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Stress Analysis

1.1 Introduction

This chapter presents the three-dimensional theory of stress
of a continuous medium. A continuous medium is a material in
which each volume of substance is sufficiently dense so that the
concepts such as mass density, stress etc. have meaning at every
point in the region occupied by the material. The theory of stress
depends upon Newton’s laws of motion, which are independent of
the nature of continuous materials. Therefore, the relationships
derived here are applicable to all continuous materials, whether
they behave elastically, plastically, viscoelastically, or in any other
manner.

1.2 Force Distribution
The forces acting on a body can be distinguished as follows :
(a) Internal forces.
(b) External forces.

(a) Internal forces. The internal mechanical state of a body
is described by the stresses and strains at all points in it. The
internal forces are the reactive forces which are set up due to
external applied forces. And within elastic limits, the internal forces
are numerically equal to the external forces.

(b) External forces. The state of stress and strain in a body
arises due to external influences. The external forces acting on a
body can be divided into two types.

(¥) Surface forces—which are the forces distributed over the
surface or boundary of the body and acting from the surrounding
medium, like atmospheric pressure, hydraulic pressure or contact
pressure exerted by one body on another. An exterior surface is any
surface comprising a part of the bounding surface of the body and
includes for example, the surface surrounding an internal cavity.
The surface forces acting on the external surface of the body are
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described in terms of forces per unit area and, as such, are called
applied stresses. Their components along the x, y and z axes of
reference are represented by S,, S, and S, such that

S, = Limit 2%
ada—-0AA

S, = Limit 222 | (L1

S, = Limit 372

sa—0bA

where A Fx, A Fy and A Fz are the components of the surface force

A F along the x, y and z co-ordinate axes respectively and acting on

elementary area AA. Surface forces are also called the contact
forces.

An internal surface is created only by an imaginary cut
through the body and lies, prior to such a cut, entirely inside the
boundaries of the body. In order to distinguish between surface force
distribution at actual and imaginary boundaries, we call the surface
force distribution on the actual boundary, the traction force and on
the imaginary boundary, the surface force.

(22) Body forces—which act throughout the body and are not
produced by physical contact with other bodies. Body force inten-
sities are designated as forces per unit volume or per unit mass. For
example, gravitational forces electromagnetic forces, centrifugal
forces and inertia forces are body forces. They are represented by
B,, B, and B,, such that

B, = Limit 2% or Limit AF*

av—0 AV Am—gA

it AFY . .AFy
B, ALxl/n_l.lto NG or ALn:rr_;:to v ! ...(1.2)
B, = Limit 22 or Limit AF2

AV—=0 AV Am—0

where AV and Am are the elementary volume or elementary mass
respectively.

1.3 Definition of Stress

Consider a body as shown in Fig. 1.1, which in static equi-
librium under the action of the system of external forces Fy, Fy, ...,
F,,. Suppose now that the body is cut into two parts 1 and 2 by an
imaginary plane AB. Then along the plane AB there are forces
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between the particles in part 1 and those in part 2, that tend to hold
the body together. Fy, is the sum of all the reactions of the particles
in part 1 on the particles in part 2. For the body to remain in one
piece and for its equilibrium to be maintained, F3; must be opposed
by an equal and opposite force 5, which is equal to the sum of all
the particle forces in part 2 on the particles in part 1.
Thus F 21 = — F 12

or F 21 + F 12 = 0

Therefore, when a body is in equilibrium under the action of external
forces, any arbitrary portion of that body must be in equilibrium
under the action of the external and internal forces on that portion.

F, A
A
A AF
0 ‘ AF"—);
AFsl
B \ AFs2
F3 FZ

Fig. 1.1 Internal forces in a Fig. 1.2 Normal and shear force com-
continuous body. ponents of the resultant force A F
acting on an elementary area
A A at a point O.

Consider now an element of area AA on this section, as shown
in Fig. 1.2. Let the resultant internal forces acting on this area be
AF, such that SAA.AF = F5;. The component of this force in the
direction of unit normal 7 is AF,. And the other two components at
right angles to each other in the plane of the section are AF; and

AF,. Then the normal component of stress at point O is defined as :
AF

o = Limit —* ..(1.3)
A -0 A4

and the shear components of stress are

.. S

T,, = Limit

T oaa—o M )
.. S9

T, = Limit

2 aa-0 DA

Therefore, on a plane at a point there are three stress com-
ponents, one normal to the plane and the other two tangential to the
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plane. It should be remembered that if a different plane is passed
through the same point in the body, then the stresses will be
different. Further, we have taken only two directions mutually
perpendicular to each other in the section to determine only two
components of shear stress. However, there are infinite number of
directions along which shear stresses may be determined.

Since in addition to magnitude and direction, a plane of
reference must also be specified for the stress, therefore, we can say
that stress is not a vector but a tensor quantity. A tensor quantity
is a more general quantity than a vector quantity since it needs more
than three components for its complete definition (a vector needs
only three quantities for its complete definition). For the stress
tensor, six components must be known, three of these are the vector
quantities, direction and magnitude, and the other three com-
ponents are those necessary to define a plane of reference to which
the stress is referred.

1.4 Stress Notations

In order to understand clearly the state of stress at a point,
double subscript system representing stress components is utilised.
The first subscript denotes the direction of the outward drawn
normal on the plane on which the stress acts, and the second
subscript denotes the direction towards which the stress acts.
Therefore, on the positive x-face of an elementary parallelopiped,
the stresses are 1,,, T, and t,, in the Cartesian co-ordinate system
of axes. Out of which t,, is the normal stress, because the first
subscripted x, denotes the direction (i.e., x-direction) of the outward
drawn normal on the plane-x and the second subscripted x, denotes
the direction (i.e., x-direction) along which the stress acts. Whereas
1., and T, are the shear stresses, because the subscripted x gives
the direction of the outward drawn normal, i.e., the x-direction and
the subscripts y and z give the directions (i.e., y and z-directions)
along which the stresses are measured. The stress components on
aplane will be all positive if the outward drawn normal on that plane
is in the positive direction of the co-ordinate axes.

1.5 Stress Tensor at a Point

The state of stress at a point in the Cartesian co-ordinates
can be represented by the following nine components of stress
known as the stress tensor :
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The first subscript in T;; can be considered to identify a row of the
array of terms whereas the second subscript can be considered to
identify a column of the array. The principle or leading diagonal
terms are all normal stresses and all off-diagonal terms are shear
stresses. The normal stresses can also be written as o,,, 0,,, 0,, or
0, Oy, 0, instead of T, Ty, T, OF Ty, Ty, T, Throughout this book we
shall write the normal stresses as ,, 0, and o,. Therefore, the stress
tensor may be written as

Oy Ty Tx
Tx Oy Ty
Tx Ty O

All the stress components have been shown on a parallelopiped in
Fig. 1.3. It can be noted that there are nine components of stress in
total for a general state of stress.

2z
|
(o}
l z
| )—-» Tox
| Tqy
— T
xz
P Txy I _/4 0)'
Or «— : Ty ‘ )—' Ox
T T
fo) yz Xy
Ty, ) ——————————— —> X
e Ty T, 1
s 7
~ gt W v
y o,

y
Fig. 1.3 Components of stress tensor acting on the faces
of a rectangular parallelopiped.
The other more frequently used notations for components of
the stress tensor are given in Table 1.1.

Table 1.1 Summary of Stress Notations

Engineering o, oy o, Ty Y. Ty

Some American writers Oxx Oyy Oy, Oxy Oy Oux

Some Russian writers X, Y, zZ, X, Y, Z,

Some English writers P Q R S T U

In Tensor notations o11 (Y O33 o012 093 031
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In the same manner the stress tensors in cylindrical (r, 9, 2)
and spherical (r, 6, ¢) co-ordinates may be written as follows :

0,. T,e Trz g r T,.e Tr¢

Tor Op To;| and |[Te, Op Tey

T T,0 o, Tw ‘tw 0¢
1.6 Stress Gradient

The variation of stress with distance is called stress gradient.
If the stress tensor at a point is known then the stress components
in the neighbourhood of the point can be known by expanding the
stress components by Taylor series expansion. Thus if o, is the
stress at a point then the stress at a point at an infinitely small
distance dx will be given by

o, + ?aéx_ Oy - 0, + higher order terms.

00,
Neglecting higher order terms, we get o, + ol Ox

. i 3‘\7
In general it can be written as t;; + ?j . Ox;.

Taylor series expansion of a function f (x) at (x + k), where h
is an infinitely small distance, is given by

h? h®
f+h)=fx) + hf'x) + af"(x) + af’”(x) + e

where dashes represent differentiation with respect to x.

1.7 Nature of Stress Tensor

Consider an infinitesimal parallelopiped of sides dx, dy and
dz, as shown in Fig. 1.4. The shear

? stress 1., and 1, are shown acting

|

|

|

t

on its faces perpendicular to the x
and y-axes. By expressing the con-

Tyz <« —o dz dition of equilibrium of moments
< H Tyl » =M, = 0 about point O, we get
xy —_—_———————
0, (ty dydz), dx — (v, . dxdy) dz = 0
e i ¥ L Ty ST,
Similarly by considering the equi-
y librium of moments
Fig. 1.4 Moment equilibrium of iM,=0,ZM, = 0, we get
the stress component acting on T, =T,
the faces of a rectangular T =1

parallelopiped.
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Therefore, the shear stresses are complimentary in nature and
hence the stress tensor is symmetric in nature.

g -j-tj,,taej and i,j=x,y,2 ...(1.5)
Hence, the stress tensor in Cartesian co-ordinates may be ertten
as

T Y O,

Therefore, the components of stress tensor reduces from 9 to 6
independent components.
If we consider stress gradients in the parallelopiped, then the

0Ty
higher order terms like —2 dx etc., contribute only higher order

terms in dx, dy, dz to the moments. Also, the acceleration effects,
being proportional to the mass moment of inertia of the element, are
of higher degree in dx, dy, dz, and hence do not contribute to the
moments.

1.8 Equilibrium Equations in Cartesian Co-ordinates

Consider an infinitesimal rectangular parallelopiped, as
shown in Fig. 1.5, having sides dx, dy and dz under the action of
surface inertia forces and body forces.

Txy o - Ox + 3 X dx
i Falis et i e
dz ‘t‘ // ”*ay Y »tox ¢
Jtz/ a‘t,yd
ao, ‘[xy"’ay Yy 1Tyz d
Oy +2.d - Y
/ y+3y_ Y Txz *0
dx

Fig. 1.5 Stress components acting on the faces of an
elementary rectangular parallelopiped.
Consider the equilibrium of forces in the x-direction. By using
Newton’s second law of motion, we get
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00,
(ox-:—a—x.dx)dydz—ox.dydz

+(r +E-dy)dxdz Tydxdz

at
+ (rxz + 6_: dz ) dxdy — v, dxdy

+ B, . dxdydz = pdxdydz . a,
where B, = component of the body force in the x-direction,
expressed per unit volume.
a, = acceleration in the x-direction.
p = density of the material of the parallelopiped.
Iy

do at
. l. . t x Xz
Simplifying, we ge - +—6y t—=

Similarly considering the equilibrium of forces in the y and z
directions, we get respectively

at do, ot

+BI= pax

——’°1+—+—L+B

0x ady %
at +arz do,

0x ay dz

In the absence of inertia and body forces, we get the equi-
librium equations as :

90, Iy

&y oz

at o0 at

e A T L ...(1.6
Ew + Jy + 9z 0} ( )
e I 99, _

dx ay 0z

In the form of tensor notations, the equilibrium equations may be
written as :
T 4 B, =0, 116 @]
E)xj
Example 1.1 The state of stress at a point is given by :
o, =x% +20; Ty = 3x%y
o,=x"2+y%; 1,=yz
=y +10; T, =xz.
Determine the body force distribution at the point (1, 2, 3) so that the
stresses are in equilibrium.
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Solution. Using the equilibrium equation

00, 0Ty Oty

—4+—24+—=4B,=0

dx ay dz

Weget 2cy + 3x% +x + B, =0
B, =-(2xy + 3x% + )

At the point (1, 2, 3) B, becomes

B,=—@2x1x2+3x1+1)
=-4+3+1)=-8
Similarly, using the other two equilibrium equations, we get
B, =—(6xy+2y+y)=~18
=—(2z+2y2)=-18
The body force distribution required for equilibrium

becomes :

B=-8-18 -18k

1.9 Direction Cosines Relationships

Direction cosine is the property of the angle between two lines
and is equal to the cosine of the angle between them.

Consider two sets of rectilinear orthogonal co-ordinate axes
x1, X9, x3 and xy', x5, x3’, as shown in Fig. 1.6. The relationship

between the angles of the new
geometry and old geometry may be
defined by nine components a;; = cos
(x/, x;), where a;; are the direction
cosinesandi,j =1, 2, 3.

Choose an arbitrary vector A
having components A;, A, A3
referred to the original co-ordinate
system of axes x1, x4, x3 respectively.
The components of this vector in the
new co-ordinate system x;’, xo', x3’
denoted as A, Ay, A3 can be
determined from the old unprimed
components through the following
transformation equations :

Fig. 1.6 Direction cosine
relationship.

Ay =apA; + appAs + apAs
Ay’ = agiA; + aglg + agsAs ..(1.7)
As' = a3Ar + agals + agsAs

These equations in the tensor notation form can be written as :
Al'=a;A;;1=1,2,3,j=1,2,8 ...(1.8)
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The repeated indexj indicates summation over the integers 1, 2, 3,
index i appearing singly on each side of the equation, is a free index
that ranges over these same integers to yield the three separate
equations.

The reverse transformation can be written as :

A=Al = [a]T A/ -(1.9)

where T stands for transpose.

The set of nine direction cosine coefficients constitute a 3 x 3
matrix, called the transformation matrix, which may be written as

[ann a2 ap
a;j=|0a QA Qg

azy asz Qs
[ cos (xq',x1) cos (x;',x9) cos (x;,x3)
=] cos (xg',x1) cos(xy,x5) cos (x9', x3)
cos (x3',x7) cos (x3',x5) cos (x3', x3)

These nine direction cosine coefficients satisfy the following
relation:

aikajk = 6'] (110)
where §;; = Kronecker delta or unit tensor defined as
L flsi=y
o= { 0.ix .(1.11)

Expanding equation (1.10), six independent conditions are
obtained on the elements of the transformation matrix. The nor-
mality conditions are :

a?+adp+ats=1
a?y +a%y +atys =1 ..(1.12)
ag +aty+ats=1
and the orthogonality conditions give,
a1 + Q12022 + a3a23 = 0
anas; + ajpase + a13a33 = 0 .-(1.13)
ag1as) + Qg3 + agazs =0

The normality and orthogonality conditions must be satisfied

for the transformation to be rectilinear and orthogonal.

1.10 Normal and Shearing Stresses

Consider a rectangular parallelopiped, as shown in Fig. 1.7.
Let o, be the resultant stress at a point O and o,,, 0,, O, are its
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Fig. 1.7 Stresses on an oblique plane.

13

>y

components along the three axes of reference. Let a ., a,,, a,, be the
direction cosines of the resultant stress o,, so that,

or‘x

Ay = —
X 0’.
_ Oy
Ay = —>
or

a - 07‘2
” o

r

..(1.14)

The resultant stress o, can be resolved into normal stress o,
along the unit normal n having direction cosines a,., a,,, a,, and

shear stress 1,,,.

Now
where

Also

O, =0, .Qy,
Qpp = Ay - Qg + Ay - Ay + Ay, - Ay

Cp =0, (Apx - Qe + Apy - Apyy + Az - Q)
Op =Opy - Qpy + Opy, . Gy + Opy - @y,
Opx = Ox . Qpx + Ty . Ay + Typ - Ay
Opy =Tay - Apx + Oy . Ay + Ty, - A,
Or, = Tap - Qpz + Ty - Ay + O, . A,

These are called the stress vectors.

Hence th

e normal stress g, becomes

0n=0xan,zc+0y.an§+0,.anf

+ 2(Tsy-@palny + Tyz-Anyln, + Tap-Apaln,)

...(1.15)



14 ELASTIC ANALYSIS

Also 0.2 +1,t=0,2

Tns = 07‘2 - Onz
where o,=Vo,2+ o,yz +0,.2

Let a, ag, a,, be the direction cosines of 1,,,. For equilibrium
of forces in the x-direction, we have

0p-Qny + TpeGg = Oy

1
s, = — [0, — Op.a,,]
Tng
1
= [(Ox - Gn) Apx + Ty + txzanz]
Tns
. 1
Similarly Ay = ‘C—- [Txyanx + (Oy ~0y,) Ay + tyzanz]
ns

1
Cg = — [txzanx + 1,.Qny + (Oz - on) anz]
tns
Example 1.2 The stress components at a point are : o, = 20,
o, =10, o, =5,7, =10, 1, = 4 and v,, = 5 MPa. Determine the
normal and shearing stresses on the plane whose direction cosines

1 1 1 L.
are 7=, 7z 7z . Also calculate the direction of the shear stress.

Solution. Resolving the stresses along the three co-ordinate
axes, we have

Oy = OpQpy + Tay-Qpy + Tz Ay

1 35
=75 (2041045 =2 MPa

75
Opy = TyyQpx + OyQpy + Ty,
1 24
=73 (10+10+4)-\/§MPa
Opp = T Oy + Typ.Qpy + 0,.Q,,
=%(5+4+5)=%MPa
Resultant stress, o, = V0,2 + o,yz +0,2

= \/’% [(35)% + (24)% + (14)%]
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= \/% (1225 + 576 + 196)

= V %97 = 25.8 MPa

Normal stress, 0, = 0. + 0ry.-Qyy + 0, A,

=§(35+24+14)

= "‘73§ = 24.3 MPa

- 2 2
Shear stress, t,,=Vo,”-0,

=V665.67 - 592.11
=v73.56 = 8.576 MPa
The direction of the shear stress is obtained as follows :

1
gy = — [0 — 0@ ]
Ins

__1 [35 243
T 8576|V3 V3

_ 107
" V3 x 8.576

1
THS
__1 [24 243
T8576| V3 V3

__-03 _
" V3 x8.576

=0.7203

A, =

- [0y — Op-anl

—0.0202

Az = [Orz - on‘anz]

ns

1 [ 14 24.3]

8576 | V3~ V3
- 103
= V3 xss5ig - 06934

1.11 Transformation Equations for Stresses

Consider an infinitesimal tetrahedron OABC cut out of a
continuous medium, as shown in Fig. 1.8. Let the orthogonal edges
of the tetrahedron be of lengths Ax, Ay and Az. Positive shear and
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normal stresses have been shown
A2 on the faces of the tetrahedron
parallel to the reference planes.
On the inclined surface ABC
whose unit outward drawn nor-
mal is n, having direction cosines
@ps» Ay and a,,, the normal and
total shear stresses are 6, and t,,,
respectively. Then

g = 2rea BOC
"*” area ABC
o o area AOC
™~ area ABC
Fig. 1.8 Stress components acting
on the faces of an elementary area AOB
tetrahedron. nz = rea ABC -

By using Newton’s second law of motion in the direction of
n, we get

o,.ABC-o,.BOC. a,, ~-1, . BOC.a,,
-1..BOC.a,,-o,.AOC .a,, -1, .AOC .a,,
-1,.A0C.a,,~0,.AOB .a,,~-7,,.AOB . a,,

1,,AOB . a,, —% . AxAyAz.a,, = p.a,. g_éé)iz.
where a, = Acceleration in r direction.

p = Density of the tetrahedron material.
y = Specific weight of tetrahedron material.

and Ax_A6LAz_ is the volume of the tetrahedron.
Dividing throughout by ABC, we get

2
Op ~ 00"y = Ty Qpx-Apy — Tz QA

2 2
—0,a%y = Ty Qny@p, = TuyQpQpy — G,.0°%,

y AxAyAz.a,,

= TeQnxlnz = Ty,ApyQn, = g . ABC
L, On MbyAs
“P-6TABC

In the absence of inertia and body forces, we get
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2 2
o, = oxa2nx +0,a%y + 0,8, + 210500,
+ Ty G, + Tup Gl ] ..(1.17)
Let a,,, a,, and a,, be the direction cosines of the shear stress

1,.- Then since the normal and shearing stresses are at right angles,
therefore,
e Qo + Ay Aoy + Apy@g, = 0
Also a’, + azqy +a?, =1
Similarly, applying Newton’s second law in the direction of
the shear stress, we get
Tns = OxQpysy + 0ypyQsy + 0,0y, 05,
+ Ty (@nagy + Apya,)
+ T, (any g, + @na,) ...(1.18)
+ Tup (Anales + Bn )
In tensor notation, the normal and shearing stresses may be
written as

ij=xyz .(1.19)
JEERY (1.20)

where the subscript » within the bracket implies that submission is
not to be taken over n, Or in general, if we are given a stress tensor
Ty, in the old co-ordinate system x, y, z, then the transformed stress
tensor t;; in the new co-ordinate system «', y', 2’ may be written in
the tensor notation form as

Tif]" = 4U%GmTm ...(1.21)

On =8y A(n)j Vyj

Tps = ApiQgT

y

T
= (@iftim) Lim = Tim-Cjm = tim-(amj)

In terms of Cartesian co-ordinates, the components of the
transformed stress tensor may be written as

Oy = Qx'y A(x'y T
= 2 2 2
= 0,.0%% + 0,27y + 0,0, + 2(t,y ay, ay,
+ tyzax’yax'z + T, x’zax'z) (122)

Oy = Ay Ay Tij
= 2 2 2
= 0,0, + 0,a%,, + 0,0, + 2(t,.a,.ay,
+ Ty @y Qy, + Ty Q) ...(1.23)
Oz = Q)i Ay - Tyj
2 2
= 0,.a%, + 0,a,, + 0,0%,, + 2(ty.a,, a,,y

+ T, QA + T, Ay Ay, ...(1.24)
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Tey' = Qxilyjlj
= Oxyx Ay T OyQryyy + O,0xQy,
+ Ty (@ + Qryyy)
+ 1, (@, + ayay,)
+ T (@, + ay,8ys) ...(1.25)
Ty2 = Ayl
= 0,0y Qyx + 0y8yyayy + 0,00,
+ Ty (Bysly + Qyya)
# T (e + y,s)
+ Ty (aysa,, + @y a,y) ...(1.26)
Tyz = Qpilyylyj
= Ox0y30, 5 + Oy Qyy@yy + 0,02,Q,,
+ Ty (s + Aryayy)
+ Ty (e + Qr0z)
+ T (@, + Q) -(1.27)
Example 1.3 The stress components at a point are : o, = 50,
o, = 30, o, = 15, 1, = 20, 1, = 5, v, = 10 MPa with respect to xyz
co-ordinate system. If the co-ordinate system is rotated about z-axis

in the anti-clockwise direction through 30°, determine the new stress
components.

Solution. Let the new
co-ordinate system bex'y'z’, as
shown in Fig. 1.9. Then the
direction cosines are

x y z
x' V312 1/2 0
y -1/2 | V3/2 0
z 0 0 1

Using transformation y
equations for stresses, we get x
2 Fig. 1.9 Rotation about z-axis.
Oy = 058y
2 2
+0,.a%, + 0,.a%,

+ 2(txy-ax'xax'y + Ty, Ay Ay, + Ixzax'xax'z)
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=5ox§+30x1+15x0+2 20x 31040
1 7 3
150 , 30
==t +10vV3
=375+75+17.32
- 62.32 MPa
o, = 0,.a%, + 0,.a%, + 0,4’

+ 2(txy.ayx.ayy y2-Qy'y-Qyty + Tup Oy @yyy)

2

=50xl+30x§+0+2[20x(—%)x§+0+01

4 4 2
= % + % -10V3
=125 +22.5-17.32
=17.68 MPa
o, =0 .a’, + oy.a2 w + O, .a2 '
+ 2T 0By + Ty By @y, + Ty Q@)
=0+0+15x1+2(0+0+0)

=15 MPa
Toy = Ox.Qyx.Qyy T Oylyy.Oyy + 050470y,
+ txy (avayy + ayya,,)
( Ary-Gyz + Az yy)

+ T, (ayea yz ¥ Gz yx)

V3 1 1 V38
-50x2x(-2) 30x2 7+15x0x0
v3 v3 1 1
*20( 2 "?"5*5)
1 v3
+5(’§X0+0X7)

+10(f2:-3_—><0-0x )

1

2
_-25V3  15V3 co0(3_1
- 4 4

2 T2
=‘—1§f?i+ 10 =—5v3 + 10

=10-8.660 = 1.34 MPa
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Ty = OplyxQyx + OyQyy.Qyy + 0.0y,
+ Ty (@)2.0zy + 0yy.Qu)
+ 1, (@yy.az, + ay,.ay)

+ Ty, (@y0y, + Gy,.05)

=0+0+0+0+5x—‘/§—:x1+10(-%)x1
=%-5=4.33-5=-O.67M1>a

Tyy 04 QypQyy + OyQyy Gy + 0,.0,,.Q,,
+ Ty (@y20yy + apy.ayy)
+ Ty, (ax'y.az'z + @ypQy)

+ Ty (ax’x~az'z + a’x’z-az’x)

=0+0+0+0+5x%x1+10xgx1

=25 +5/3 =2.5 +8.66 =11.16 MPa
Otherwise by matrix multiplication method. We know that
T = Qiljm T
= (@i Tm) Lim = Cim-Qjm = Ty (a'mj)T
Tim = Qi1 Um
[ V3 /2 1/2 0][50 20 10

={-1/2 V3/2 0|20 30 5
0 0 11]]10 5 15

[ 53.3  32.32 11.16]
=|-78 1598 -0.67
10 5 15

L

T
Ty = Tim (@)

(53.3 3232 1116 ] "/'3_1/2 -1/2 0
=|-78 1598 -067(| 3 V3/2 0O
10 5 15 0 0 1

4

[ 62.32 1.34 11.16]
=| 134 1768 -0.67 | MPa
11.16 -0.67 15
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Method of multiplication of two matrices.
ajp ap a|[bn bz by
agr  azp axp||ba  bn by

ay by + ajby) +a13ba) ajbig + ajbgg + a13bag ajbis + ajobas + aizbss
=| agby) + axnbyy + aggbsy agbig + agbay + agsbsy agibis + axnbas + assbas
ag by + asgbg) + agsbs) agibig + agabog + agsbag g byg + agabag + aggbss

To determine the transpose of the matrix, change rows into
columns.

1.12 Principal Stresses and Principal Planes

Consider an infinitesimal tetrahedron having three faces
with known stresses on the reference planes, as shown in Fig. 1.10.

Fig. 1.10 Stress components acting on the faces of an
elementary tetrahedron.

Assume that the inclined face ABC is a principal plane. The
principal stress o on this plane is along the normal n to this plane
having direction cosines a,,, a,, and a,,.

Applying Newton’s second law of motion in the z-direction
and neglecting body and inertia forces, we get
o0.ABC.a,, -0, AOB -1,AOC ~,,. BOC = 0
Dividing throughout by area ABC, we get
O.Qp; = 02.Qnz = Tyz-Qpy — TxzApz = 0

Tz Oy + TypeQpy + (0, —0) @, = 0
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Similarly, by considering the equilibrium of forces in the x
and y directions, we get
(0x—0) Qpy + Ty Apy + T, @, = 0
Tay-Qpx + (Oy —0) @py + 7,0, = 0
Therefore, the three simultaneous homogeneons equations
can be written as :

Oy-0O Txy Txz Anx 0
Toy o,-0 Ty2 @y |=]0
Txz ryz 0,-0 ay, 0

By using Cramer’s rule, we get
0 T

£ xz
0 o,-0 Tz
0 T, o,-0
On = 0, -0 Toy T,
Ty oy,-0C Ty,
Typ 1, 0,-0

a,, will be zero, as will the other direction cosines, unless the
denominator in the preceeding equation is zero so as to permit an
indeterminate result. But all the direction cusines cannot be zero,

because

az,lx + a2,,y + az,,,z =1

Thus a necessary condition required for the solution of this problem
is:

0, -0 Tay Ty
D=| =, Oy-0O 1, | =0
Tye Ty, g,-0

Expanding the determinant, we get
o®— (0, + 0, + 0,) 6 + (0,0, + 0,0, + 0,0,
- 12,:, - ‘tzyz -t%)o- (0,00, — oxtzy, - Oy‘tzxz ...(1.28)
- oz-czxy + 27,,7,,T,.) = 0
This is a cubic equation and must have three distinct roots,
giving three principal stresses. Further it may be borne in mind that
principal stresses depend only on the state of stress at a point in a
body and do not depend on the orientation of the co-ordinate axes.
1.12.1 Stress Invariants

The combination of stresses at a point which do not change
with the orientation of the co-ordinate axes are called stress in-
variants. Therefore, we define,
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0, + 0y + 0, = I; = First invariant of stress ...(1.29)

0,0y + 0,0, + 0,0, — rzxy - tzy -, =1,
= Second invarlant of stress  ...(1.30)
2 2 -
0,0,0, = 0,1y, — 0y, — 0Ty + 2T,y T, T, = I3
= Third 1nvar1ant of stress ...(1.31)
It can be noticed that
I, = 0, + 0, + 0, = trace of the stress tensor
c T a T o T
I2 - x L 'y L3 I x Xz
Ty Oy T, O T, O,
Oy Tay xz

Li=|tu o 7,

Xz Tyz z

= value of the determinant of the stress tensor.
Therefore, the cubic equation can be written as
o®~Lo?+I0-I3=0 ...(1.34)
The roots of this equation can be determined by hit and trial
method. This is more time consuming and cumbersome. Therefore,
it should always be preferred to determine the roots by a numerical
technique. For the above equation, Newton-Raphson method may
be used to determine the roots. This method can give the roots with
a sufficiently high accuracy in three or four iterations and the
convergance is also very rapid.

Solution of Cubic Equation
1. First Method

The cubic equation is :
o —1o?+Io-1,=0

I
Put cx=rcose+§1
I? I?
r3 cos® 9+§7-+Ilr cos? 6+—3-rcosG —I;r*cos?0
I’

LI,
——§~—--—I1 rcosG+Izrcose+T—I3-0

I)? I
r3c0536—(?1—12)rcose (211 -——1—5 +I3 =0
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I? LI
cos39—r—12(—é—[z)cose—%(%lﬁ-—g—z+13)=0 ..(@)

Now c0s 30 = 4 cos® 0 — 3 cos O
or cos39—%cose—icos 30=0 ...(b)
Comparing Egs. (@) and (), we have

I2
(%-12)] 0)

and —%(—2—113——+I3)=%c0539
or cosSGz-‘—t—
r
LI
01=lcos‘l[—4-(—2"113-£+I3)] C)

3 ré

0y = 120° - 0,
05 = 120° + 6,

I
Then op=rcos0; + 51

1
02=rcosez+§

1
03=rcos63+§

2. Second Method

Consider the cubic equation :
y3+py2+qy+r=0

Put y=x—§,weget
2
3 _p° 2 3_P9q =
x+(q 3)x+(27p 3+r) 0
or B rax+b=0

2
where a=q —%
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2 3 P9
begrP =g
-b
Put Cose=ﬁ3—/-2
a
?(-31)
a 1/2
{4
Then = cosg—e
Y1=8 373

- .9\
yz-gcos(lzo +3) 3

y3=gcos(240°+—e-)—3

3] 3
Here p=-1,, gq=I, r=-1I
Y1=01, y2=0p and y3=03
3. Newton-Raphson Method
Let flo) =0® ~I,6% + I,o - I

If 0; is the approximate root chosen for the above equation, then the
better approximated root will be given by,

R (C))
i+1 i f’(oi)
where 1=0,1,2, ......

The iteration process may be continued till the difference
between the two successive roots is not appreciable as demanded by
the accuracy.

Thus, the three principal stresses oy, 03, 03 can be deter-
mined. Each principal stress when substituted back will give three
direction cosines. For g, to be substituted, let

A1=[oy—01 T, }

Tyz 0, -0y

= cofactor of first term of determinant D.

Txy T

yz
Txz G, -0y

ol

= cofactor of second term of determinant D.
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Cl=[r"y oy—ol}

Tz 1yz

= cofactor of third term of determinant D.

Then the non-trivial (non-zero) solution is :
Anx, Qny, Onz

A "B o ok

where K, = aconstant =0

2 2 2
Va na, t @ py, + a0z 1

==

K =
VA12+BI2+C'12 VA12+BI2+CI2
Therefore, the direction cosines for principal stress o; become :
A
a =
e VA12+B12+012
Any, = B,
i VA]Z + B12 + C12
G
a =
" VA12+BIZ+CIZ

Similarly, direction cosines for other principal stresses can
be determined.

..(1.35)

1.12.2 Discussion

(2) Case 1. If the three roots have distinct values, i.e., 0] = 09 = 03,
then the three corresponding principal stresses occur on a single set
of mutually perpendicular principal planes.

@1) Case 2. If two of the three roots are equal (say 07 = 09 = 03)
then all planes perpendicular to the principal planes on which o,
acts are principal planes acted on by the principal stresses o3 = o3.

(#i2) Case 3. If the three roots are equal, i.e, 0; = 03 = 03 then
every plane is a principal plane. This type of state of stress is called
Hydrostatic.

If the three principal stresses are distinct then all the nine
direction cosines for the three principal stresses can be determined.
However, when two of the principal stresses are equal to each other
or there is a hydrostatic state of stress, then all the nine direction
cosines cannot be determined directly. For such a case, the following
procedure may be followed.
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(v) Let 0y = 09 = 0.

Let the direction cosines for the three principal stresses, oy,
02 and 03 be given by any;, Gny,  Gnz; 3 Tnay Anyy » Anzy 5 Anays Tnyss
Qng, respectively. Then direction cosines for 01 and 03 can be deter-

mined directly by the procedure as outlined above. In order to
determine the direction cosines for g3, the following equations may
be used.

2 2 2
anx3+any3+an23=1
Qnx1-qnz3 + Apy1-Any3 + Apzp1.Qpe3 = 0
Qnx2-Qpx3 t Any2.Apy3 + App2.Qp,3 = 0
From these three equations, we can determine a,.3, a3,

Ap23-

(v) Let 6y = 09 = 03.

For such a state of stress, every direction is a principal
direction. Since we are limiting our study to the three-coordinate
system, therefore, we are interested only to determine three direc-
tions which are mutually perpendicular to each other. To determine
these three directions the following procedure may be adopted.

Let the direction cosines for o) be a,.1, @,y1, @n,1- Then any
two other directions (say X, and Xj') can be assumed, which are at
right angles to the direction of 0, by using the orthogonality condi-
tion. Then in order to ensure that X, and X3’ are also perpendicular
to each other, the following linear relation must hold good.

(X2 + kX3') 1 X2
where k is a constant and can be determined by using orthogonality
condition. Then the Xj direction which is perpendicular to the
direction of o; and direction Xj is

X3 = X5 + kX'

Hence the three mutually perpendicular directions can be
determined.

1.13 Computer Program for Principal Stresses and Principal
Planes
In order to demonstrate the use of the computer to determine
the principal stresses and principal planes, a computer program has
been developed and written for an IBM PC/XT machine using
FORTRAN-77 language. The program has been illustrated by feed-
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ing numerical data. To assist the reader in understanding the
program, a legend of symbols and description is given below :

SX = a,, SY =g, SZ=o,
SXY=t1, SYZ=1, SXZ =1,
ar =1, az =1, as=1Is
S(l) =0y, 8(2) = 09, S(3) =03
l(]) = Qpyjs m(}) = anyja n(]) = anzj'

e BN e N e BN e BN}

10

20

15

Program for principal stresses

Program developed by Dr. sadhu singh

Pantnager University

dimension a(3), b(3), c(3), s(3)

integer x, y

real 1(3), m(3), n(3), k(3)

open (unit 7, file = 'ps.in’, status = ‘old’)

open (unit = 8, file = '‘ps.out’, status = 'new')

write (8, 5)

format (1x, ‘input’, //, ‘given stress components
are ', //)

read (7, *) sx, sy, sz, SXy, Syz, SXz

write (8, 10) sx, sy, sz

format (1x, ’'sx = ', f7.3, 5x, 'sy = ', f1.3, 5x, 'sz
1=, 1f7.3, /)

write (8, 20) sxy, syz, sxz

format (1x, ‘sxy = ', £f7.3, 5x, 'syz ="', f1.3, 5x, 'sxz
1=+, 1f7.3, //)

al = sx + sy + sz

az SX*Sy + Sy*sz + SX*SZ — SXYy**2 — Syz**2 — sSXzZ**2
a3 = sx*sy*sz + 2.*SXy*syz*sxz — SX*syz**2

1 — Sy*sxz**2 — sz*sxy**2

Write (8, 15)

format (1x, ‘output’, //, ‘principal stresses are :')
r= (1./3.)*al**2 - a2

t = sqrt [(1./27.)*r**3)]

g = (1./3.)*al*a2 — a3 — (2./27.)*al**3

st = sqrt ((1./3.)*r)

alpha = acos [- g/(2.*t)]

s(1) 2.*st*cos (alpha/3.) + (1./3.)*al

s(2) = 2. *st*cos [(alpha/3.) + 2.0944] + (1.3)*al
s(3) 2.*st*cos [(alpha/3.) + 4.1888] + (1./3.)*al
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30

40
50

60

65

70

80

do 50x =1, 2

do 40y = x, 3

if [s(x).1lt.s(y)] go to 30
go to 40

temp = s(Xx)

s(x) = s(y)

s5(Y) temp

continue

continue

write (8, 60) s(1), s(2), s(3)

format (/, 1x, *'si ="', £ 7.3, 5x, ‘s2 ="', £ 7.3, 5x,
1's3 ="', 1f 7.3, /)

write (8, 65)

format (/, ‘direction cosines are :' , //)

do 80j =1, 3

a(j) = [(sy — s(J)1*[sz = s(J)] — syz**2

b(j) = - (sxy*(sz — s(j)] — sxz*syz)

c(J) SsXy*syz — sxz* [sy — s(]j)]

k(3) 1./(sqrt [a (J)**2 + b(J)**2 + c(j)**2)]

I(3) = a(j)*k(J)

m(3j) b(j)*k(37)

n(j) c(F)*k(3F)

write (8, 70)j, 1(j), F, m(J), J, n(J)

format (1x, ‘1 (*, i1',) ="', £ 7.4, 10x, ‘m (* , 1i1,’)
1=+, f7.4, 10x, ‘n (* , i1, ') = ' , £ 7.4)
continue

[}

stop
end

input
given stress components are :

sx = 21.450 sy =5.740 sz =—6.850
sxy =—5.720 syz = 11.750 sxz = 5.500
output
principal stresses are :
sl =23.428 s2 =12.391 s3=-15479
direction cosines are :
I(1) = .9621 m(l) =—-.2628 n(1) =.0728
1(2) =-.1810 m(2)=-.8155 n(2)=-.5497
1(3) =.2038 m(3) = .5157 n(3) = —.8321
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Example 1.4. The state of stress at a point is given by the
following array of terms :

9 6 3
6 &5 2|MPa
3 2 4

Determine the principal stresses and principal directions.
Solution. Principal stresses are the roots of the cubic equa-
tion :
o*~Li6®>+I,0-13=0
where L=0,+0,+0,=9+5+4=18
I; = 0,0, + 0,0, + 0,0, + ‘szy - ‘Czyz - ‘szz
=9x5+5x4+9x4-62-22-32
=45+20+36-36-4-9=52
I3 = o0,0,0, - Ox‘ltzyz - Oytzxz - Oztzxy + 2751, T,,
=9x5x4-9%x4-5x9-4x36+2x6x2x3
=180-36—-45-144 + 72
=27
. The cubic equation becomes
o® —180% + 520 -27 =0
We shall solve this equation by Newton Raphson method.
Let the approximate root be assumed = 3. Then we have from,

. L 3)
First approximation = 3 — f?—
PP G
_g_27-162+156-27 ., 6
- 27 - 108 + 52 - 29

=3-0.207 =2.793
Second approximation

_ _ ft2.793)
=2.793 - 55705

0.387
25.148
=2.793 -0.01538 = 2.777
Third approximation
f(2.777)
=2.777 __f'(2-777)
0.004
-24.837
=2.777 + 0.00016 = 2.776

=2.793 -

=2.7717-
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Therefore, we take one root as 2.776. Dividing the cubic
equation by (0 —2.776), we get
o®—15.2240 + 9.74
The roots of this quadratic equation are 14.554 and 0.669.
Hence the three principal stresses are
o, = 14.554 MPa ; 05 = 2.776 MPa and o3 = 0.669 MPa

Now we determine the principal directions for o, stress. For
o, to be substituted, the determinant D becomes

9_14554 6 3 _5554 6 3
6 5-14554 2 | 6 -os54 2
3 9 4-14554 3 2 -10554
~9554 2 | goen .
Al-, 2 e I - 100.83 -4 = 96.83
B, =-|% 2 |._(63.324-6)=69324
1 3 -10.554 : :
C, = ' s - 95554 = 12 + 28.662 = 40.662

VA2 + B2+ C2 = V(96.83) + (69.324)2 + (40.662)2
= V9376 + 4805.8 + 1653.4
= VI58352 = 125.83

A
O, = ‘ = 9265‘%3 = 0.769
\/A12+Blz+cl2 125.83
B, 69.324
a = = = 0550
Y1 \/A12 +B12 + 012 125.83
G 40.662
Ay, = = =0.325
nz1 ,/Alz +B2+C2 125.84
Similarly, ap,, =—-0.226; Qpy, = 0.596
Any, = —0.177; an}ls =-0.800
Apz, = 0.944 5 Qpz, = 0.057

Example 1.5 The stress tensor at a point with reference to
axes (x, y, z) 1s given by the array

4 1 2
1 6 ¢
2 0 8

MPa
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Show that by transformation of the axes by 45° about the z-axis, the
stress invariants remain unchanged.

Solution. The stress invariants are :
I,=4+6+8=18
Ihb=4x6+6x8+4x8-1x1-2x2-0
=24+48+32-1-4=99
I3=4x48-1x8+2x (-12)
=192-8-24=160
The direction cosines for the transformation are given by

x y z
x' IN2 V2 0
Y -1N2 | INZ 0
2 0 0 1

o;=4x%+6x§+0+2x1x%+0+0
=2+3+1=6MPa
0y =4x7+6x1+0-2x1x2+0+0

=2+3-1=4MPa
0, =0+0+8x1+0+0+0

=8 MPa
gy=—4x§+6x§+0+1%-§+0+0
=—2+3=1MPa
1,,/=0+0+0+0+0+2(-1N2)
= —-Vv2 MPa
., =0+0+0+0+0+2x1N2
=V2 MPa
Hence the new stress tensor becomes
6 1 V2
1 4 -V2 |MPa

V2 -V2 8

The new stress invariants are :
I/=6+4+8=18
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I)=6x4+4x8+6x8-1-2-2
=24+32+48-5=99
I3'=6x30-1x10+V2 (-5vV2) = 180 -10-10 = 160
which remains unchanged. Hence proved.

1.14 Maximum Shearing Stresses

Let us choose the axes of coordinates oxyz in the direction of
the normals to the principal areas, i.e., along the principal stresses.
Let us also choose an arbitrary area whose outward normal is
having direction cosines a,,, a,, and a,,. The normal stress on this
area is:

- 2 2 2
Op = 01a", + 020, + O3a%,,

The resultant stress is

2 _ 2 2
0% = 0%, + T,
. 12, = 0%, -0,
Also 0% = 0,%%,, + ozzaz,,y + 0522,

2
%, = (0%a%,, + 0%a?,, + 03%a?,)

- (Olazruc + 02a2ny + 03a2nz)2
Now a?,=1-d?, - azny
172,,8 = olzaznx + 022a2ny +032(1- az,,_, - az,,y)
- [Olaznx + 0'2a2ny + 03 1- aznx - azny)]2
= (012~ 03?) a®se + (022 - 039 a?,, + og?
~[(0) - 03)a’,, + (02— 03)a2,,y + ag)?
For 1, to be maximum or minimum,
arzns - 2tn8 atns

0. oa,, =0
atzns - Ztns a‘tns O
0y 0an,
Either 1t,,=0
at,s dt
or T¥ns _ Ons _ 0

0a,, da,,
Ift,, = 0, then this obviously gives a principal area.
9Ty

G = 0 gives

2(012 - 032) Qs — 4[(01 — 03) az,lx

+ (09— 03) azny +03](01—~03)a,, =0
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Since oy = 03
(O'] + 03) [0 2 [(01 - 0'3)2(12,1x + (0’2 - 0'3)(22”y + 03] Ay = 0
{01 — 03— 2 [(01 - 03) aznx + (02 - 03) azny]} Apyx = 0

ns

Similarly

= 0 gives
Ay

{0’2 - 03— 2 [(01 - 03) a,, + (02 - 0'3) azny]} Apy = 0
Therefore, a,, = a,, = 0, a,,, = 1 must be dropped since it gives
a principal area lying in the plane oxy. It will therefore be necessary
to consider three cases.
(@) an=0, a,, =0
@) an=0, a,,=0
(i) @ = 0, a,, =0
For the first case, we get
01-03—2(0;—03)a?, =0
(061 —-03) (1 -22%,) =0

1 1
a,,x=:-‘7_é-/, Qpy = 0, oz,w=:—2

For the second case, 0y — 03— 2 (05— O3) azny =0
(03 -03) (1-2a%,) =0

1 1
anyzi\/_‘z‘—, @pe = 0, anzzt‘/—?

The third condition is impossible, since cancelling a,,, and Qnys
subtracting the resulting equations from each other, we get 01 = 09,
which is contrary to the assumption of o; = 04 = 03.

If we had eliminated a,, instead of a,, and repeated the
analysis, then we would have obtained

a -+—1- a -+i a,,=0
nx‘-\/g) ny‘—ﬁ’ nz <

Each of these two solutions determine two areas passing
through one of the coordinate axes
and inclined to the other at angles

[ & of 45° and 135°. Substituting back,
- we get
/' \\ b 2
/& 2 _012_032— o, + 03 ot
= ns — 2 2 3
01 -03
Fig. 1.11 Planes of maximum = 2

shear stress.
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01 - 03

(tns)max =z T ..(136)
The remaining two solutions give,
0y-0
(Tns)max ==z —22—3 (137)
and (Tnshmas = * 0—‘;—93 ..(1.38)
For o0;>09>03
01 -03
(tns)max == —_2— (139)

The direction cosines for planes of (t,.),,., and (T,¢),:n are
given below and planes of maximum shear stress are shown in

Fig. 1.11.

Direction ) )
cosine Tns)max Tns)min
1 0 1 0 0 1
On /) ) *
1 1 0
a,,y * 75 x* VE 0 +1 0
0 1 1 1 0 0
ap, * 75 b4 VE *

Example 1.6 The components of stress at a point are given
by:o,=4,0,=6,0,=5,1, =2,7, = 1,1, = 3 MPa. Determine the
principal stresses and principal planes.

Solution. Now I[;=0,+0,+0,

=4+6+5=15
I, = 0,0, + 0,0, + 0,0, — ‘czxy— ‘tzyz -4,
=4x6+6x5+4x5-4-1-9
=24+30+20-4-1-9
=60
I;=- (O'xtzyz + oytsz + Oz‘lizxy - 0,0,0, = 2T4T,,T,,)
—(4x1+6x9+5x4-120-12)
—(4+54+20-120-12)
=+54
Cubic equation becomes
o® -~ 150% + 600 —54 = 0
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Now cos 30 = 4 cos® 0 — 3 cos 0
cos® 9—% cos 9—%cos 36=0 (@)
I
Put o=rcose+§=rcose+5

*. The cubic equation becomes :
r3 cos® 0 — 15r% cos? 0 + 60r cos 6 — 54 + 125
+ 15r? cos?® 0 + 75r cos 8 — 375 — 150r cos 8 + 300 = 0
rdcos®0-15rcos0-4=0

cos39—l§- cosB—%:O ...(b)
r r
Hence, Egs. () and (b) are identical if

—l-rgz%, le, r=v20 =447
and i _ cos 30

r 4

16 16

or COSs 36 = m = 89‘4 = 0.179

0, = 26.6°, 0, = 93.4°, 05 = 146.6°
ry cos 0; = 4.47 cos 26.6° = 4.00
ro cos 05 = 4.47 cos 93.4° = - 0.265
rs cos 03 = 4.47 cos 146.6° = - 3.731
op=rycos0; +5=4+5=9.0MPa
gy =rycos 0y +5=-0.265+5=4.735 MPa
g3=rzcos 03+ 5=-3.731 + 5 = 1.268 MPa

1.15 Octahedral Stresses

The normal and shearing stresses on a plane which is equally
inclined to the three coordinate axes are called octahedral stresses.
The direction cosines of the

octahedral plane are :

Ay = %

y Qpy =%

-

Ap, =

X3

&= &l

The acute angles between
the normal to the octahedral
plane and the coordinate axes
are:

1 1
cos ==
Fig. 1.12 Stresses on an V3

octahedral plane.

54° 45’



STRESS ANALYSIS 37

Consider an elementary tetrahedron OABC as shown in
Fig. 1.12. If 0y, 09, 03 are the principal stresses on the octahedral
plane, and the coordinate system is principal, then the components
of stress along the three axes are :

1
T,=o01a,,= 73

1
T, = 09.a,, = 7 Oy

-5

T,=o03a,, = 73 08
Resultant stress on the octahedral plane becomes,
0ot =V sz + sz + Tzz

= V102 + 0s + 05’ ..(1.40)
Octahedral normal stress,
(On)oct = 0'la’zn::c + c,2‘12ny + 03a3nz

=1 (01 + 03+ 03) ..(1.41)
. Octahedral shear stress,
Toct = \/(Ur)zoct - (Gn)zoct

2

= %\/(012 + 052+ 04%) - %(01 + 09 + 03)2

%\/3(012 + 092 + 03%) = (012 + 052 + 032 + 20105 + 2003 + 20,03)

= % \/2(012 + 092 + 032 = 0105 - 0903 - 0103)

= 31;\/(01 - 0% + (03 - 03)* + (03 - 07)?

= %\/2(01 + 0y + 03)% - 6(0,03 + 0903 + 0103)

= %\/2112 - 6l, ..(1.42)

1.16 Equilibrium Equations at Boundary

Consider an elementary tetrahedron OABC, as shown in
Fig. 1.31. Let T,, T, T, be the components of the resultant stress
acting on the face ABC along the three coordinate axes x, y, z
respectively. In the absence of body and inertia forces, the equi-
librium of forces in the x-direction give
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Fig. 1.13 Stresses acting on the faces of an elementary tetrahedron.
T..ABC = 0,.BOC + 1., AOC + 1.,.AOB
If the direction cosines of the normal 7 on the face ABC are
@nzr @ny and @, then

BOC = ABC.a,,
AOC = ABC.a,,
AOB = ABC.a,,

Ty = OpQpy + TuyQpy + Tup O,
Similarly considering equilibrium in the y and z directions,
we get
Ty = Ty @py + OyQpy + Ty, ...(1.48)
T, = TpQpy + Ty-Qpy + 0,.0p,
In the tensor notation these equation may be written as
Ti = t,-j.a,,j (144)

1.17 Hydrostatic and Pure Shear Components of Stress
Tensor

The stress tensor at a point is given by

Oy Ty Te
T = Ty O, Tyz
Txz Tyz O,

The stress tensor t;; can be decomposed into two stress ten-
sors so that one of them contains pure shear components only, which
is known as the Deviator stress tensor and produces distortion only
in the body and the other contains hydrostatic components only,



STRESS ANALYSIS

39

which is known as the spherical or hydrostatic stress tensor and

produces volume change only.
! n
Ti=Ty +T ij

= Deviator stress tensor + Spherical stress tensor.

O, - O, Ty Taz ., 0 O
= Tay Oy -~ Op, Tyz +1 0 Om 0
Txz tyz O, = 0Onp 0 0 Om
...(1.45)
where O, = 3 (0 +0, +0,)is the mean stress.
[ 20, -0, -0, . .
3 4 i
, 20,-0,-0
T4 = Tay 3 Tyz
20, - G, —
T, T, 2% 7%= % gx o
O, +0,+0, 0 0
3
vg=| 0 wrore
O, +0,+0,
0 0 —3
If the coordinate system is the principal coordinate system,
then,
[ (83 ] 0 0
T = 0 Og 0
0 0 o3
01 - 0,,, 0 g, 0 O
= o3 - o,,, 0 +({ 0 o, O
O3 - Onp, 0 0 Om
1
where =3 (01 + 02 + T3)
[ 20’1 - 09 — O3
3 0 0
209-03-0
vy = 0 2_33__1_ 0
0 0 20’3 - 01 =09
3 )
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[0 +02+ 0 ]
1+02+03 0 0
3
V= 0 ﬂi%—zf—o—“‘ 0 ..(1.46)
01 +03+0
0 0 1 <;2 3

The stress invariants in the principal coordinate system for
the deviator stress tensor become,
I 1' = 0

I, = _% (01~ 092 + (Gp—09) + (03 —o)F]  ...(1.47)

,_ 1
I3 = E [(20'1 — 09 — 0'3) (20’2 — O3 —0’1) (20’3 — 01 —02)]
and for the spherical stress tensor

I," =30, =01+ 03+ 03

I =302, = -;- (0, + Oy + 03)? ..(1.48)

”n 1
I" =0, = a7 (01 + 03 + 03)°
Example 1.7 Prove the following relationships :
(@) (On)oct = 3 (07 + O3 + O3)
() Pt = -Ié [(01 = 09)° + (02— 03 + (03— 0)7]
(lll) 9'[20d = 2112 - 612
Solution. The direction cosines of the octahedral plane are
1 1 1 .
BV If 0,, 09, 03 are the principal stresses on the octahedral

plane, then the components of the principal stresses along the

. . 1 1 1 .
principal coordinate axes are 73 v 75 92 75 08 respectively.

Resultant stress (0,),¢ = \/-;: (0,2 + 052 + 03?)

@) O, = 0107, + 09a?,, + 03a%,
1
(on)oct = 3 (01 + 09 + 0'3)
(i) Toot = V()% = (0,)%t

1 1
= \/5 (012 + 022 + 022) ) (o1+05+ 03)2
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2 2

1 2 Ly «
T4 = 9 [3(0 + 09" + 032) — (0% + 022 + 031

+ 20109 + 20903 + 20;03)]

é[(ol + 092 — 20109) + (0% + 052 — 20405)
+ (032 + 0,2 - 20,09)]
_1

= [(07 — 69)% + (02— 03)% + (03 — 09)?]

(O

(lll) Il =01 +02+ 03
I, = 6105 + 0903 + 030
21,2 - 61, = 2(0y + Oy + 03)% — 6(0,02 + 0903 + 030)
2+ 052 + 20,05 + 20903 + 20307)

—6(0103 + 0903 + 0307)

= 2(012 + 09

2

= 2(0,2 + 09 + 032 — 0109 — 0903 — 0307)

= (012 + 092 — 20,09) + (09° + 032 — 20903)
+ (032 + 0,2 - 20309)
= (01-09% + (02~ 0)” + (03 = 01)* = 9%,
Hence proved.
Example 1.8 The principal stresses at a point in a body are
50, 40 and - 30 MPa. Calculate the normal and shear stresses on the
octahedral plane.

Solution. The direction cosines of the octahedral plane are

1
a,,x=a,,y=a,,z=ﬁ

Normal stress on the octahedral plane is,

2 2 2
(On)oct = 0°1@py + O2a ny + 03Q7,;

=%(01+02+03)

=—é—(50+40—30)=20MPa

Resultant stress on the octahedral plane is,

2 2 2 2
(OPoet = \/ola,,x+02any+o3am

= \/ % [(50)% + (40)? + (- 30)2]

- \/ L 9500 + 1600 + 900)

50300 =V1666.67 = 40.825 MPa
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Shear stress on the octahedral plane becomes,

2 5
Toct = \/(or) oct ~ (Un)zoct

/5000 _y/ 3800
-\/—3 -400 = V22

=V1266.67 = 35.59 MPa

Example 1.9 The stress tensor at a point is given by the
following array :

4 2 3
2 3 4|MPa
3 4 2

Calculate the deviator and spherical stress tensors.
Solution. Mean stress

om=%(ox+oy+02)
=—;:(4+3+2)=3MPa

Deviator stress tensor

O, - O, T

xy Tz
= Tay Oy - Op, Tyz
Tz tyz 0, -0np
1 2 2
=12 0 4 | MPa
3 4 -1
Spherical stress tensor
O, 0
tlll:, 0 Om 0
0 0 Onp
3 0 O
={0 3 O0|MPa
0o 0 3

Example 1.10 The stress tensor at a point is given by the
following array :

5 -2 4
-2 2 1|MPa
4 1 3
Determine the stress-vectors on the plane whose unit normal has

direction cosines 14 11 .
V22’2
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Solution. The stress vectors are given by
O = Oy + TuyOy + Ty,
=5x—‘/l2_——2x%+4x%
=3.535-1+2 =4.535 MPa
Opy = Tay- Qs + 0y Qpy + Ty G,
1 1 1
=—2x=+2x-+1x—

V2 2 2
=-1.414+1+ 0.5 =0.086 MPa

Opz = Tup Oy + Typo Oy + 0,.Qp,
1 1 1
_4Xﬁ+1><§+3x§

=2.828 + 0.5 + 1.5 = 4.828 MPa
o, = (4.5351 + 0.086 + 4.828 £ ) MPa

1.18 Stress Distribution at a Point

In order to know as to how the stresses are distributed over
all the possible areas passing through a given point in a body, the
following procedure may be adopted.

1.18.1 Cauchy’s Method

Place the origin of coordinates at some chosen point O in a
body as shown in Fig. 1.14. Pass an elementary area with outward
normal 7 having direction cosines a,,, a,,, a,, through this point.

Fig. 1.14 Stress distribution at a point.
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Along this normal construct a vector of length OP = p. The coor-
dinates of the end of this vector are :

E=Pp.0uy, M = P.Qyy, C=Pp.ay, ...(1.49)
The normal stress on this area is :

0,=0,.a%, + oy.azny +0,a%, + 2T, Gy

+ 27,0,,0p, + 2T,,05,0,, ...(1.50)
Substituting Eq. (1.49) in (1.50), we get
po, = 0,8+ oy.n2 +0,%+ 21,8
+ 2t,nC + 27,,5C ...(1.51)
Now adjust the length of the vector so that
plo, =xc?
where c is a constant. If g, is tensile, then take positive sign and if
compressive then take negative sign.

_ * C2
p=V-
or o =25 (1.52)
p

Introducing the relation :

¢ (%9 n, C) = Ux§2 + Uynz + 0'2;2 + 2",9,%7]
+ 21,MC + 27,8 ...(1.53)

we get ¢ En0D==xc? ...(1.54)

Eq. (1.54) represents a surface of the second order which is
called the stress surface or Cauchy’s quadric. This surface has the
centre at the origin and it may therefore be (i) an ellipsoid (1) a
hyperboloid of one sheet or (iii) a hyperboloid of two sheets ; the ends
of the vector OP = p lie on this surface.

Let the quadric be a hyperboloid of one sheet and that it has
been constructed to simplify the drawing on the assumption that the
outward drawn normal n to the area lies in this plane. Then

OP=p

02

0,=0ON =2+,
P
In order to find the total stress o, on the given area, we take partial
derivatives of function given by Eq. (1.53).
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)
== =2(0, 5+ Ty + 1.0

98

=2p (0 any + TxyQny + Talnz) = 2P0p;

ad
ﬁ =2 (oM + 1€ + 1,.0)

=2p (txyanx + Oyapy + 1;yza'nz) =2p Ory

g
-—a-c— =2 (0,8 + 1,8 + T),M)

= 2p (0,Qn, + T Ony + Typ-Qpy) = 2P0,

These partial derivatives are proportional to the cosines of
the angles that the normal PQ to the surface makes with the
coordinate axes. On this basis the last equalities show that the
cosines of the direction angles of the normal to the surface are
proportional to the projections o, 0,,, 0, of the total stress o, over
the area concerned on the coordinate axes. Hence the total stress
OM = o, is perpendicular to the tangent plane SS; to the surface ;
knowing its direction, we obtain its magnitude o, = OM, by drawing
NM L ON. Shearing stress t,, = OT can be readily determined. Thus
Cauchy’s quadric surface enables the stress distribution at the given
point O of the body to be fully investigated.

It is known from analytic geometry that by rotating the co-
ordinate axes the equation of the surface of the second order can be
transformed so as to eliminate the terms containing products of
coordinates in a new coordinate system (a, B, y). Then we shall
obviously have

Top = Tpy = Tay = 0

Hence the shearing stresses will vanish on three mutually
perpendicular areas normal to the new axes (a, B, ). These three
ares are called principal, the normal stresses on them o, a;, o, are
called principal stresses at the given point O in the body. We denote
them more compactly as :

O, = 0y, Oﬂ = 09, OY =03
Then the equation of Cauchy’s quadric referred to the new axes is,
0182+ ogn? + 052 = £ 2 ...(1.55)

The final form of this surface depends upon the sign of the principal
stresses 0j, 09, 03 and on the associated sign of the right hand term
of the equation. Consider two fundamental cases.
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(2) all three principal stresses are of the same sign.
(z7) the signs of the principal stresses are different.
Case I. Let us assume that 0; > 0, 03 > 0, 03 > 0, .e., all the
principal stresses are tensile. Then the plus sign should apparently
be chosen on the right hand side. Therefore, we get

§2+ﬂ2+t.2

[5) (&) (5)

This is the equation of an ellipsoid with the semi-axes

=1 ...(1.56)

E" C 5— (] .c-_ (]
Vo’ Vo’ VO3
2

In this case, g, = + c_2 > 0, i.e., the normal stresses on all areas
p

passing through the point in question are positive and consequently

tensile. If all principal stresses are compressive, i.e., 0; < 03 < 03 < 0,

then minus sign should be taken before c2, this again gives an

2
ellipsoid, but now g, = — c_z <0, i.e., the normal stresses on all areas
p

passing through the point in question are compressive.

Case II. Let us assume that 6, >0, 05 >0 and 03 < 0, i.e., two
of principal stresses 0] and o, are tensile and the third stress o3 is
compressive. Thus we can write now,

ci&2+om?—| oy | =+t
2 2 2 2
o8 +om —|og | =—c

where | 03 | denotes the absolute value of the compressive principal
stress. Above equations can be written as

S R S
FINE > 1 (157
o1 O2 | a3 |
2 2 2
g L Y ..(158)

(&) (%) (w5)

Equations (1.57) and (1.58) give hyperboloids of one sheet and two
sheets respectively. For ¢ = 0, we get,

0182 + oom? - | o3 | =0 ...(1.59)
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Equation (1.59) gives the asymptotic cone separating the above two
hyperboloids and tending to approach them it infinity. These have
been shown in Fig. 1.15.

g g ¢

+
g
a N
e :
5 el

0;>09>03>(0

| & w ¢

=4 4 2=

&) (&) (&)

(@) Stress ellipsoid. (b) one sheeted and two sheeted hyperboloids
Fig. 1.15 Cauchy’s method.

If the end of the vector representing the normal stress on the
area appears to be on the hyperboloid of one sheet, then this stress
is positive, i.e., tensile ; if on the other hand, it appears to be on the
hyperboloid of two sheets, then it is negative, i.e., compressive. In
the intermediate case (for ¢ = 0), it may be directed along the
generator of the asymptotic cone. In this case the length of the vector
becomes infinite and according to Eq. (1.52), 6,, = 0. Hence, on areas
normal to the generators of the asymptotic cone there act only
shearing stresses.

Case III. Two principal stresses negative, i.e., 5; > 0, 05 < 0,
03<0.In this case, the conic surface is splitinto two parts again.
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But here the x-axis is the central axis, and all rays OP extending
out to the hyperboloid of one sheet correspond to outer normals of
planes having a compressive normal stress, and those extending out
to the hyperboloid of two sheets correspond to planes of tensile
stresses.

Case IV. All principal stresses negative, i.e. 0 < 09 s 03 < 0.
In this case, negative sign must be taken before c?. This case is
similar to case I except that all stresses are negative.

Case V. One principal stress zero.

(@) 01209>03=0

In this case, Eq. (1.56) becomes independent of T, and the

surface degenerates to a cylinder with sides parallel to T axis. The
cross-section of the cylinder has the shape,
g%y + oy = c?
2 2
_E__ + _ﬂ__ - 1

=) (5]

which is an ellipse or circle depending upon whether

or

01 %0y Or O] = Oy

) 01>02=0>03

Both signs of ¢? are applicable and the equation becomes
independent of n.

EZ tZ

=) (=)

which (since o3 < 0) represents a double set of hyperbolic cylinders
with sides parallel to 1 axis and asymptotic to the planes.

§=1\/9~_3—.t_

==+1

o1
Zero normal stresses are again evident when the ray OP lies
in one of these asymptotic planes. If | 03 | = oy, the asymptotic

planes are inclined at 45° to the nC and &n planes.
(c) 0;=0>0y2 03
This is similar to the case V(a) except that the elliptic cylinder
is parallel to § axis and normal stresses are negative on all planes.
Case VI. Two principal stresses are zero.
(@) 01>09=03=0
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This case is that of a double set of infinite planes.

c?

2_ 2 .V
018°=c¢® or E== o
which are parallel to the nC planes.
®) 01=03=0>03

Here the two planes are given by

ogt? = ¢

02

| o3 |
which are parallel to the En plane.

1.18.2 Lame’s Method

If the principal areas at a given point have been found, then,
along with Cauchy’s quadric, it is possible to indicate another
geometrical representation of stress distribution proposed by
Lame’s—the stress ellipsoid.

or C==2

Let us assume that the coordinate planes oxy, oyz and ozx
coincide with the principal areas at a given point and consequently
on these areas

Ty

=1,=T,=0 and O, = 01, Oy = Oy, O, = Og
O =207 Qe
Opy = 02 @y ...(1.60)

Or; = 03 Qp,

Relationships (1.60) may be represented geometrically. To
this end, we lay off from the given point O, a vector OP equal to the
total stress g, on the chosen area
with outward normal r as shown
in Fig. 1.16. The co-ordinates of
the end of this vector are

X =0, Y =0,
z=0, ...(1.61)

As the inclination of the
area is changed, the point P
describes a certain surface that

appears to be an ellipsoid. From
Egs. (1.60) and (1.61) we have Fig. 1.16 Lames stress ellipsoid.
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X =01.0py, Y = 02.Qpy, 2 = 03.Qp,
2 2 2
X V4
B S B | ..(1.62)

o 02 O3
This is the equation of an ellipsoid referred to the principal
axes. This ellipsoid is called the stress ellipsoid or Lame’s ellipsoid.
One of its three semi-axes is the longest, another the shortest, the
third is half way between them : consequently, the three principal
stresses are maximum, minimum and minimax respectively.

Iftwo of the principal stresses are equal (e.g., 01 = 09), Lame’s
ellipsoid is an ellipsoid of revolution and the state of stress at a given
point is symmetric with respect to the third principal axis OZ. If all
the principal stresses are equal, i.e. 0; = 03 = 03, then Lame’s
ellipsoid becomes a sphere and all the areas at the given point are
principal and the stresses on them are equal. This is a case of
hydrostatic state of stress or all round tension.

1.19 Graphical method for the Determination of Normal
and Shear Stresses. (Three dimensional Mohr Circle).

Consider a point O in a stressed body where the planes of the
xyz axes coincide with the principal
axes of stress at the point. Consider
an  infinitesimal tetrahedron
OABC, as shown in Fig. 1.17 at the
point O whose face ABC has a unit
normal n having direction cosines
@pyw Ay A, Let 0, and 1,, be the
normal and shearing stresses on the
inclined face ABC, then the resul-
tant stress o, becomes.

ol =a,2+12, Fig. 1.17

Also 0% =0,%%,, + ozzaz,,y +03%a2,

o %%, + 0,%a%,, + 0y%a%, = 0,2 + 1%,

Further o, = 01a%,, + ozazny + 0ga®,

1=a?, +ad?, +ad?,

Thus we get three non-homogenous simultaneous equations,
which may be written as :
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2 2 3
02 022 032 @ nx O + T
(O] 09 O3 a2,,y = g, (163)

a?, 1

et
[a—y
[u—y

These equations can be solved for a?,,, az,,y, a?,, by Cramer’s
rule. Hence

0% +7%, 0y o5
On G2 O3
. 1 1 1
a =
e 0’12 0'22 0'32
o1 (80)) O3
1 1 1
02 o+, o5
o1 o, O3
) 1 1 1
a =
ny olz 022 032
3] 02 O3
1 1 1
0l2 022 0271 + tzns
(Y O3 Opn
. 1 1 1
a =
nz 012 022 032
(Y 02 O3
1 1 1

Case I. All principal stresses are different, i.e., 0, = 03 = 03
and o7 > 03 > 03, then

012 0'22 0’32
o1 O2 o3 |=0
1 1 1

Solving for a?,,, az,,y, a?,,, we get

2 . .2
s _ (0% +1%.)(02 - 03) - 05%(0,, - 03) + 53%(0,, - O9)
nx = 2 2
0,%(03 - 03) - 03%(0} - 03) + 03%(0] - O)

or ag _ 1:2ns + (On - 02)(Un - 03)
i (01 - 02)(01 - 03)

...(1.64)
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2
.. Thst (On - 03)(071 - 01)
Similarly, az,, = ...(1.65)
Y& m =T 6y~ 0g)(0z - 01)
a2nz - tzns + (on - 01)(071 - 02) (166)

(03 - 61)(03 - 09)

From equation (1.64), we get

1:2,,8 + 02,, ~ 0, (0 + 03) + 0203 — aznx (01 -0y (01 —03) =0

2 2
09 + O3 a9 - O3
or Tzns + ( Op - 9 ) = ( 2 ) + aznx (Gl - 0'2)(0'1 - 03)

This equation can be written as :

2
09+ 0O 9+ O
2 2 3 2 3 p)
tns*’(an" 2 ) =(01' 2 )anx

2
+(9-2—;—9§) (1-a2)

For given values of g1, 05, 03 this equation represents a family

02;03,0)and

direction cosine a,, as a parameter. Since 0 =< a?,, = 1, the family is
bounded by two limiting circles,

2 2
02+ 0O 09 = O3
o[- 252 (252 o

of circles in the o, and t,, plane with centre at

2
Similarly from Egs. (1.65) and (1.66), we get respectively

2 2
O3 + 0; O3 — 01
1:2ns+(0,,— 5 ) =( fora,, =0

2 2
03+ 0 g3+ 0
and 12n3+(0n— 22 3):(01- 2 3)fora,w=1

2

2 2
2 O92 + Oy a3 + 0y
T+ | Op— 5~ | =|%2- T3 fora,, =1

O3+ 0
with centre at (—3—————1 ,0 )
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2 2
-0
and t2"s+(o,,-01;02)=(012 2) fora,, =0

2 2

with centre at [(o; + 69)/2, 0]

In the o, — 1, plane, these limiting circles have been shown
in Fig. 1.18. The point representing the normal and shear stresses
o, and t,, must lie within the shaded area.

2 2
01+ 02 01 + 09
-tzns.'.(o'n_——-———-) :(03— fora,,z=1

Tns Qpy =1

Fig. 1.18 Three-diamensional Mohr’s circles.
The maximum shear stress,

01 - 03
(tns)max = 2
and the normal stress on the same plane is % ; %
Therefore, by substituting
01 + O3 01 — O3
O, = —T‘ and Tps = 2

in Egs. (1.64) to (1.66), we get
1 1
am=:—ﬁ,any=0 and On: = 2 7=
Therefore, the plane of the maximum shear stress bisects the
angle formed by the planes of maximum and minimum normal
stresses.
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In order to determine the normal and shearing stresses

on a

plane whose direction cosines are given, the following radii may be
laid off at points Oy, Oy and O3. The point of intersection of these
radii will locate the point of interest giving normal and shearing

stresses o, and 1, respectively.

\/ O3 - 03 2
ry = ——| +a%.(0; - 0y)(0; - 03) at O,

2 2

2
O3 -0 01 +03
rg = V =1 + azny(Oz - 03)(02 - 0'1) at 02 —_—

2

2
01 - 02 01 + Og
rg= \/ ———=| +a% (03 - 0y) 03 -0y) at Og| ———

2 2

Case II. Two principal stresses are equal o] = 03 > U3.

In this case, we have

2, 2 2 2 2 2 2
017 (@ +a%,y) + 03°a%,, = 0%, + T,

2 2 2
o1 (@ +a%,y) + 03a%,, = O,

(12,,,c + az,,y + aznz 1

These can be written as

2
012 012 032 Q nx 02,, + tz,,s
2
o1 o1 O3 (| %ny|= On
2
1 1 11} a%, 1
The solution exists only if the determinants
02}1 + Tzns 0'12 0'32 012 0271 + Tzns 032
Op g1 O3 | » (o3] Oy O3
1 1 1 1 1 1
012 0'12 0271 + t2ns
and oy oy o, are all zero.
1 1 1

09 + O3

, 0

3

The third determinant does not give any solution as it is itself

zero. The first two determinants give identical results as

2 2
2 01+ 03 _ 01 -03
Tt | Op— 2 = 2

This result is similar to Mohr’s circle in two dimensions.
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Case I11. All the three principal stresses are equal.
01 =09=03
This is a hydrostatic state of stress. In this case,
0, = 0] = 03 = O3
T =0
1.20 Graphical Construction for the Determination of
Normal and Shearing Stresses
The following steps may be followed (Fig. 1.19) :

1. Along the o, axis, locate 0}, 0y, 03 after choosing a con-
venient scale.

2. Locate the centres O, Oy and Oj at distances ( %2 ; % ) ,

03+0 o1 +0
( 3 5 1 ) and ( 1 2 2 ) respectively from the origin.

3. Draw three circles with centres O;, O; and O3 and radii

Og + O3 U3+0’1] d 0y + 09 tivel
2 , 2 ) an 2 respectively.

4. Draw vertical lines at o, 03 and 03. Set off the angle
a = cos™! a,, from the vertical at o; in the anticlockwise direction
and draw the line 0; @3 @, cutting the circles with centres at O, and
O; at @, and @ respectively.

5. With centre O; draw arc @,Qs.

6. Set off the angle y = cos! a,, from the vertical at point o3
in the clockwise direction and draw line 03S;S; cutting the circles
with centres at O; and O, at S; and S, respectively.

7. With centre O3 draw arc S;S.

8. The intersection of the arcs @,@3; and S;S5 at point P is the
required point to give the normal and shearing stresses.

9. To check the construction, set off § = cos™! a@,, on each side

of the vertical at point oy to cut the circles with centres at O; and
O; at T, and T respectively. With centre O, draw arc TT's. If the
diagram 1s correct then the arc T T3 will pass through point P.

10. From point P drop perpendiculars ono, and 1,,; axes. Then
PM = o, and PN =1,,.
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Tns
[
Q2 S2
P
Me——- O, — =< T
// ~*3
//
/ tns Q3
T, S
Y B B o
o O3 él S, N O, 03 o, O,

Fig. 1.19 Graphical construction for three
dimensional Mohr’s circles.

Proof. Draw 0,Q3Q; at angle a = cos™! a,, with the vertical
at point 0, in the counterclockwise direction (Fig. 1.20). Join 03Q,.
Then £ Q9030; = o ['.© £ 03Q,01 = 90° being the angle on a
semi-circle].

Draw O\N 1 63Q; and 0,Q' L @,Q3. Also join 02@3 and 0,Q,
and 01Q3.

In A @,0:N, we have

(Q201)° = (@N)* + (O1N)?
QN = Q03 — 03N

= (01 — 03) cos o — 030 cos a

02 - 03
= (01 - 03) QAnx — Ay

2

2
. (Q201)2={(o,—03)—((’2—;gi)] a2n,+(—02—;£§) sin® a

2

= [(01 -03)2+(02-03) - (o1 -03)(02-03)]aznx

2
2

+ (22—;&') (l—azxn)

2
= [(0) - 03)® — (0 — 03)(02 — 03)] @?, + (2%% )

2
= (01 —03)(0] — 0p) %, + (%& )
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Since 01Q' 1 @,Q;3. Therefore, 0,Q2Q3 is an isosceles triangle.
Hence @@’ = @:Q' and 0,Q; = 0,¢s.
0@, is the radius of the arc with centre at O; and the arc
passes through the point Q3. Similarly other arcs bear the same
correspondence to the stress point.

Tns

h

Fig. 1.20
Example 1.11 The principal stresses on a plane are: o; =9,

Oy = 6, 03 = 3 kPa. Determine the normal and shearing stresses on a

. 1 1 . .
plane whose direction cosines are 3'3°'V8 by using three-dimen-

stonal Mohr’s circle.
Solution. First method. (Fig. 1.21).

Tns

M Ny
\ Ko
2c¢cm=1kPa b
n
NS Y
N o, 03 6, O©,

/

o O3 )

Fig.1.21
Centres of Mohr’s circles are :

01:(3%3,0)44.5,0)
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O3+ 0
0, ( 2 ‘,0)=(6,0)
2
03:(01;02,0)=(7.5,0)
N 1 1 1
ow, anx“ia a’ny"E: anz"—z
Tns
M A~ ~
/// \\
2cm=1kPa
450 P
0Y60>06, | X
(0] Og 01 N Oy O3 G, O
Fig. 1.22

The radii of circles are :

2
ry= \/( 92~ 9 ) + aznx (01 - 09)(01 - 03) at O,

2
V-E—i—+-ix3x6 v2.25 +4.5
=v6.75 = 2.6 kPa
3
rg= \/( I3 2 %1 ) + az,,y (02 - 0'3)(02 - 0’1) at 02
36 1
= 4+4x3x(—3)
9
= i =V6.75 = 2.6 kPa

2
0;1-0
ry= \/( _1__2___2) + az,lz (o3 — 01)(03 = 03) at Oy
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Ve,

1
PR et

=v2.25+9 =V11.25 = 3.35 kPa

Let 2 cm = 1.0 kPa

Take Oo; = 18 cm, Ooy = 12 cm and Ocg = 6 cm. Locate the
centres 01, Oy and O3. With centre O, draw a circle passing through
o7 and oy, with centre O, draw the circle passing through o, and o3
and with centre O3 draw the circle passing through o3 and 03. Now
with centres O;, Oy and O3 draw arcs with radii r{, ry and rs
respectively to intersect at point P. Draw PN and PM perpendiculars
on g, and T, axes respectively. Then o, = PM = 5.25 kPa and t,,, =
PN = 2.5 kPa.

Second Method. (Fig. 1.22).

a =cos ! a,, = cos™! % = 60°
— —1 _ -11 _ o
P =cos™ @y, =cos 5 =160
-1 _ -1 i _ o
Y =cos” @, =cos” &= 45

Now follow the steps as outlined in article 1.20.

From the graphical construction, we get
o, =525 kPa, 1, =2.5kPa.

1.21 Equilibrium Equations in Polar Coordinates

Consider an elementary area ABCD between radii r and
r + dr and angular positions 6 and 8 + d6, as shown in Fig. 1.23. Let
B, and Bg be the body forces acting on the area ABCD per unit area.
Considering the equilibrium of forces in the r-direction by using
Newton’s second law of motion, we get

(0, +%dr) (r +dr)do —o,.rdo

ey de
+ (Te,.+ 0 dG)dr—te,dr—oe.dr. 5
d0¢ do
—(0'94-%(19)(17‘.—2-
+ B,.rd0.dr = p.a,.rd6.dr
where a, = acceleration in the r-direction.

p = density.
Simplifying and neglecting small quantities and noting that
do do do

sm—é—:?,cos—z—-zl, we get
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oo, P o
4 dr.rd6 + o,.dr.do + 0 dodr — og.dr . 2
do —

— 0g.dr 5t B,rdbdr = pa,.rdddr

Dividing throughout by r.d6.dr, we get
60,. O, — Og 1 ater
T +B.=pa
In the absence of body and inertia forces, we get
a0, + Or - 09 1 ater
or r r 90

(a) Stress gradients in polar coordinates.

(Tre Jﬂ 8 de)dr

(Ce +ac59 de)dr =T, drde  =(Tre a';g 9 de) dr
2
o (Ore + %% dr)(r+ dnds

(Tro *6_';19 dn(r+dnde
T
=T, odr. dz_e

(b) Resolution of forces along r and 6 directions
Fig. 1.23 Stress components on an elementary area in polar coordinates.
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Now consider the equilibrium of forces in the 8-direction,

J I,
(09+%.d9)dr—oe.dr+(t,e+%.dr)(r+dr)d9

dtgy do do
—T,9.rd0 + (ter + _(-)Gi do ) dr. 5t Todr . 5

+ By.rd0.dr = p.ag.rdodr
where ay = acceleration in the 0-direction.

Simplifying and neglecting small quantities, we get

80'9 aT,ﬂ _d_e
0 dedr + P .rd0.dr + 1,4.dr.do + tg.dr . 2
do -
+ Tg.dr. — + Bg.rd6dr = p.ag.rdodr

2
Dividing throughout by rd0.dr, we get

1909 JdTor Tp  Tor —
r89+E)r+r+r+Be-pa6
In the absence of body and inertia forces and noting that
Tor = T,9, We get
0Ty 1 00 274

——+ =0
ar r dg r

Hence the equilibrium equations in polar coordinates
become,
d0, O,-0g 1 dtg,
—+———+=—=0
or r.ora ..(1.67)
81,9 1 309 2trﬂ

-0
or r66+ r

1.22 Equilibrium Equations in Cylindrical Coordinates

Consider an infinitesimal parallelopiped in cylindrical co-
ordinates subjected to generalised state of stress, as shown in
Fig. 1.24. Considering the equilibrium of forces in the r-direction by
using Newton’s second law of motion, we get
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0 Ce

Fig. 1.24 Stress components on the faces of an elementary
parallelopiped in cylindrical coordinates.

( o, + %’r— dr ) (r + dr) d6dz — o,.rd8.dz

at
+ | T + a_((;r .do ) drdz — tg,.drdz

at
+| T, + —a—;r- .dz ) rd0.dr —t,,.rd0.dr

309

[+t de) drdz | §— oo.drdz 22

2

+ B,.rd0.dr.dz = p.a,.rd6.dr.dz
where a, = acceleration in the r-direction.
Simplifying and neglecting small quantities, we get
9o, ITer
O drrd0.dz + o,.dr.do.dz + — do.dr.dz
or a0
arzr
= .dz.rd0.dr — o4.dr.dz.d0

+ B,.rdédrdz = p.a,.rd6.dr.dz
Dividing throughout by rd6.dr.dz, we get
do, 1 1 &ter 9T, Og
o TrT Y e Y e
In the absence of body and inertia forces, we get
aor 1 1 ater Jt

ar Ty Orm ot v =0

+
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Now consider the equilibrium of forces in the 8-direction

( Op + %cg .do )drdz—og.drdz + ( T+ %ﬁ dr ) (r+dr).db6.dz

) do 90
—r,erdedz+(t,e+¥ de)drdz -—2—+t,{,drdz >

+ (tez + % dz ) rd0.dr — tg,.rd0.dr + Bg.rd6drdz

= p.ag.rdd.dr.dz
Simplifying and neglecting small quantities, we get

809 .drdbdz + =2 dr.rdodz + T,9-drd0dz

= p.ag.rd0.dr.dz
where ag = acceleration in the 0-direction
Dividing throughout by rd6.dr.dz, we get
1 309 e 219  JTg,
—+—+
r 90 ' or r az

+Bg = p.ag

In the absence of body and inertia forces, we get
13% 0% 2Te 0%

r66+6r+r az—o

Similarly in the z-direction, we get

d
( o, + L= 4z ) rd0.dr — o,.rd0.dr + (tez + Fos do ) .drdz
0z 90

A
—1g, . drdz + (rrz +?dr) (r + dr) dodz
—1,,.rd0.dz + B,.rd0.dr.dz = p.a,.rd6.drdz
Simplifying and neglecting small quantities, we get

Jt 0z

9 .d0.dr.dz + t,,.drdbdz

at
+ E’:E drrd6.dz + Bz'rdedrdz = p.EZ.rdG.dr.dz

where a, = acceleration in the z-direction



64

ELASTIC ANALYSIS

Dividing throughout by rd6.dr.dz, we get

E)UZ 1 arez 1 a’c
z T o " ”+8 +B.=pa,
In the absence of body and inertia forces, we get
80'2 1 1:62 ]- aTrz
oz T r a8 =0

Hence the equilibrium equatlons incylindrical coordinates in
the absence of body and inertia forces become,

do, 1t

at
27‘+

G — Og

ér r 90 0z r =0
9% 1 00¢ dte, Et_rﬁ_o
ar r 90 o9z ro
at,, 19dty, 00, T,
6r+r 66+az+r_0

...(1.68)

-

For axial symmetry, and neglecting inertia forces, we get

do, dt., O,.- 0y
o
g 0Ty, 214
—+—+—+By=
or 0z r 0
at,, 00, T,
—+—+—+B,=0
or oz r z

* ...(1.69)

Example 1.12 The components of stress at a point are given by

0,=2r% cos 0, 0 =31z +5zcos 0

0, =2 +1%, 14=10,7,=0z,1,

Determine the body force distribution, for the body to be in equi-
librium at the point (2, n/6, 3).

Solution. Equilibrium equation in the r-direction is given by :

90, (L0 T O0r=Oo, p
ar r 90 9z a

=rz.

. 4rcos€)+%.r+r+%(2r2cose—3rzz—52cosﬂ)+B,=O
4rcosG+1+r+2rcose—3rz——5;z—cose+Br=0

At the point ( 2, %, 3 J , we get

5x3
2

4x2xcos%+1+2+2x2xcos%—3x2x cos%+Br=0
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8x\/—§—+1+2+4xi2_3——18 125 £+B =0
4\/§+3+2\/§—18—3.75\/_+B,=0
2.25x1.732+3-18+B,.,=0

. B, =18-3-3.897
or B, =11.103
Equilibrium equation in the 8-direction is :
e 1030 dte, 2T

ar +—7‘_—56+—8;-+ r +Be=0

9+%(—525ine)+9+26+39=0

n 1 1\ = =
€+§(—5x3x§)+§+§+39-0
Be-l—s—%=375 2.09 = 1.66

Similarly in the z-direction, we have
dt,, 10ty 00, T
ar Tr o8 ' oz +B.=0

r+%.z+4rz+z+B,=0

3+2+4x2x3+3+B,=0
B,=-3-15-24-3=-315

. Body force field requn'ed for equlhbnum is:
B =11.103; + 1.66/ — 31.5F

1.23 Equilibrium Equations in Spherical Co-ordinates

Consider an infinitesimal parallelopiped in the spherical co-
ordinate system r, 0, ¢ as shown in Fig. 1.25. Volume of the elemen-
tary parallelopiped is : r sin ¢.rd0.drd¢ = r? sin ¢.drd8d¢. The
equilibrium of forces in the r-direction gives :

( o, + %% dr ) (r + dr) sin ¢.d6. ( + dr) d$ — o,.r* sin ¢ d6d¢
A
+ (1:,9 * o do ) rdédr — v, .rdodr

+(tw+%d¢)rsin(¢+d¢)d9dr
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. d0og do .
— T4 . 1" Sin ¢ dBdr — ( o+ = do ) rd¢ dr. 5 sin )

dodr. 22 sino— [ o, + 252 , do
— og rdodr. 5 sin ¢ (0¢+ % d«b)rsmq)d()dr 5

— Oy 1 sin ¢ dOdr. %41 + B,.r? sin ¢ drdod¢
= p.a,.r? sin ¢ drd6d¢
where a, = acceleration in the r-direction

Simplifying and neglecting small quantities, we get
a0, . 1 . . .
—5;51n¢+; 20,sin ¢ -0 -sin ¢ - g, sin ¢

ar, Ty . . - .
+r¢,cos¢+——'ﬁ+——£sm¢ + B, sin ¢ pa, sin ¢

0 " af
In the absence of body and inertia forces, we get
80',. at Jt
r + (20, — 09 - Oy + Ty cOt 9) + 1 BL.¥ 0

or

sing 30 T ap

Fig. 1.25 Stress components on the faces of an elementary
parallelopiped in spherical co-ordinates.
00, N 1 09 0Ty 20, - Og - Oy + cot .14,
- — .t + =
or rsin¢ 99 rip .

0
7
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Equilibrium of forces in the 6-direction gives :

5

( Op + %%3- do ) r.dé.dr — og rdodr

) (r + dr) [sin (¢ + d9) + sin 4)] Ar+dr)d¢
— 1,7 [sin (¢ + d§) + sin ¢] rdq>

+(‘Ce¢+—'$ d¢)(r+ézr-)sin(¢+d¢)d9dr

-re,(r+(—i2r-)sin¢.d9.dr
+(‘t,9+ de)( dr)dq)dr-d—smob
+t,9.(r+%)d¢dr.(—izg-sin¢
+(te¢+i;-3-‘~d9)(r+%)d¢drcos¢.%g

+ Tog - (r + % ) d¢.dr.cos.¢. %

+ By.r? sin ¢ dr d8 d¢ = p.ay r? sin ¢.dr.d0.de
where ag = acceleration in the 8-direction.

Simplifying and neglecting small quantities, we get

o, 100 o,
or +r51nq> ae ra¢+ (3tre+2t9, cot ¢) + By = pag

Neglecting body and inertia forces, we get

e 1 309 late,+3t,9+2te¢cot¢

ar +rsin¢' ® r o r =0

Similarly equilibrium of forces in the ¢-direction gives :

(o,+a—¢td¢)(r+-(-121-)sin(¢+d¢)d6dr

-0, ( r+ ézﬁ ) sin ¢.d6.dr
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+(t¢,+—dr (r+dr)sin ¢ do (r + dr) d¢

—t,,rsin¢d9.rd¢)+(te¢+%d9)(r+%—r)d¢dr

d.
—te¢.(r+?r)d¢.dr

+(t,,+fz5d¢:)(r+%)sin¢d8dr%

+t¢,.(r+%)sin¢d9driz(k—oe.cos¢rdrd0d¢

+ B¢.r2 sin ¢.drd0 d¢ = p.E¢.r2 sin ¢.drd0 d¢

where a, = acceleration in the ¢-direction.
Simplif'ying and neglecting small quantities, we get
at 1 at 1 do, 1
Do, 2 09 2% 2 -
pw +rsin¢ 2t 3 + = [314 + (04 — Op) cot ¢]
+ B¢ = pzl-¢
Neglecting body and inertia forces, we get
T 1 T 139
or rsin¢ 90 r ap
=0
Hence the equilibrium equations in spherical coordinates
become :
ad
O, 1 e 1%
ar r smtp 90 P

+= [3t¢, + (0y - 0p) cot ¢]

1
+ . (20,—0g -0y +cotd.1y) =0

9Ty 1 30py 1 OTgy
o +rsin¢ ) +r % + (31r9+2cot¢1:9¢) 0

...(1.70)

Ty, 1 ey +1 1 99,

ar * r sin ¢ 00 r o +—= [31¢, + (0¢ 09) cot q;] =

1.24 Two-Dimensional Analysis

For plane stress problems, o, = 1, = 7, = 0 and the stress
tensor becomes :
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I)=0,+0,
I,= 0,0, - %, .(1.71)
Iy=o0.0, - t2,y
The principal stresses are the roots of the equation :
02 = (0, + 0,)0 + (0,.0,~1%,) = 0 -(1.72)

g, +0

1
0y, 2= ——”—2——1 t \/(crJc + oy)2 - 4(0,0, - tzxy)

o, +
or Oy,2= —2—0'! % % V(o, - 0, + 472, (1.73)

When the stresses are to be transformed into the new
co-ordinate system ox'y’ by a rotation of angle 6 about the old
co-ordinate system oxy in the anticlockwise direction, as shows in
Fig. 1.26, then the direction cosine matrix is

x y
x' |cos0 sin 0
y' |—-sin@| cos®

Now using the transformation law
T} = @il A T
We get

= cos® sinB]| 0 Ty
m=1_sin® cos®

Tay y

0, cos 0 + 1T, sin O Ty cos0+0,sin 6
" |-0.sinB+1,cos0 -1,sinb+ 0, cos O

Y4 Oy

S 1.',).
x
Tyy «——f——
v o,

Fig. 1.26 Stresses in two dimensions.
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r
T = Qi [‘[mi]
[ cos® sinB”O,tcose+txysm9 —oxsin9+txycose}

b—smB cos 0 Uysm6+txycose —rxysm6+oycos€)

[ (o, 00529+0y sin® 0 (—ox sin 0 cos 0 + T, cosze)

. . -2
+ 21, sin 0 cos 0) + 0, sin 6 cos 0 - T,, Sin“ 0

(—oxsinecose—txysinze) (oxsin29—t,‘ysin9<:osﬂ

. 2 . 2
+0ysm6cose+txycos 0 —rxysmﬂcosBMchos 0

(0, cos® 0 + oy sin% 0 (0, -0,)sinBcos B + 1, (cos? O ~ sin? 0)
+ 214, sin 0 cos 0)

. ) 2 .
(0y-0,)sinBcos® o, sin”6 + 0, cos” O - 21, sin O cos O
+ Ty (cos® 0 - sin? 0)
0y = 0, cos? 0 + oy, sin? 0 + T, sin 20
_ .2 2 .
Oy =0, sin“ 0 + o, cos” B — 1, sin 20 ...(1.74)

Ty = 91;;"‘) sin 20 + 1, (cos? 0 — sin? )

1.24.1 Two-Dimensional Mohr’s Circle

For the state of stress shown in Fig. 1.27, the normal and
shear stresses are :

Oy
'txyq___.
On T
Gxﬁ—J— \/ Ox
! 0
Txy
'
Oy
Fig. 1.27
On =4 (0, +0,) +1(0,—0,) cos 20 + 7., sin 20 ...(1.75)
t=1(0,—0,) sin 26 — 1, cos 20 .(1.76)

The principal stresses are :

0l,2=20.+0) £1V(o, -0 + 422, (177
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The principal planes are :

-2
tan 20 = o

...(1.78)

Oy - O,
The Mohr’s circle has been drawn in Fig. 1.28.

5
A

20

26,

Fig. 1.28

—
T/

Oy

Gz
Oy

e Q

Example 1.13 The state of plane stress at a point is given by :
o, =60, 0, =40 ; 1, = 20 kPa.

Determine (a) principal stresses, and (b) normal and shearing stres-
ses on a plane inclined at 30° with the x-axis.
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Solution. (a) Principal stresses are given by

Ox+0y 2 2
2 :5\/(0,-0y)+4txy

_ 60 + (- 40)
- 2
=10 :%F———IOOOO + 1600

=10 1-;-\/_11600
=10 :%(107.7) =10 +53.85

= 63.85, — 43.85 kPa
(b) The direction cosines are

[ V8
2

01,2=

zé\f(GO + 40)% + 4 x 202

DO | =
Mlamlr—‘

ij = Qil Gjm Um

[ V3

Kal
1]

1
. .| 2 2e0 20
m=1 1 Vv3||20 -40

2 2

30V3 + 10 10v3 - 20
-30+10V3 -10-20v3

[ 61.96 —2.68]

-12.68 -44.64
3 1
Tor = 2 2 [[6196 -12.68
v 1 V3 268 -44.64
2 2
[ 30.98V3-1.34 -6.34V3 -22.32
~1-380.98 - 1.34v3 6.34 - 22.32V3
_[ 5231 -33.30
“|1-38330 -32.32
o, = 52.31 kPa

o, =—32.32 kPa
Ty = — 33.30 kPa

Example 1.14 The stress components at a point in a body
subjected to two dimensional state of stress are given by :
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0, = 2% + 3xy
o, = 2% + 5xy?
Toy = 2x%y?
Determine whether the equations of equilibrium are satisfied at the
point (- 2, 3) or not.
Solution. The equations of equilibrium in the absence of
body forces in two dimensions are given by :

d0, dt
.__+._xy=0
dx ay
E“Q’._Fi‘_Z:O
x ay

Substituting the stress components, we get
(4zy + 3y) + 8%y
and 8cy? + 10xy
At the point (- 2, 3), we get
4-2)8) +3x3 +8x4x3
=-24+9+96
=81
and 8(-2)(9+10(-2)3
=-—144 -60
=—204
Therefore we find that the equations of equilibrium are not
satisfied.

Example 1.15 Calculate the principal stresses for the stress
components given below :

3 6 6
5 4 2|MPa
6 2 5

Solution. [;=3+4+5=12
I,=12+20+15-25-4-36=-18
I;3=3x16-5x13+6x(-14)=-101

flo) = 6® —120% — 180 + 101

Comparing with cubic equation

Y +py +qy+r=0

we have p=-12,q=-18,r=101

2
a=q——%—=—18—48=—66
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2 3 Pe,,._2 119
b=oop' =Bl 4r=o- - 1728) -3 (-12) (-18) + 101

=-128-72+101=-99

-b 99
cos 0 = —— v m = 0.4797

E

0 =61.334°

g=2 %?—:9.381
o_p

01 =Y;1=8cos_ —

3 3
= 9.381 cos 20.445° + 4 = 12.79 MPa

3) 3
= 9.381 cos 140.445° + 4 = - 3.23 MPa

02=y2=gcos(120°+9)—3

o B
03=y3=gcos(240 +§)—§

= 9.381 cos 260.445° + 4 = 2.44 MPa
EXERCISES

1.1 (a) Define, body force, surface force and give examples.
(b) Differentiate clearly between internal and external forces.
1.2 The Cartesian components of stress at a piont are :
o, = 1000, o), = - 600, 0, = 0, Ty, = 200, T, = 0
and T, =—400 N/mm?.
Determine the normal and shear stresses on a plane whose normal
is given by 7 = 0.112: + 0.35/ + 1.93£.
[Ans. - 305.67 N/mm? 521.95 N/mm?]
1.3 The state of stress at a point for a given reference axes x%/z is given
by : o, = 200, 0, = 0, 0, = 500, 7, = 100, ¥, = ¥, = 0 N/m*.
If a new set of axes x'y'2’ is formed by rotating xyz axes through 60°
about the z-axis in the anticlockwise direction, determine the com-
ponents of stress for the new axes. Prove that the invariants remain
unchanged. [Anms. o, = 136.6, 0, = 63.4, 0, = 500, 1,1, = — 136.6,
Ty =Ty =0 N/m2]
1.4 The components of stress at a point are given by :
ox=3xy2z+2x, Ty =0
oy = Sxyz + 3y Tyz=1x2=3xy2z+2xy
o, = x2y + yzz.
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1.5

1.6

1.7

1.8

Determine whether these components of stress satisfy the equi-
librium equations or not at the point (1,-1,2) . If not then determine
the suitable body force required at this point so that these stress
components become under equilibrium. _

[Ans. No, B = - 110 - 16f+ 512]
The components of stress at a point are given by the following array
of terms :

5 2 1
2 3 4|kPa
1 4 2

Determine the normal and shear stresses on a plane whose direction

cosines are—l- V 2 0
Vg ’ 1 .

3
Also determine the direction of the shear stress.
[Ans. 5.552 kPa ; 4.164 kPa ; 0.3156, — 0.2232, 0.9229]

The components of stress at a point in a body are : o, = 0, o, = 300,
o, = 100, Ty =, = 0, 7, = 100v3 N/m2.
Determine the principal stresses and the orientation of the principal
axes. Check that the principal directions are mutually perpen-
dicular. Also determine the normal and shearing stresses on the
octahedral plane.

[Ans. o] = 400 N/m?, Uny, =V3/2,apy =~ 1/2,ap, =0;03=03=0,

(0)oes = 248.80 N/m? . 1,4 = 193.96 N/m?]

The Cartesian components of stress at a point are :
0,=15,0,=0,=8,7, =6,1,=4,7, =4 kPa.

Using three dimensional Mohr'’s circle, determine the normal and

shearing stresses on the plane whose direction cosines are

1 1 1
—_—, =, 7 Ans. 19.667, 4.
TV [Ans 67, 4.026 kPa]
The state of stress at a point for a given reference axes xyz is given
by the following array of terms :

150 80 -60
80 -120 50 | kN/m?.
- 60 50 80

(a) Determine the stress invariants.

(b) If a new set of axes x'y'z’ is formed by rotating the xyz about the
z-axis in anticlockwise direction by 45°, determine the stress
components in the new co-ordinate system.

[Ans. (@) I, = 110, I5 = — 28100, I3 = — 2,375,000.
(b) o, = 95, G, = — 65, 0, = 80, T, = — 135,
T, = 77.79, %, = — 7.07 kN/m?]
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1.11

1.12

1.13

1.14

1.15
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The components of stress at a point are :
O, = l,oy=—2,cz=2,1:xy=2,tyz=3,rxz=3kPa.
Determine :
(a) The principal stresses at the point.
(b) Deviatoric and spherical stress tensors.
[Ans. (@) 01 = 6.13, 09 = — 1.425, 03 = — 3.650 kPa.
(b)oy =2/3,0,=-1/3,0, =5/3,7Ty =2,7,, = 3,7, = 3kPa.
o, =13= Oy = Oy Tyy? = Typr = Typr = 0 kPa]
It is desired to drill an oil hole through a member subjected to stress
field given by :
0, = 1050, 0, = — 350, 0, = — 700, T, = — 210, 7, = 0, T, = 70 kN/m.
This oil hole should be drilled in a line parallel to the line of
maximum normal tension. Indicate on a one cm cube where the
centre line of the oil hole should be located.
[Ans. 1083.51 kN/m?, 8.625°, 98.32°, 87.77°]
(@) Under what conditions the surfaces given by stress quadric of
Cauchy become the surface of a sphere. What then are the
principal stress axes ?
(b) Describe the state of stress corresponding to the case where the
surface of stress
(¥) is a sphere,
(t7) is a surface or revolution.
The components of stress acting on a cube of 10 x 4 x 5 cm size are
given by :

0, = 10,0, =-170,0, = 70,5, = 0,1, =~ 35, T, = 35 kPa.
Determine the normal stress on the diagonal plane and the shear
stress in the direction of the x-axis.

The components of stress at a point in cylindrical co-ordinates are :
O, = r20 + r,og = rz + 92, o, = r2? + 0z, g = r26,
T, =02 + 62, Ty = rz2.

Determine the body force distribution at the point (3, 7/3, 5) for the
body to be in equilibrium.

[Ans. B = — 56.349( — 14.317/ - 139.921£]
The components of stress at a point in spherical co-ordinate are
given by :
o, = r?a + 08¢, og = 64)2 +10, 0y = 00 + 1o, 1,9 =70, Ty = 00, Ty =T¢.
Determine the body force distribution required at the point (- 2, /4,
7t/2) so that the body is in equilibrium.

[Ans. B = 6.711/ — 2.517/ — 21.428]

For the following state of stress, compute the stress vectors on
planes with unit normals (2/3, 2/3, 1/3) and (1N14, 2V 14, 3N14).
0,=4,0,=2,0, =—2,txy=3,tyz=8,tzx=—2kPa.
Also compute the normal and shearing stresses on these planes.
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1.16

117

1.18

1.19

1.20

1.21

The Cartesian components of stress at a point are given as below :
0, = 100, 0, = 50, 0, = 40, T, = 20, T, = - 40, T, = — 60 kN/m>.
Determine the normal and shear stresses on a plane whose direction

1 2
cosines are o, -3, 3
Derive equilibrium equations in three-dimensional Cartesian co-
ordinate system. State the assumptions which you make in the
derivation.
(@) Show that in the case of a two dimensional stress system, the
magnitudes of the two principal stresses are given by the solu-
tion of the quadratic equation given by :

. Derive the expressions used.

(0-0,)(0-0y) = 'czxy
(b) Explain why stress is considered as a tensor quantity.
(c) Show that in a two-dimensional stress system, the two principal
stresses are orthogonal.
The stress tensor at a point is given by

3 1 4
1 2 -5|MNm2
4 -5 0
Determine the normal and shear stresses on a plane whose normal
has direction cosines ( 1 1 )
V3'V3'V3

On several planes through a point P in a body the stress vectors
relative to axes (x1, xg, x3) are given as shown below :

Unit normal to plane Stress vector on plane
1,0,0 i+ +3k
1 1 1 3 a
ﬁ 7_— ﬁ 2V31 + 2\/3[
0,1,0 2 + 2f+ ok

Determine the components of the stress array referred to (x1, xg, x3)
axes.

The stress tensor at a point P is given by the following array

36 27 10
27 -36 0 |MN/m?
10 0 18

Determine (a) the components of the stress vector acting on a plane
whose unit normal passing through point P has direction cosines

2 21
3’ 3’3)'
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1.23

1.24

1.25

1.26

1.27

1.28
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(b) the magnitude of the stress vector, and
(c) the angle between the stress vector and the unit normal of
part (a).

The stress components at a point are 0, = 3,0, =2,0, =~ 3,7, = 2,
T, = 8, T,x = — 4 MPa. Compute the stress vectors on planes with

. 2 2 1 12 3
unit normals (g,g,g)and AT ik Vi . Also compute the

normal and shearing stresses on these planes.

The stress tensor at a point is defined by the array :

3 5 8
5 1 0|MN/m?
8 0 2

Determine the stress invariants, principal stresses and principal

directions.

The stress components at a certain point of a body are given by :
0,=8,0,=6,0,=2,1,=2,7,= l,txz=4MN/m2.

Determine :

(a) the stress vector on a plane normal to the vector L+ 2f+ E,

(b) the principal stresses, and

(c) the octahedral shear stress.

The three principal stresses at a point in a body are 0, = 6, 09 = 3,

03 = -2 MN/m?%

Determine :

(a) the octahedral shear stress.

(b) the maximum shear stress.

(c) the direction cosines of the normal to one of the planes on which
the maximum shear stresses act.

The stress components at a point in a body are given by the array :

10 -v2 V2
-V2 7 -3 |kPa.
vZ2 -3 7

Determine :

(@) the cubic equation for the principal stresses.

(b) the maximum stress at the point.

(c) the direction of the principal axis for minimum stress.

Show that the Lame’s ellipsoid and the stress-director surface
together completely define the state of stress at a point.

The state of stress at a point is given by the following array :

20 -40 -60

-40 40 20 | MPa.
-60 20 -20
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1.29

1.30

131

1.32

1.33

Determine the three principal stresses and associated principal
directions,

97.39MPa, 6.44MPa, -63.83MPa;
A, = 0.6574 Ay = 0.4488 Ang, = 0.6053
apy, == 0.61 16 Ay, = 0.7871 apy, = 0.0807
Apz, =-0.4402  ap;, =-04232  ap,, =0.7919

Ans.

The state of plane stress at a point is given by :
o, = 35 MPa, o, = 50 MPa and Ty =—35 MPa.

Determine the principal stresses, the maximum shearing stress and
the octahedral shearing stress.

The state of stress at a point is given by :
o, = 70 MPa, 0, = 10 MPa, o, = - 20 MP4,
Ty = —40 MPa, ¢, = 20 MPa = t,.

Determine the principal stresses, maximum shear stress and the
maximum principal stress direction.
For what body forces will the following stress field describe a state
of equilibrium ?

o,=—2x2+ 3y2—5z

v;!y=—2y2
Oy=3x+y+32-5
Ty =2+4xy-T7

T,=-3x+y+1
1y, =0.

At a point in a material subjected to a three dimensional stress
system the Cartesian stress components are :

o, = 100, o, = 80, 0, = 150,
Ty = 40, Ty =— 30, v, = 50 MN/m2
Determine the normal, shear and resultant stresses on a plane
whose normal makes angles of 52° with the x-axis and 68° with
the y-axis.
[Ans. ¢, = 169.7 MN/mZ, o, = 166.8 MN/mZ, t=31 MN/mZ]

The state of stress at a point in a body is given by the following
equations. If equilibrium is to be achieved what equations must the
body force stresses B,, B, and B, satisfy ?

0x=ax+by2, Ty = 82

oy = cy2 +d2%, T, = hy + kz

g, =ex + fzz, Ty = Ix® + m22.
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1.35

1.36

1.37

1.38

1.39

1.40

ELASTIC ANALYSIS

The state of stress at a point is given by :
2 2 3 3
@+ P-2) @-Gy-d)  @ey-d
(z - 6xy - 3) 3y 0
(x+y-%) 0 (3x+y-z+§)
Show that, if the body forces are neglected, equilibrium exists.

The state of plane stress at a point is given by :
0,=x3y—2axy +by

3 3
Oy =xy" —2x"y
4
txyz-gxzy2+ay2+%+c

Show that in the absence of body forces, equilibrium exists.

At a point in a material the stresses are :
o, =40, 0, = 80,0, =150

Ty = 70,7, = — 20, T, = 30 MN/m?

Calculate the shear stress on a plane whose normal makes an angle
of 48° with the x-axis and 71° with the y-axis.

At a point in a material a resultant stress of value 15 MN/m? is
acting in a direction making angles of 43°, 75° and 50° 53’ with the
co-ordinate axes x,y and z.

(a) Find the normal and shear stresses on an oblique plane whose
normal makes anglesof 67° 13',30° and 71° 34/, respectively with
the same co-ordinate axes.

b) If Toy=1.5 MN/mz, Ty, =—2 MN/m2 andt,, =3 MN/mz, determine
0y, 0y and o,.

Three principal stresses of 300, 200 and — 150 MN/m? act in direc-

tions x, y, z respectively. Determine the normal, shear and resultant

stresses which act on a plane whose normal is inclined at 30° to the
z-axis and the projection of the normal on the xy-plane beinginclined
at 55° to the xz-plane.

The stress components at a point in a stressed body are given by :
o, = 100, o, = 140, 0, = 170

T = 50, T, = — 20, T,, = 100 MN/m®.

Determine the values of principal stresses and principal directions.
The principal stresses at a point are :

o1 =50,09=30,03=-10 MN/m?.
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Calculate the resultant stress on a plane whose normal has direction
cosines,
any = 0.73, @,y = 0.46 and a,,, = 0.506

1.41 The following state of strain exists at a point. Taking £ = 207 GN/m?
and v = 0.3, determine the state of stress.
€ = 10x10'4,sy=5x10_4,sz=7x10_4,
Yy =2x107 v, =10x 107, y,, = 8x 1074

1.42 The following state of stress exists at a point. If E = 210 GN/m? and
v = 0.3, determine the state of strain.

0y =225,0, = 75, 0, = 150

Ty = 110, T, = 50, T, = 70 MN/m?
1.43 The stress components at a point are :

o, =-40,0,=80,0,=120

Ty = 70,7, = 50, T,, = 30 MN/m?

Calculate the stress components after rotating the axes through 30°
about the z-axis.
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