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Laplace Transforms

The Laplace transforms are so widely used in the study of
control systems that this chapter is devoted to the discussion and
review of Laplace transforms., These transforms have become popular
because of the following advantages :

(i) This transformation transforms the transcendental and
exponential functions to simple algebraic functions.

(ii) This transformtion transforms the operations of differentia-
tion and integration to multiplication and division respectively.

(iii) In the solution of differential equations, arbitrary constants
do not occur.

(iv) We can effectively make use of step and impulse response
which is very relevant in control systems

1'1. Definition

The Laplace transform of a function f(t) is denoted by L f(r)
and is a function of s normally written as

F(s)=L f() (1)

The correspondence between f(t) and F(s) is unique and is
established by the following relation :

F(s)= j: () e* dt —(2)

Example 1'1. Find the Laplace transforms of :
(@) a costant, K

®) f(t)=r2

() f(t)y=e*

Soluation. (@) f(1)=K

F(s)=I: K e*t dt

(%) Si)=1?
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By repeated application of the rules of integration by parts,
e‘“ @ e—“
—5 ‘o —@) ! s
Making use of V’'Hospital’s rule,

o= 4,

® et [w
o +(2)lf§fo

F(s)=r*

As a matter of fact, it can be shown that

!
LuM= 355

@®

0

() S)=c>
e—(r—+¢)

= ® ~at ,-st =
l’-‘(s)—s0 et et dt ‘—-\s+°-)

1

s+a

Example 1:2. Find the Laplace transform for
f(t)=cos wt.

Solution. Evaluation of Laplace transform, by direct integra-
tion, in this case is quite tedious and an easy way to find this trans-

form is to recognize :
cos wt=Re[e’*']
L{cos wt]=Re|L(¢’**)]

l .
Now, L(e"“‘)=s—_—j—“; [example 1°1(c)]

1 s
Hence, L{cos wt]=Re [ S—jw ] =t

It is not always convenient to derive Laplace transforms by
definition. Mostly we make use of same of the properties of Laplace
transforms. These properties are listed below.

12. Properties of Laplace Transforms

12-1. Laplace transform of the sum of two functions is equal
the sum of the Laplace transforms of the two functions

LIf(0) £ fo(0)]=Lf(t) £ Lfx(1) ...(3)

1-2-2. Laplace transform of a function multiplied by any
stant is constant times the Laplace transform of the function.

Licf(1))=cL () ...(4)

1-2 3. Laplace transform of the derivative of a function is

L4 =5 Fo-r'©) (5)

con
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Similarly,
L di, (1) |=s*F(s)—sf(0)—f"(0) ..-(6)
dt

In general,

L [d_{_ 70 ]=s"F(s)—s"'1f(0)—s""f’(0) we7)

1'2'4. Laplace transform of the integral of a function is

L a="2 4 O ()
where, 0= | Sf(t) at\i=0
12'5. Shifting Theorems
L[f(@—=T)]=e*TF(s) ...(9)
L (e f(1)]=F(s+a) ...(10)

Equation (9) applies to functions shifted in time domain and
(10) applies to functions shifted in frequency domain.

1'2'6. Scaling Theorem

_ 1 s
L U= F(<) (1)
1-2'7. Laplace transform of a function multiplied by ¢ is
- -4 v
L lf(0)= — 2 F) A12)
1-2'8. Laplace transform of a function divided by ¢ is
L[ 227 Fe) as (13)

1'2'9. Initial Valve Theorem
If f(t) and f'(r) Laplace transformable,

Lim f(¢t)=Lim s F|

t—l)O f() s-])o y (S) “'(14)
1:2°'10. Final Value Theorem

If the indicated limits exist,

’I:i’xg f(t)=1;i)n(1) s F(s) «..(15)

The proof of the above properties is not given here.

Any standard text on Mathematics could be used for the same.
We solve below a number of examples to illustrate the use of these
properties.
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Example 1:3. Find Laplace transforms for :

(a) f(t)=7e3+2cos t

(b) f(t)=K sinh «t

() fit)y=12 e,

Soluticn. (a) f(1)=T7 e3+2cost

F(s)=L[7 e3¢+ L{2 cos t]

=7 L(e~%)+2L (cos t)

1, s

‘s4+3 5241

__ 952 +6s+7

s3+3s2+s5s+3

=T 42

(b) f (t)=K sinh at=_2]£[em__e-¢g]

F(s)=-5-[L (9~ L (™)

11 __ ko
2{s—a S+a s2—al

)
(©) L=

sty 2

L(t"e ‘)— (S+a)3

Example 1'4. Determine the Laplace transforms for :
(a) f(t)=1%5in wt
) f ()= - sin o

Solution. (a) L[sin w?]= "_;z—i%;'z

The above Laplace transform can be evaluated by following
steps similar to example 1-2.

. d
L(tsin wt]l=— 3;[;_:—“’2]

2

- 4l
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=4 [ 20)(s) (5P w0ty ]

=(—20) [g{S(sww’)”}]

=(—26)(S)(—2)(6% w3 (28)+(s" +a)7]
_ 2w (3st—at)
(24w’
®» L (Lt sin wt )=r° @

s S Hw?

()
w Jis

==E-_ '1(_s_\= -1 _‘i’_)
5 tan w} tan 3

Example 1'5. Determine initial and final values of f(t) for
which the Laplace transform is :

&

_ 105 (s+7)
FO)=Grne+96+10)

Solution. From initial value theorem,
hmf(t)—hm sF(s)

§=» ®

— lim [ 105 (s+7)
s+ L (+1(s+8)(s+10)

From final value theorem,
lim f(¢t)=lim sF(s)
t—> o s=0

— lim { 10s? (s47) _}=0‘

=10

se0 | (s+H1(s+8)(s+10)
Example 1'6. Evaluate the integrals :
(a) I: t e~ cos t dt

@® e—'_e—sf

®) ]0 .
Solution, (¢) We know that

_ s

L [cos ‘]—s’-}-l

. —_ 4 s
K L [tcos t]= ds[s’+l :I

__ -1
(s*+1)2
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Using equation (1), therefore,
® s3—1
—8t —_——
IO te*t costadt D
Putting s=2,

® - ﬁ:l_, -3 .
L) te~* cos t dt= GFDE ls=2 5
£b) We know that

Llet—e™]= 1 1

s+1 s+3
et—e3t) [ 1 1
L[ t ]—‘s [s+l s+3 ]ds

=lln (s+1)—In (s+3)

_ s+U\= _, (s+3
=|In (s?-—3 )Is =In (s~~l—l )

o0
s

By definition,
. e"—-e""] _ s+3 )
Io e—‘[ t d’”lr(s+1
Putting s=0
© gttt s+3 _
"0 ; dt -—|ln (S-H )L_=0 =In 3

Example 1'7. Find out the Laplace transforms for :
(@) Step function

(b) Ramp function

(¢) Parabolic function

(d) Impulse function.

Solution. (a) A step function (also called Constant Position
input) is defined as a function having zero value before t=0 and a
constant value after 1=0. Mathematically,

_f0;t<0
A= k50> 0

?Uﬂ“’

K-_

o - t

Fig. 1'1. A step function.
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The function is shown in Fig. 1'1 and has a discontinuity at
t=0. The function is of great importance physically, as the basic
phenomenon of switching in systems correspoads to this function if

the instant of switching is reckoned at t=0. The Laplace transform
of this function is derived by definition.

Fls)= j: Ker ai= K ..(16)
qz(tl
74K
1

>t

Fig. 1°'2. A Ramp function.

(b) A ramp function (also called constant velocity input) is
mathematically defined as :

0::<0
u-5(t)= {Kt;t> 0.

The function is shown in Fig. 1'2, Its Laplace transform is :

Fo= |7 i a= K A

. (c) A parabolic function (also called constant acceleration
input) is denoted by u_,(t). The function is shown in Fig 1'3 and
is mathematically described as :

_fo ;<o
“"l‘(’) - {iK” ; t > 0

‘u_3(t)

>

0

Fig. 1'3. A Parabolic function.
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The Laplace transform F (s) is :
[}
F(s) = Jo % Ktte-st dt
2 K
=* K ?= s—s— .--(18)
(d) An impulse function is denoted by u,(¢) and it hasa
value zero everywhere except for t=0. Mathematically,

o= L5120

This function is shown in Fig. 1'4. Practically, any pulse of
cf large amplitude and small width can be approximated as an

l.b‘“

—e t

0
Fig. 1'4. An Impulse function
Impulse function. The area under an impulse is constant and is
called the strength of the impulse.

sz_ u(t) dt =K

The Laplace transform of an Impulse function is :
(-]
F(s) = [o F(8) et dr

= J’gi uy(t) dt=K ...(19)

Example 1'8. Find the Laplace transforms for :
(@ f(t) = sinw (t—t,)

B) f(@1) = sin w (t—tg) 1-, (1—1,)

(© f(t) =sinw(t)u_, (1—1)

@) f(t) = sinw (t—te) u_y (1—1)

Solution. This example is chosen to clearly understand the
difference between four apparently similar functions.
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(a) This function, shown in Fig. 1'5, just represents the
sinusoidal function shifted right by #,. Its Laplace transform is :

F(s) = L sin » (t—1,)

= L sin ot cos wty— L cos wt sin wt,

w . s
= CcOS w [;mz] — sin © ¢, [m{l

@ COoS w fy—Ssinw t,
S2+w2

Sincw(t- to)

/.
\VARV/

Fig. 1'5. f(t)=sin o (t—1¢,)

(b) For this function, the portion of Fig. 1'5 before t=0is
erased out by multiplying the function with unit step function. As
this function is identical to (@) after 7=0 and Laplace transform does
not consider the function before =0, its Laplace transform is the
same as that for (a).

now (t-tju,(t)

N\
VA

Fig. 1'6. f(t)=sin o (t - to)u_,(t)

(c) This function is shown in Fig. 1'7 and is just the ordinary
sinusoidal function which has been erased before t=1, by muitiply-
ing it with u_; (z—1,).
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Sinwt u(t-t))

/

SAVAN

Fig. 1'7. f(t)=sin ot u_, (1—1,)

The Laplace transform for this function is evaluated as :

F(s) = ]: F) e di
= L’: f)ertdt +]: f(@)ertar

[ -]
=0+ L sinw t e*t dt
(']

Now, sin ot = L{efmt_e—:mc]
2j
(-}

F(S) = ]_J [e (~s+iw)t _e(-l-lm)f di
[}

2 Js
1 el-tHalty el-1+inty) T1®
=Tj[{(—s+f«»)}_{(—s—jw} ]zo
1 [el-rtor, e(-l-im)t.]
2i L s—jo = stjw
s [w COSs wly+ s sin wt(.]

=e %
€ S ot

fSian-ta)g -t ]

WA
© \/

Fig. 1'8. f(t)=sin & (t—1,) u-, (t—1,)
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(d) In this case the whole sinusoidal function is shifted as in
(a) ; but the portion before t=1t, does not exist because of the
u_, (t—1t,). The function is shown in Fig. 1'8. Its Laplace trans-
form can be derived by applying theorem to the Laplace transform
for an ordinary sinusoid.

F(s)=e"%* L [sin wt]
w
52 +w2

1'3. Laplace Transforms for Waveforms

—et?

The general methods for determining the Laplace transforms
for waveforms commonly used in control systems ar¢ discussed in
this section.

1'3'1. Aperiodic Signals

For finding out the Laplace transform of aperiodic signals, two
techniques are normally used :

(a) Decomposition of the given signal into sum of simpler
signals like step, ramp, etc.

(b) Using the gating function.

We shall illustrate both the techniques with the help of an
example.

Example 1°9. Find out the Laplace transform of a waveform
shown in Fig. 1'9.

et

Fig. 1'9. Waveform for example 1°9.
Solation,

(a) Decomposition Technique. The waveform given above
can be decomposed into simpler functions fi(z), f3(¢) and fu(¢) as
shown in Fig. 1°10

From Fig. 1°10,
f(‘)=f1(t) —fz(t)—fa(t)

where ORE2TR0
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FO=5 (=D u(=T)
Jt)=Eu,(t—T)
falt) 'YL
/iE =
g
- t
(@)
#r.tt)

‘é-—-—--— ————

ot
()
Fig. 1'10. Decomposition of f(¢).
Therefore, F(s)=L [ £,(t)]—L [ f:(£)]—L [ f4(1)]
_E 1 E 1 E

= .~ p=Ts__ _____e-Tl

T ST ¥
E
=E;[l—(Ts+])e-T'].

(b) Gating Function Technique. A gate function is a func-
tion having a constant amplitude for a finite interval of time and
zero everywhere else. The property of this function is that the multi-

: g(t, plication by gate of any function will
make its zero outside the gate but will

not change its nature within the gate.

1 If we bave a gate function shown in

Fig. 1°'11 and multiply it by % t, we

5 T & t shall obtain the function f(¢).

Fig. '11. A gate function.
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E
Therefore, fi)= 7t g(1) ...(20)

Now, gt)=u_,(t)—u_,(t—T)
Therefore, L [g(t)]=(1—e"T)

__p—Ts
Hence LIt g(t)]:——d‘%;— ! e ]

_1—(TstD e
s2

Fo- E[1=mn e

T TR «.(21)
1'32, Periodic Signals
To find out the Laplace transform of periodic signals, firstly
only one period is considered and Laplace transform is derived as
illustrated in sec. 1'3'1. Let this be G(s),

Then, F(s)= “r_‘lc.u 75 G(s) ...(22)

where T is the period of repetition.

Example 1'10. Derive the Laplace transform for a periodic
sawtooth wave shown in Fig. 1°12.

f(t)

- t

Fig. 1'12, Periodic sawtooth wave.

Solution. This is a periodic signal with repetition period T.
One period of this signal is the same as the function of example 1°9.
Hence, from Eq. (21),

G(S)=—7_’.§'-’_[l —(Ts+1) e T4

. E — —Ts
Using Eq. (22), F(s)= TT[l ({sj—el-)if ]

1'4. Inverse Laplace Transforms

As the name suggests, Inverse Laplace transformation is an
operation which makes it possible to find out f(f) whose Laplace
transform F(s) is known. Mathematically,

f(t)=L" F(s) ...(23)
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_An integration relation for the evaluation of Eq. (23) exists but
the integration required is quite tedious. Because the relationship
f(1) and F(s) is unique, for simple F(s) we can write f(t) by memory.
For example,

L"1£-=K
k)
L s—f_—u=Ke‘°“
-1 Ko i
L (;‘{:‘;mz-—Ke sin wt

In standard mathematical texts, quite exhaustive tables listing
inverse Laplace transforms are available and they can be used as
reference.

For most of the problems, however, it is possible to decompose
F(s) into simpler constituents using partial fractions and then the
inverse Laplace transtorm for each of the terms can be separately

written.
Example 111, Determine inverse Laplace transform for :

_ s42
@ FO=g1Dis+2)

)
® FO=ciTis+)
. s+1
© FO=gxate
__ s+2 A B C
Sol. (a) F(s)= GEDGED) s + +1+ 12
I i o 2
s+ D)(s+2)s=0
- sH2] =—3
s(s+-2)s=—1
= s*+2 =3
T ss+1) =—2
_ 3 .3
s+1 7 s+2
Therefore,  f(t)=1—3e"+3e%
s _ A B C 4+ D_
® FO=GrGin=GrF T GriF T sk T 52

Now, 4

Hencs, F(s)= —;—

Now, A=F(s). s+ __;=—1
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D=F(s). (s+2) ’s=_2=2
1[d
B= 3T [Z; F(s) (s+1)® ]3———-—1:2

c= A 2R (s+1 ——2

= 31| gz FO-6+1) —
22 2
(s+1)*  (s+1) s+2)
Therefore, f(t)=2e"2t—2e~t+2t et —}12e™*

s+l _ A, BstC
© FO=raera =st2t si4

Hence, F(s)= —(—;:_—})-5 +

Now, A=F(s).(s+2) L=_2=_%_

Then by comparing coefficients, we can find
B=} and C=1%

Hence, F(s)= — L ~l--+ os 3 2

8 s+2 3 s*+4 8 5244
Therefore, f(t)=3[cos 2¢+3 sin 21—e 2],

1'4‘1. Convolution Theorem

This theorem gives a relation for the inverse Laplace trans-
formation of the product of two functions of s is terms of the
inverse Laplace transforms of the individual functions.

If F(s)=F(s). F(s)
where L1 F,(s)=f,(t) and L1 Fy(s)=f,(t) are known;
then L~ F(s)=f(t)=£1(t) » fu(*) --(24)

The notation ( # ) is used for convolution operation which is
defined as

0=, £ fle—as . (25)

=[5 £ 50

Example 1'12. Determine the inverse Laplace transform for :

_ 1
F(S)—' (s2+a?)?
Solution, This example can be conveniently solved only by the
use of convolution theorem, let F(s)=F,(s). Fy(s),
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where Fy(s)=Fy(s) =ﬁa

_ 1 1 .
Therefore, fi(2)=f,(t)=L"? [Ta’]= — sinat
Hence, ()= —l— sin at = -}z— sin at

= —1~J; sin at . sin a(t—7)d~

2

a

t . . .
[:IO sin gt {sin at cos at—cos at sin av} d‘r:l

= 7112— [{ sin at I; sin a%t cos ar dv }
— {cos at s; sin? gt d= }]
—cos 2a\ it < sm 2ar
= ——l:{sm at(~—~— )}\0 {cos at ( )}I ]
= alT[{sin a’(l_—c%z_ht )}——{cos at (—— sin 2 2ﬂ )}]
=;11—2[2-la- sin at— ;— cos at ]

= 2—‘1}—5- (sin at—at cos at).

Example 1'13. Determine the inverse Laplace transform for

1
FO= sty

Solution. This problem can be solved by repeated application
of convolution theorem, but we shall illustrate a heuristic approach

where the following property of the Laplace transforms will be
used repeatedly.

L U; 10 dt]= @
Now, L1 I:s—z—l_*_—l]=sin t

2 1 _f .
L SEFD 1 Jo sin t dt=1—cos ¢
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1 ' ,
Y R SR _ —
L [s"’(sz-i-l) ]— SO (1—cos t) di=t—sin t
nd, L~ [—1— = ]' (r—sin £) di=" +cos t—1
a b} sa(sg+l) - 0 Sln - 2 CO -

1'5. Solution of Differential Equations

The most important reason for the popularity of Laplace
transforms is the case with which it can solve gifferential equations.
This emerges from the fact that the operations of differentiation
and integration are translated to the algebraic operations of
multiplication and division, thereby changing the differential equa-
tion into algebraic equation. The solution of the algebraic equation
is obviously much easier than the solution of differential equations.
The various steps of the solution are :

(i) Take the Laplace transforms of both the sides of the
differential equation incorporating initial conditions simultaneously

(ii) Rewrite the transformed equation as
- P(s)
s —
6= 56
(iii) Resolve F(s) into partial fractions and obtain f(¢).

Example 1'14.  Jf y=0 and %=l for t=0, solve the
differential equation.
d12 +4 +4y cos 2¢.
Solution. Taking Laplace transforms on both the sides,
[*¥(s)—s Y(0)—y(O)]+4ls Y(s)—3OH4 YO =57

Substituting the initial conditions and transposing,

— Sttst4
Y(S) [S’+4S+4]— 2+4+1 &2+4
s*+s+4
or Y= Gy ayst+ds+4)
s*+s+4
(s’+4)(s+2)
Making partial fractnons,
1 1 1
0= Gt +2) R pl o

or )= —-te"‘ + 5 sin 2¢.
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or

or

1'6.
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Example 1'15. Solve for x(t) and W(t) if

d”;(tt) =2x(t)—3(t) ---(26)
0 —y()—2x(0) )

Subject to initial conditions
x(0)=8 and y(0)=3.
Solution. The Laplace transform of equation (26) is
sX(s)—x(0)=2X(s)—3Y(s)

X(s) [s—2]+ Y(s)[3]=8 ...(28)
Similarly, the Laplace transform of equation (27) is
sY(s)—y(0)= Y(s)—2X(s)
X))+ Y(9)s—1]=3 ...(29)
Solving the algebraic equations (28) and (29),
8 3 \
13 sl 8s—17
¥O=15=2 3\ G+ D)s—2)
2 s—1
s—2 8 \
2 31 _ 3s—22
YO=—33 \ GEs—%)
2 s—1
Decomposing into partial fractions
8—17 _ S 3
X©)= Grne—a) " s+1 T -4
_ 3s—=22 _ 5 _ 2
Y= GrDe—4) s+1  s—4
Hence, x(t)="5e"t+4 3¢
y(t)="5e"t—2e*.
Applications

In this section, we discuss some of the applications of Laplace

transforms to engineering problems.

Example 1'16. A particle P of mass 2 grams moves on the

x-axis and is attracted towards origin O with a force numerically equal
to 8x. If it is initially at restat x=10, find its position at any subse-
quent time assuming
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(a) no other forces act

(b) a damping force numerically equal to 8 times the instantane-
ous velocity acts.

Solution, (a) By Newton’s law of motion,

0

Fig. 1'13. Motion of a particle.

d3x
or 2 W =—8x

dx
or ¢717+4x=0

Using Laplace transforms,
52X(s)—x(0)—x'(0)+4X(s)=0

Now, x(0)=10 and x'(0)=0
Therefore, s2X(s)—10s+4X(s)=0
or, X(s)s*+4]=10s
10
or, X (S)=},—_‘**_s—4-
Hence, x(t)=10 cos 2t

The particle will keep on oscillating between x=10 and x=—10
with a cosinusodial variation. It will first reach origin when

T T
2t =—2— or t= ;3—
(b) The force now is
dx
—-8x—87
The equation of motion, therefore, is :
d?x dx
d*x dx _
or dt—2+4 dt +4x=0

Taking Laplace transforms and substituting initial conditions,
X(s) [s3+4s+4]=10(s+4)
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__10(s+4) _ 10(s+-4)
or XO)=miestd = L2y
_ 10 20
) +(s+2)*
Therefore, x(t)=10 e7%4-20 t e~2¢
or x(1)=10 e~ (14-2t)

The motion is non-oscillatory. The particle will approach
origin, but will never reach it.

Example 1'17. Calculate the current i(t) in the circuit given in
Fig. I'14 after clossing the switch if the voltage across the condenser C
is 15 volts just before closing the switch.

8Q 1H

s R L

e=10sin t ) >
i(t)

Fig. 1'14. A Electrical Circuit.

A NS
(@)
(1]
-—
&=

Solution. Applying Kirchhoff’s law,
Ri+L D42 Iidt=e
Taking Laplace transforms,
RIG+L 516)—i091+ {2+ k9

Now before closing the switch currenti(0-)=0 and the current
through an inductor cannot change suddenly.

Hence, i(0+)=i(0-)=0
Also as the charge across a capacitor can’t change all of a
sudden : i1(0%t)=i"30")=C.15
J(s)[R+Ls+~— ]—E( )—C—15
157__10 15
or ’(s)[8+s+ s ]_s2+1 0
_ 10s—15s2—15
s(s®+1)

(10s—155s2—15)s

or I9)= D855 15)
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— _10s—15s*—15
(s*+1)(s*+8s+15)
__ 10s—15s*—15
(s2+1)(s+3)(s+5)
=9 _,110/13 1 7544
s+3 +s+5 +1§ 5341
Therefore, z(t)—lll-g —5 9e‘3‘+ cps t+ —— 4 sin ¢

Example 1'18. A rectangular voltage pulse of unit height and
duration T is applied to a series RC combination at t=0. Determine
the voltage across the capacitance as a function of time.

,v (t)

1

T — t

Fig. 115. A rectanular fulse.

vit) R _I_+ 7
/—> c vcit)
i) T l

Fig. 1'16. An RC circuit.

Solution. The input voltage can be expressed as
v(t)=u-,(t)—u_,(t—T)
Therefore, V(s)=-- (1—eT") .(30)

Now the KVL equation for the RC circuit is
v(t)=Ri(t)+v(t)
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- X ()
Also z(t)_CT
Hence, v(t)=RCd;#2 +ve(1)

Taking Laplace transforms,
V()=RCls V(s)—vo(0)]+ V()
V(s)ls RC+1]1=V(s)
—_V6)
14s RC
Substituting ¥(s) from equation (30)

_ 1 1—eTe
Vis)= s 1+sRC

Next, we are to find the inverse Laplace transform of V(s).

Ves

'I:o make it easy we recollect that factor e-T¢ just amountstoa
simple shift in ¢ in the inverse transformation we proceed as follows :

1 1 1
S(RCs+1) = s+1/RC

1
-1 |_,____ 1 _e-tIRC l
Therefore, L SRC 1) =] —e

t t—T
Hence, vo(t)=(1—e EC)u(t)—(1—e RC)u_,(t—T)

A plot of v,(t) a as function of ¢ is shown in Fig. 1'17

———l> ¢

1
!
L
10 TN

Seccen=

Fig. 1°17. Voltage across capacitor

PROBLEMS

1°1. Derive the Laplace transforms of following :

(a) f(t)=A sin(wt+0)

(b) f(t)=4 cos «t cos Bt

(c) f(t)=e* cosh 5t

(d) f(t)=sin 2w(t—1o)u—,(1—2ts)
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1'2. Find out the Laplace transforms of the following :

@ f()=(t+2)* ¢
sinh ¢

®) fi=——
(c) f(t)=sin® ¢
1'3. Show that
3

- -]
—t . - =
(@) Jote 3t Sin ¢ dt= 50

® etsin¢ _ =
® Io“rﬁ a =73

1'4. Verify the initial value theorem for
(@) 3—2cos ¢ ‘

®) (2t+3)

(c) t+sin 3¢

I'5. Ve:ify the final value theorem for
(@ 1+4e(sin t+cos )

(b) 132,

23

1'6. Find out the Laplace transforms for the aperiodic singnals

n in Figs. 1°18 and 1-19.

flt)

AN

° to T-to T

Fig. 1°18. A Trapezoidal wavefrom.

Af (2]

4t

3k

2 =

| »t

o T T 3 T
4 2 4

Fig 1'19. A staircase waveform.
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1'7. Derive the Laplace transforms for the following periodic
waveforms :

flt)

)/ /\1

El)

I
2
Fig. 1-20. Rectified sine wave.

flt)

2 3 4 5 6

Fig. 1-21. Triangular wave.

0 1

1'8. Find out the Inverse Laplace transforms :

@ TG ® e
© 7255 @ 32
© TR O¥ceay
@) s,?;’,;ﬁ)z ) In (Sf+9)
1'9. Solve:

13Dy

subject to the initial condit‘ons
H0)=0, y'(0)=2
1'10. Solve for x and y:
2&+§=0
Et+x—y=4—Te%*
with x(0)=3, #(0)=—
W0)=2, 9(0)=4
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1'11. The switch in the circuit of Fig. 1°22 is closed at t=0.

Find v,; as a function of time.

300
L s ) , UF

Fig. 1'22, An electrical circuit.
1°12. In the electrical circuit of Fig. 1:22.
E=3500 sin 10 ¢
R;=R,=10Q
L=1H.
C=001F.

©®

Iz

Ry L 3w
T

C

L
411

Fig. 1°23. Electrical ciruit for above problem.

If the charge on the capacitor and the currents I; and I, are

zero at t=0; find the charge on the capacitor at any time ¢>0.



