1. Problems

 Schedule and cost estimates are often grossly inaccurate.
 The “Productivity” of software people hasn’t kept pace with the demand for their services.
 The quality of software is sometimes less than adequate.
 With no solid indication of productivity, we can’t accurately evaluate the efÀciency of

new, tools, methods or standards.
 Communication between customer and software developer is often poor.
 The software maintenance task devours the majority of all software rupees.

1.7.2. Causes
 Quality of software is not good because most of the developer use the historical data to

develop the software.
 If there is delay in any process or stage i.e., analysis, design, coding and testing) then

scheduling does not match with actual timing.
 Communication between managers and customers, software developers, support staff

etc. can break down because the special characteristics of software and the problems
associated with its development are misunderstood.

 The software people responsible for tapping that potential often change when it is
discussed and resist change when it is introduced.

Introduction to Software Engineering 11

1.7.3. Software Crisis in the Programmer’s Point of View
 Problem of compatibility.
 Problem of portability.
 Problem in documentation.
 Problem of piracy of software.
 Problem in co-ordination of work of different people.
 Problem of maintenance in proper manner.

1.7.4. Software Crisis in the User’s Point of View
 Software cost is very high.
 Customers are moody or choosy.
 Hardware goes very down.
 Luck of specialization in development.
 Problem of different versions of software.
 Problem of views.
 Problem of bugs.

1.8. SOFTWARE MYTHS
There are Number of myths associated with software development community. Some of

them really affect the way, in which software development should take place. In this section,
we list few myths, and discuss their applicability to standard software development.

 If we get behind schedule, we can add more programmers and catch up.
 If I decide to outsource the software project to a third party, I can just relax and let

that Àrm build it.
 Project requirement continuously changes, but changes can be easily accommodated

because software is Áexible.
 The only deliverable work product for a successful project is the working program.
 Software with more features is better software.
 Once we write the program and get it to work, our job is done.
 Until I get the program running, I have no way of assessing its quality.
 Software engineering will make us create voluminous and unnecessary documentation

and will invariably slow us down.
 A general statement of objectives is sufÀcient to begin writing programs; we can Àll in

the details later.
 We already have a book that’s full of standards and procedures for building software.

Won’t that provide my people with everything they need to know?

1.9. SOFTWARE APPLICATIONS
Software has become integral part of most of the Àelds of human life. We name a Àeld and

we Ànd the usage of software.
Software applications are grouped into eight areas for convenience as shown in Fig. 1.5.

12 An Integrated Approach to Software Engineering

Real time

software

System

software

Engineering

and Scienti�c

software

Embedded

software

Business

software

Personal

computer

software

Arti�cal

intelligence

software

Web based

software

Fig. 1.5. Software Applications
1. System Software. System software is a collection of programs used to run the system

as an assistance to use other software programs. The compilers, editors, utilities,
operating system components, drivers and interfaces, assemblers, compilers, linkers
and loaders are examples of system software. This software resides in the computer
system and consumes its resources. A computer system without system software
cannot function.
System software directly interacts with the hardware, heavy usage by multiple
users, concurrent operations that requires scheduling, resource sharing and
sophisticated process management, complex data structures and multiple external
interfaces.

2. Real-time Software. Real time software deals with changing environment. First
it collects the input and convert it from analog to digital, control component that
responds to the external environment, perform the action in the last.
The software is used to monitor, control and analyze real world events as they occur.
Examples are Rocket launching, games etc.

3. Embedded Software. Software, when written to perform certain functions under
control conditions and further embedded into hardware as a part of large systems, is
called embedded software.
The software resides in Read-Only-Memory (ROM) and is used to control the various
functions of the resident products. The products could be a car, washing machine,
microwave oven, industrial processing products, gas stations, satellites and a host of
other products, where the need is to acquire input, analyze, identify status, decide and
take action that allows the product to perform in a predetermined manner. Because of
their role and performance, they are also termed intelligent software.

4. Business Software. Software designed to process business applications is called
business software. Business software could be a data- and information-processing
application. It could drive the business process through transaction processing in on-
line or in real-time mode.
This software is used for speciÀc operations such as accounting package, Management
information system, pay roll package, inventory management. Business software
restructures existing data in order to facilitate business operations or management
decision making. It also encompasses interactive computing. It is an integrated
software related to a particular Àeld.

Introduction to Software Engineering 13

5. Personal Computer Software. The personal computer software market has burgeoned
over the past two decades. Word processing, spreadsheets, computer graphics, multimedia,
entertainment, database management, personal and business Ànancial applications,
external network or database access are only a few of hundreds of applications.

6. ArtiÀcial Intelligence Software. ArtiÀcial Intelligence software uses non-numerical
algorithms, which use the data and information generated in the system, to solve the
complex problems. These problem scenarios are not generally amenable to problem-
solving procedures, and require speciÀc analysis and interpretation of the problem to
solve it as shown in Fig. 1.6.
Application within this area include robotics, expert system, pattern recognition
(image and voice), artiÀcial neural networks, theorem proving and game playing,
signal processing software.

Arti�cial Intelligence

Cognitive Science

Applications

Robotics Applications

Natural Interface

Applications

� Expert Systems

� Learning Systems

� Fuzzy Logic

� Genetic Algorithms

� Neural Networks

� Intelligent Agents

� Visual Perception

� Tactility

� Dexterity

� Locomotion

� Navigation

� Natural Languages

� Speech Recognition

� Multisensory Interfaces

� Virtual Reality

Fig. 1.6. Application Areas of Arti¿cial Intelligence
7. Web-based Software. Web-based software is the browsers by which web pages are

processed i.e., HTML, Java, CCl, Perl, DHTML etc.
8. Engineering and ScientiÀc Software. Design, engineering of scientiÀc software’s

deal with processing requirements in their speciÀc Àelds. They are written for speciÀc
applications using the principles and formulae of each Àeld. In this type, application
areas are:

Astronomy, Volcanology, Molecular biology, Computer Aided Design (e.g., AutoCAD
software) system simulations.

These software’s service the need of drawing, drafting, modelling. lead calculations,
speciÀcations-building and so on. Dedicated software’s are available for stress analysis or for
analysis of engineering data, statistical data for interpretation and decision-making. CAD /
CAM/ CAE packages, SPSS, MATLAB, circuit analyzers are typical examples of such software.

1.10. SOFTWARE ENGINEERING PROCESSES
According to Webster, the term process means “a particular method of doing something,

generally involving a number of steps or operations”. In software engineering, the phrase
software process refers to the methods of developing software.

A software process is a set of activities, together with ordering constraints among
them, such that if the activities are performed properly and in accordance with the ordering
constraints, the desired result is produced. The basic desired result is, as stated earlier, high
quality and productivity.

14 An Integrated Approach to Software Engineering

1.10.1 Process
A process is a series of steps involving activities, constraints and resources that produce an

intended output of some kind.
Any process has the following characteristics:
 The process prescribes all of the major process activities.
 The process uses resources, subject to a set of constraints (such as a schedule), and

produces intermediate and Ànal products.
 The process may be composed of sub processes that are linked in some way. The

process may be deÀned as a hierarchy of processes, organized so that each sub process
has its own process model.

 Each process activity has entry and exit criteria, so that we know when the activity
begins and ends.

 The activities are organized in a sequence, so that it is clear when one activity is
performed relative to the other activities.

 Every process has a set of guiding principles that explain the goals of each activity.
 Constraints or controls may apply to an activity, resource, or product. For example,

the budget or schedule may constrain the length of time an activity may take or a tool
may limit the way in which a resource may be used.

1.10.2. What is a Software Process?
The software process is the way in which we produce software. This differs from organization

to organization. Surviving in the increasingly competitive software business requires more
than hiring smart, knowledgeable developers and buying the latest development tools. We also
need to use effective software development processes, so that developers can systematically
use the best technical and managerial practices to successfully complete their projects. Many
software organizations are looking at software process improvement as a way to improve the
quality, productively predictability of their software development, and maintenance efforts.

Software process is the related set of activities and processes that are involved in developing
and evolving a software system.

OR
A set of activities whose goal is the development or evolution of software.

OR
A software process is a set of activities and associated results, which produce a software

product.
These activities are mostly carried out by software engineers. There are four fundamental

process activities (covered later in the book), which are common to all software processes.
These activities are:

1. Software speciÀcation: The functionality of the software and constraints on its
operation must be deÀned.

2. Software development: The software to meet the speciÀcation must be produced.
3. Software validation: The software must be validated to ensure that it does what the

customer wants.
4. Software evolution: The software must evolve to meet changing customer needs.

Different software processes organize these activities in different ways and are
described at different levels of detail. The timing of the activities varies, as does the

Introduction to Software Engineering 15

results of each activity. Different organizations may use different processes to produce
the same type of product. However, some processes are more suitable than others
for some types of application. If an inappropriate process is used, this will probably
reduce the quality or the usefulness of the software product to be developed.

Software Process

Product Engg. Processes Process Management Processes

Development

Process
Software Con�guration

Management ProcessProject

Management

Process

Fig. 1.7. The Software Process
A software process can be characterized as shown in Fig. 1.7. A common process framework

is established by deÀning a small number of framework activities that are applicable to
all software projects, regardless of their size or complexity. A number of task sets-each a
collection of software engineering work tasks, project milestones, software work products and
deliverables, and quality assurance points-enable the framework activities to be adapted to
the characteristics of the software project and the requirements of the project team. Finally,
umbrella activities–such as software quality assurance, software conÀguration management
and measurement-overlay the process model. Umbrella activities are independent of any one-
framework activity and occur throughout the process.

It seems straight forward, and literature has number of successes stories of companies
that substantially improved their software development and project management capabilities.
However, many other organizations do not manage to achieve signiÀcant and lasting
improvements in the way they conduct their projects.

Thus, the software industry considers software development as a process. According to
Booch and Rumbaugh, A process deÀnes who is doing what, when and how to reach a certain
goal? Software engineering is a Àeld, which combines process, methods and tools for the
development of software. The concept of process is the main step in the software engineering
approach. Thus, a software process is a set of activities. When those activities are performed
in speciÀc sequence in accordance with ordering constraints, the desired results are produced.

1.11. EVOLUTION OF SOFTWARE
The software has seen many changes since its inception. After all, it has evolved over

the period of time against all odds and adverse circumstance. computer industry has also
progressed at a break-neck speed through the computer revolution, and recently, the network
revolution triggered and/or accelerated by the expansive, spread of the Internet and most
recently the web computer industry has been delivering exponential improvement in price-
performance, but the problems with software have not been decreasing. Software still come
late, exceed budget and are full of residual faults. As per the latest IBM report, “31% of the
projects get canceled before they are completed, 53% over-run their cost estimates by an
average of 189% and for every 100 projects, there are 94 restarts”.

16 An Integrated Approach to Software Engineering

Software engineering principles have evolved over the past more than Àfty years from art
to an engineering discipline. It can be shown with the help of the following Fig. 1.8.

T
e
c h

n
o
l o

g
y

Time

Unorganized usage

of past experiences

Esoteric use of

past experience

Systematic usage of past

experiences and scienti�c basis

Engineering

Art

Craft

Fig. 1.8. Evolution of Art to an Engineering Discipline
Development in the Àeld of software and hardware computing make a signiÀcant change

in the twentieth century. We can decide the software development process into four eras:
1. Early Era. During the early eras general-purpose hardware became commonplace.

Software, on the other hand, was custom-designed for each application and had a relatively
limited distribution. Most software was developed and ultimately used by the same person or
organization.

In this era the software are mainly based on (1950-1960)
 Limited Distribution
 Custom Software
 Batch Orientation
2. Second Era. The second era to computer system evolution introduced new concepts

of human machine interaction. Interactive techniques opened a new world of application
and new levels of hardware and software sophistication. Real time software deals with the
changing environment and one other is multi-user in which many users can perform or work
on a software at a time.

In this era the software are mainly based on (1960-1972)
 Multi-user
 Data base
 Real time
 Product software
 Multiprogramming
3. Third Era. In the earlier age the software was custom designed and limited

distribution but in this era the software was consumer designed and the distribution is also
not limited. The cost of the hardware is also very low in this era.

In this era the software are mainly based on (1973-1985)
 Embedded intelligence
 Consumer Impact
 Distributed Systems
 Low Cost Hardware

Introduction to Software Engineering 17

4. Fourth Era. The fourth era of computer system evolution moves us away from
individual computers and computer programs and toward the collective impact of computers
and software. As the fourth era progresses, new technologies have begun to emerge.

In this era the software are mainly based on (1985-)
 Powerful desktop systems
 Expert systems
 ArtiÀcial Intelligence
 Network computers
 Parallel computing
 Object oriented technology
At this time the concept of software making is object oriented technology or network

computing etc.
Software engineering principles have evolved over the last sixty years with contributions

from numerous researchers and software professionals. Over the years, it has emerged from a
pure art to a craft, and Ànally to an engineering discipline.

The early programmers used an ad hoc programming style. This style of program
development is now variously being referred to as exploratory, build and Àx, and code and Àx
styles. In a build and Àx style, a program is quickly developed without making any speciÀcation,
plan or design. The different imperfections that are subsequently noticed are Àxed.

1.12. COMPARISON OF SOFTWARE ENGINEERING AND RELATED FIELDS
The relationships between software engineering and the Àelds of computer science, and

traditional engineering have been debated for decades. Software engineering resembles all of
these Àelds, but important distinctions exist.
1.12.1. Comparing Computer Science

Many compare software engineering to computer science and information science like
they compare traditional engineering to physics and chemistry.

About half of all software engineers earn computer science degrees. Yet on the job, practitioners
do applied software engineering, which differs from doing theoretical computer science, as
illustrated in Table 1.1.

TABLE 1.1
Issue Software Engineering Computer Science

Ideal Constructing software
applications for real-world use
for today

Finding eternal truths about
problems and algorithms for
posterity

Results Working applications (like ofÀce
suites and video games) that
deliver value to users.

Computational complexity,
and correctness of algorithms
(like shell sort) and analysis of
problems (like the travelling
salesman problem)

Budgets and
Schedules

Projects (like upgrading an ofÀce
suite) have Àxed budgets and
schedules

Projects (like solving P=NP’?)
have open ended budgets and
schedules

18 An Integrated Approach to Software Engineering

Change Applications evolve as user needs
and expectations evolve, and as
SE technologies and Oractices
evolve.

When computer science problems
are solved, the solution will never
change

Additional Skills Domain knowledge Mathematics
Notable Educators
and Researchers

Barry Boehm, Fred Brooks, and
David Parnas

Edsger Dijkstra, Donald Knuth,
and Alan Turing

Notable
Practitioners

Dan Bricklin, Steve McConnell Not Applicable

Practitioners in U.S. 680,000 25,000
Practitioners in Rest
of World

1,400,000? 50,000?

1.12.2. Comparing Engineering
The software engineering community is about 60% as large as the rest of engineering

community combined.
Software engineers aspire to build low-cost, reliable, safe products; much like engineers

in other disciplines do. Software engineers borrow many metaphors and techniques from
other engineering disciplines, including requirements analysis, quality control, and project
management techniques. Engineers in other disciplines also borrow many tools and practices
from software engineers. Yet, there are also some differences between SE and other engineering
disciplines as illustrated in Table 1.2.

TABLE 1.2
Issue Software Engineering Engineering

Foundations Based on computer science,
information science, and discrete
math.

Based on science, mathematics, and
empirical knowledge.

Cost Compilers and computers are
cheap, so software engineering and
consulting are often more than half of
the cost of a project. Minor software
engineering cost-over runs can
adversely affect the total project cost.

In some projects, construction and
manufacturing costs can be high, so
engineering may only be 15 of the
cost of a project. Major engineering
cost overruns may not affect the total
project cost.

Replication Replication (copying CDs or
down loading Àles) is trivial.
Most development effort goes
into building new (unproven) or
changing old designs and adding
features.

Radically new or one-of-a-kind
systems can require signiÀcant
development effort to create a
new design or change an existing
design. Other kinds of systems may
require less development effort, but
more attention to issues such as
manufacturability.

Innovation Software engineers often apply new
and untested elements in software
projects.

Engineers generally try to apply
known and tested principles, and
limit the use of untested innovations
to only those necessary to create a
product that meets its requirements.

Introduction to Software Engineering 19

Duration Software engineers emphasize
projects that will live for years or
decades.

Some engineers solve long-ranged
problems (bridges and dams) that
endure for centuries.

Management
Status

Few software engineers manage
anyone.

Engineers in some disciplines,
such as civil engineering, manage
construction, manufacturing, or
maintenance crews.

Blame Software engineers must blame
themselves for project problems.

Engineers in some Àelds can often
blame construction, manufacturing,
or maintenance crews for project
problems.

Practitioners
in U.S.

611,900 software engineers 1,157,020 total non-software
engineers

Age Software engineering is about 50
years old.

Engineering as a whole is thousands
of years old.

Title
Regulations

Software engineers are typically
self-appointed. A computer science
degree is common but not at all a
formal requirement.

In many jurisdictions it is illegal to
call yourself an engineer without
speciÀc, formal education and/ or
accreditation by! governmental or
engineering association bodies.

Analysis
Methodology

Methods for formally verifying
correctness are developed in
computer science, but they are
rarely used by software engineers.
The issue remains controversial.

Some engineering disciplines are
based on a closed system theory
and can in theory prove formal
correctness of a design. In practice, a
lack of computing power or input data
can make such proofs of correctness
intractable, leading many engineers
to use a pragmatic mix of analytical
approximations and empirical test
data to ensure that a product will
meet its requirement

Synthesis
Methodology

SE struggles to synthesize (build to
order) a result according to
requirements.

Engineers have nominally reÀned
synthesis techniques over the ages
to provide exactly this. However,
this has not prevented some notable
engineering failures, such as the
collapse of the Tacoma
Narrows Bridge, the sinking of the
Titanic, and the Pentium FDlV
bug. In addition, new technologies
inevitably result in new challenges
that cannot be met using existing
techniques.

20 An Integrated Approach to Software Engineering

Research
during
Projects

Software engineering is often busy
with researching the unknown
(e.g., to derive an algorithm) right in
the middle of a project.

Traditional engineering nominally
separates these activities. A project
is supposed to apply research results
in known or new clever ways to build
the desired result. However, ground-
breaking engineering projects such
as Project Apollo often include a lot of
research into the unknown.

CodiÀed Software engineering has just
recently started to codify and teach
best practice in the form of design
patterns.

Some engineering disciplines have
thousands of years of best practice
experience handed over from
generation to generation via a
Àeld’s literature, standards, rules
and regulations. Newer disciplines
such as electronic engineering and
computer engineering have codiÀed
their own best practices as they have
developed.

1.13. SOME TERMINOLOGIES
Some terminologies are discussed in these sections which are frequently used in the Àeld

of Software Engineering.
1. Deliverables and Milestones. Different deliverables are generated during software

development. The examples are source code, user manuals, operating procedure
manuals etc. The milestones are the events that are used to ascertain the status
of the project. Finalization of speciÀcation is a milestone. Completion of design
documentation is another milestone. The milestones are essential for project planning
and management.

2. Product and Process. What is delivered to the customer is called a product. It may
include source code speciÀcation document, manuals, documentation etc. Basically, it
is nothing but a set of deliverables only.
Process is the way in which we produce software. It is the collection of activity that
leads to (a part of) a product. An efÀcient process is required to produce good quality
products. If the process is weak, the ends product will undoubtedly suffer, but an
obsessive over reliance on process is also dangerous.

3. Measures, Metrics and Indicators. In software engineering measures provides a
quantitative indication of amount, dimension, capacity or size of given attribute of a
product.
The metrics is a quantitative measures of the degree to which a system, component,
or process possesses a given attribute of a product. An indicator is a combination of
metrics.
Measurement occurs as the result of the collection of one or more data points (e.g., a
number of module reviews are investigated to collect measures of the number of errors
in each module.)

Introduction to Software Engineering 21

1.14. PROGRAMS VERSUS SOFTWARE PRODUCTS
Before discussing about the various types of development projects that are being

undertaken by software development companies, let us Àrst understand the important ways
in which professional software differs from toy software such as those written by a student in
this Àrst programming assignment.
1.14.1. Programs

A program is a subset of software and it becomes software only if documentation and
operating procedure manuals are prepared. Program is a combination of source code and object
code as shown in Fig. 1.9.

Source
Code

Object
Code

Fig. 1.9. Program = Source Code + Object Code

1.14.2. Software Products
A software product consists not only of the program code but also of all the associated

documents such as the requirements speciÀcation documents, the design documents, the test
document, the operating procedures which includes user manuals and operational manuals as
shown in Fig. 1.10.

Programs

Documentation Operating
Procedures

Fig. 1.10. Software = Program + Documentation + Operating Procedures

1.14.3. Programs Versus Software Products
The various differences between a program product and a software product are given in

the tabular form, as illustrated in Table 1.3:

22 An Integrated Approach to Software Engineering

TABLE 1.3
Programs Software Products

1. Programs are developed by individuals
for their personal use

1. A software product is usually developed
by a group of engineers working in a
team

2. Usually small in size 2. Usually large in size
3. Single user 3. Large number of users
4. Single developer 4. Team of developers
5. Lacks proper documentation 5. Good documentation support
6. Adhoc development 6. Systematic development
7. Lack of user interface 7. Good user interface
8. Have limited functionality 8. Exhibit more functionality

Self-Assessment Exercises
1. DeÀne software.
2. What is software engineering?
3. What do you mean by the term “Software Engineering”? Describe the evolving role of

software.
4. What are the different myths and realities about the software?
5. Give the various application areas of the software.
6. What is bath tub curve?
7. Discuss the characteristics of the software.
8. What characteristics of software’ make it different from other engineering products

(for example hardware)?
9. Explain some characteristics of software. Also discuss some of the software components.
10. Comment on the statement “software does not wear out”.
11. Discuss about the evolution of software engineering as a subject in the last 50 years.
12. What are the different software components?
13. What are the symptoms of the present software crisis? What factors have contributed

to the making of the present software crisis? What are possible solutions to the present
software crisis?

14. What do you understand by software crisis?
15. What is software crisis? Give the problems of software crisis.
16. What do you mean by software myths?
17. Explain in detail software engineering process.
18. Why has software become too much important in modern days desktop publishing?
19. Distinguish between a program and a software product.
20. Discuss the two well-known principles used in software engineering to tackle the

complexity of development of large programs.
21. What is the difference between software engineering and conventional engineering?

	An Integrated Approach to Software Engg by Rishab Anand.pdf
	Ch_1

