
CChhaapptteerr 11

FFuunnddaammeennttaall
NNoottaattiioonnss

LLeeaarrnniinngg OOuuttccoommee
After reading this chapter, students will be able to

o explain the concept of problem solving
o explain the need for problem solving
o explain various approaches to problem solving
o explain the concept of structured programming
o explain the essential characteristics of an algorithm
o explain algorithm complexity
o explain the Big Oh notation
o basic terms related to data organization
o differentiate between data and information
o explain the meaning of data type and various forms of data types
o define data structure and its scope
o describe the criteria for the selection of appropriate data structure for

modeling the data of a problem at hand
o differentiate between data type and data structure
o describe various data structures
o describe various operations that can be performed on data structures

 Data Structures Using C1.2

1.1 INTRODUCTION TO PROBLEM SOLVING

The ability to solve problems is a most basic life skill and is essential to our day-to-day
lives, at home, at school, and at the workplace.

We solve problems every day without really thinking about how we solve them.

For example, it is raining and you need to go to the market.

What do you do?

There are a variety of possible solutions:

o You can take your umbrella and walk down to the market.
o If you don't want to get wet, you can drive, or take the bus.
o You might decide to call a friend for a ride, or you might decide to go to the market

another day.

The important point to note down here is that there is no right way to solve this problem
and different people may solve it differently.

Problem solving is the process of identifying a problem, developing possible solution
alternatives, and taking the appropriate course of action.

Why is problem solving important?

Good problem solving skills empower you not only in your personal life, but are very
critical in your professional life.

Chapter 1: Fundamental Notations 1.3

In the currently fast-changing global economy, employers often identify everyday
problem solving as crucial to the success of their organizations.

For employees, problem solving can be used to develop practical and creative solutions
and to show independence and initiative to employers.

1.2 APPROACHES TO PROBLEM SOLVING

There are two approaches to problem solving:

o Top-down approach
o Bottom-up approach

1.2.1 Top-Down Approach

The basic idea of the top-down approach is to divide a complex problem into smaller
sub-problems, this process is also called decomposition. The sub-problems are further
divided into sub-problems and this process is continued until each sub-problem is atomic
(can’t be divided further) and can be solved independently of other sub-problems.

The top-down way of solving a program is the step-by-step process of breaking down the
problem into chunks for organizing and solving the sole problem.

Figure 1.1: Top-down process

The structured programming languages, like the C programming language, uses the top-
down approach to solving a problem in which the flow of control is in the downward
direction.

Top
Module

Sub
Module 1

Sub
Module 2

Sub
Module 1.1

Sub
Module 1.2

Sub
Module 2.1

Sub
Module 2.2

 Data Structures Using C1.4

1.2.2 Bottom-Up Approach

As the name suggests, this method of solving a problem works exactly opposite to the
top-down approach.

In this approach, we start working from the most basic level of problem solving and
moving up in conjugation of several parts of the solution to achieve the required results.
The most fundamental units, modules, and sub-modules are designed and solved
individually, and these units are then integrated together to get a more concrete base for
problem-solving.

This bottom-up approach works in different phases or layers. Each module designed is
tested at a fundamental level which means unit testing is done before the integration of
the individual modules to get the solution.

Figure 1.2: Bottom-up process

The object oriented programming languages, like the C++ or Java programming
language, uses the bottom-up approach to solving a problem in which the flow of control
is in the upward direction.

1.2.3 Key Differences between Top-down and Bottom-up Approach

Table 1.1 summarizes the key differences between top-down approach and bottom-up
approach.

Top
Module

Sub
Module 1

Sub
Module 2

Sub
Module 1.1

Sub
Module 1.2

Sub
Module 2.1

Sub
Module 2.2

Chapter 1: Fundamental Notations 1.5

Table 1.1: Top-down V/S Bottom-up Approach
Top-down Approach Bottom-up Approach
Divides a problem into smaller units and
then solves it.

Starts by solving small modules and
adding them up together.

This approach may contain redundant
information. Redundancy can easily be eliminated.

A well-established communication is not
required.

Communication among steps is
mandatory.

The individual modules are thoroughly
analyzed.

Works on the concept of data-hiding
and encapsulation.

Structured programming languages such as
C uses a top-down approach.

OOP languages like C++ and Java etc.
uses a bottom-up mechanism.

Relation among modules is not always
required.

The modules must be related for better
communication and workflow.

Primarily used in code implementation, test
case generation, debugging, and module
documentation.

Finds use primarily in testing.

The top-down approach is the conventional approach in which the
decomposition of the higher-level system into a lower-level system takes
place respectively while the bottom-up approach starts by designing lower
abstraction modules and then integrating them into a higher-level system.

1.3 INTRODUCTION TO STRUCTURED PROGRAMMING

Structured programming is a technique devised to improve the reliability and clarity of
programs.

In structured programming, control of program flow is restricted to the following three
structures:

o sequence
o selection
o iteration

or to a structure derivable from a combination of these basic three structures.

Each of these structures is described below:

 Data Structures Using C1.6

1.3.1 Sequence Structure

In sequence structure, instructions are followed or executed one after another in
sequence in which they appear. The flow of logic is from top to bottom.

 :
 :
 instruction-1

 instruction-2

 instruction-3
 :
 :

Figure 1.3: Pseudocode and flowchart for sequence structure

1.3.2 Selection Structure

Selection structure is used for making a decision. It is used for selecting a proper path out of
the alternative paths in the program logic.

Selection structure may take the form as either If . . . Endif or If . . . Else . . . Endif or If . .
. Else If . . . Else . . . Endif structure.

The If . . . Endif structure says that if the expression is true, then execute statement else
(if the expression is false) skip over the statement.

Figure 1.4: Pseudocode and flowchart for If . . . Endif selection structure

instruction-1

instruction-2

instruction-3

statement

true

false

expression :
 :
If (expression) then
 statement
Endif
 :
 :

Chapter 1: Fundamental Notations 1.7

The If . . . Else. . . Endif structure says that if the expression is true then execute
statement-1, else (if the expression is false) execute statement-2.

Depending on the outcome of the expression being tested, if there are multiple
alternatives (execution paths), then If . . . Else If . . . Else . . . Endif structure is a very
handy structure.

 Figure 1.5: Pseudocode and flowchart for If . . . Else . . . Endif selection structure

Figure 1.6: Syntax of If . . . Else If . . . Else . . . Endif structure

The expressions are evaluated in order, and if any expression is true then the statement
block associated with it is executed, and this terminates the whole chain.

The last else part handles none of the above where none of the specified expressions are
satisfied.

If (expression-1) then
 statement-1
Else If (expression-2) then
 statement-2
Else If (expression-3) then
 statement-3


Else If (expression-n) then
 statement-n
Else
 statement-s
Endif

 :
 :
If (expression) then
 statement-1
Else
 statement-2
Endif
 :
 :

statement-2 statement-1

true false
expression

 Data Structures Using C1.8

Figure 1.7: Logic flow of If . . . Else If . . . Else . . . Endif structure

1.3.3 Iterative Structure

The iterative structure is used to produce loops when one or more instructions are to be
executed either a given number of times or till a certain condition is met.

The following two iterative structures are used:

o While . . . Endwhile
o For . . . Endfor

Figure 1.8: Pseudocode and flowchart for While . . . Endwhile iterative structure

statement-n

true

expression-1

. . .

false

true

expression-2 false

true

expression-3

true

expression-n

false


false

statement-sstatement-3 statement-2 statement-1

. . .

 :
 :
While (expression)
 statement
Endwhile
 :
 :

true

false

statement

expression

Chapter 1: Fundamental Notations 1.9

The While . . . Endwhile iterative structure will continue executing until the expression is
true. However, if statement or a certain group of statements are to be executed for a
known number of times, the For . . . Endfor iterative structure is a better choice.

Figure 1.9: Syntax for For . . . Endfor iterative structure

It uses an index variable i to control the loop. Here r is called the initial value, s is called
the final value, and t is called the step size, which may be positive (increment) or
negative (decrement).

Figure 1.10: Working of for statement for positive and negative step size

 :
 :
 For i = r to s in steps of t
 statement
 Endfor
 :
 :

true

statements

false
Is i ≤ s ?

set i = r

set i = r + t

 (a) When step size t is positive (b) When step size t is negative

true

statements

false
Is i ≥ s ?

set i = r

set i = r  t

 Data Structures Using C1.10

The C language, which was developed around 1972, was the first language
that meets all the requirements of structured programming. That is why the C
language is known as a structured language.

Even after around 50 years, the C language is able to survive that shows how
rich this language is. Even C language is always the first language taught to
most the students including engineering students.

1.4 INTRODUCTION TO ALGORITHMS

An algorithm is a finite sequence of steps defining the solution of a particular problem.

Characteristics of a good algorithm:

There are five important characteristics of an algorithm that should be considered while
designing an algorithm for a problem.

 Input: An algorithm must have zero or more but a finite number of inputs, which are
externally supplied. An example of zero input algorithms can be to find the sum of
the first 100 natural numbers. Here, the user doesn’t need to supply any external
input since it is already specified to find the sum of the first 100 natural numbers.
However, if the above problem is re-stated as finding the sum of first n natural
numbers, the user is required to provide single input denoting the value for n.

 Output: An algorithm must have at least one desirable outcome, i.e., output.

 Definiteness (No ambiguity): Each step must be clear and unambiguous, i.e., having
one and only one meaning.

 Finiteness: If we trace the steps of an algorithm, then for all cases, the algorithm
must terminate after a finite number of steps.

 Effectiveness: Each step must be sufficiently basic that it can in principle be carried
out by a person using only paper and pencil. In addition, not only should each step be
definite, but it must also be feasible.

An algorithm can be represented using a flowchart or pseudocode.

Since you are already familiar with flowcharts and pseudocode, we are not going to
discuss these.

All the algorithms developed in the text are represented using pseudocode.

Chapter 1: Fundamental Notations 1.11

1.4.1 Algorithm Complexity

There are basically two aspects of computer programming:

o One is the data organization, i.e., the data structures to represent the data of the
problem in hand, and is the subject of the present text.

o The other one involves choosing the appropriate algorithm to solve the problem at
hand. Data structures and algorithms are inseparably linked. Once one has
developed a firm base in programming techniques required to represent information,
it is logical to proceed to more theoretical study of ways to manipulate it.

As an algorithm is a sequence of steps to solve a problem, there may be more than one
algorithm to solve a problem. The choice of a particular algorithm depends on the
following considerations:

o Performance requirements, i.e., time complexity
o Memory requirements, i.e., space complexity

Performance requirements are usually more critical than memory requirements; hence, in
general, it is not necessary to worry about memory unless they grow faster than performance
requirements. Therefore, in general, the algorithms are analyzed only on the basis of
performance requirements, i.e., running-time efficiency.

1.4.1.1 Space Complexity

The space complexity of an algorithm, hence the program, is the amount of memory it needs
to run to completion. Some of the reasons for studying space complexity are:

o If the program is to run on a multi-user system, it may be required to specify the
amount of memory to be allocated to the program.

o We may be interested to know in advance whether sufficient memory is available to
run the program.

o There may be several possible solutions with different space requirements.
o Can be used to estimate the size of the largest problem that a program can solve.

The measure the space complexity, we compute the amount of memory needed for
instructions, constants, simple variables, and fixed size-structured variables.

1.4.1.2 Time Complexity
The time complexity of an algorithm is the amount of time it needs to run to completion.

 Data Structures Using C1.12

Some of the reasons for studying time complexity are:

o We may be interested to know in advance whether the program will provide a
satisfactory real-time response. For example, an interactive program, such as an editor,
must provide such a response. If it takes even a few seconds to move the cursor one
page up or down, it will not be acceptable to the user.

o There may be several possible solutions with different time requirements.

To measure the time complexity accurately, we can count all sorts of operations
performed in an algorithm. If we know the time for each one of the primitive operations
performed on a given computer, we can easily compute the time taken by an algorithm to
complete its execution. This time will vary from system to system.

Our intention is to estimate the execution time of an algorithm irrespective of the computer
on which it will be used. Hence, the more reasonable approach is to identify the key
operation and count such operations performed until the program completes its execution. A
key operation in our algorithm is an operation that takes maximum time among all possible
operations in the algorithm. The time complexity can now be expressed as a function of a
number of key operations performed.

1.4.1.3 Time-Space Trade-off

The best algorithm, hence the best program, to solve a given problem is one that requires
less space in memory and takes less time to complete its execution. However, in practice,
it is not always possible to achieve both of these objectives. As said earlier, there may be
more than one approach to solve the same problem. One such approach may require
more space but takes less time to complete its execution while the other approach
requires less space but takes more time to complete its execution. Thus, we may have to
sacrifice one at the cost of the other. That is why we can say that there exists a time-
space trade among algorithms.

Therefore, if space is our constraint, then we have to choose a program that requires less
space at the cost of more execution time. On the other hand, if time is our constraint such
as in real-time systems, we have to choose a program that takes less time to complete its
execution at the cost of more space.

In the analysis of algorithms, we are interested in the average case, the amount of time a
program might be expected to take on typical input data, and in the worst case, the
amount of time a program would take on the worst possible input configuration.

Chapter 1: Fundamental Notations 1.13

1.4.1.4 Expressing Complexity
Space and/or time complexity is usually expressed in the form of a function f(n), where n
is the input size for a given instance of the problem being solved.

Expressing space and/or time complexity as a function f(n) is important because of the
following reasons:

o We may be interested to predict the rate of growth of complexity as the size of the
problem increases.

o To compare the complexities of two or more algorithms solving the same problem
in order to find which is more efficient.

The most important notation used to express this function f(n) is Big Oh notation, which
provides the upper bound for the complexity.

Since in modern computers, memory is not a severe constraint, therefore,
our analysis of algorithms will be on the basis of time complexity.

1.4.2 Big Oh Notation

Big Oh is a characterization scheme that allows measuring the properties of algorithms
such as performance and/or memory requirements in a general fashion.

The algorithm complexity can be determined ignoring the implementation-dependent
factors. Eliminating constant factors in the analysis of the algorithms does this.
Basically, these are the constant factors that differ from computer to computer. Clearly,
the complexity function f(n) of an algorithm increases as n increases. Therefore, it is the
rate of increase of f(n) that we want to examine.

Since the purpose of Big Oh notation is to compare the algorithms in a general fashion,
the anomalies that appear for small input sizes are ignored.

Table 1.2: Rate of growth of some standard functions
f(n)

n
log2n n n2 n3 2n nlog2n

5 3 5 25 125 32 15
10 4 10 100 103 103 40

100 7 100 104 106 1030 700

1000 10 103 106 109 10300 104

 Data Structures Using C1.14

Observe that the logarithmic function log2n grows most slowly, whereas the exponential
function 2n grows most rapidly, and the polynomial function nk grows according to the
exponent k.

1.4.3 Categories of Algorithms
Based on Big Oh notation, the algorithms can be categorized as follows:

o Constant time (O(1)) algorithms
o Logarithmic time (O(logn)) algorithms
o Linear time (O(n)) algorithms
o Polynomial time (O(nk), for k > 1) algorithms
o Exponential time (O(kn), for k > 1) algorithms

Many algorithms are O(nlogn).

1.5 INTRODUCTION TO DATA STRUCTURES

We know that the main memory is volatile, i.e., it loses its contents when the system is
turned off, whereas the secondary memory is non-volatile, i.e., retains its contents unless
overwritten with new ones. We also know that the processor can only process the data
that is available in the main memory. Therefore, if the data to be processed is not
available in the main memory, then it has to be transferred from secondary memory to
the main memory. Similarly, if the new data entered in the main memory under program
control or intermediate and/or final results produced by the program are to be preserved
for future use, they are transferred from the main memory to the secondary memory.

In order to represent and store data in main memory and/or secondary memory, we need
an appropriate model. The different models used to organize data in the main memory
are collectively referred to as data structures, whereas the different models used to
organize data in the secondary memory are collectively referred to as file structures.

This section provides an overview of data structures and other related issues.

1.5.1 Basic Terminology of Data Organization
This section introduces the basic terminology related to data organization. Every student
must understand these terms.

Data  The term data simply refers to a value or set of values. These values may
represent some observations from an experiment, some figures collected during some
survey (such as census, exit polls, etc.), marks obtained by a student in an examination,
etc.

Chapter 1: Fundamental Notations 1.15

Data item  A data item refers to a single unit of values. For example, roll number,
name, date of birth, age, address, and marks in each subject are data items. Data items
that can be divided into sub-items are called group items whereas those that can not be
divided into sub-items are called elementary items. For example, an address is a group
item as it is usually divided into sub-items such as house number, street number,
locality, city, pin code, etc. Likewise, a date can be divided into the day, month and year;
a name can be divided into first name and surname. On the other hand, roll number,
marks, city, pin code, etc. are normally treated as elementary items.

Entity  An entity is something that has certain attributes or properties which may be
assigned values. The values assigned may be either numeric or non-numeric. For
example, a student is an entity. The possible attributes for a student can be roll number,
name, date of birth, sex, and class. The possible values for these attributes can be 1234,
Surbhi, 12/03/1993, F, 9.

Each attribute of an entity has a defined set of values, called domain. For example, the
domain for sex attribute consists of only M (for males) and F (for females) values.

Entity set  An entity set is a collection of similar entities. For example, students of a
class, employees of an organization, products manufactured by a manufacturing unit,
etc., forms an entity set.

Record  A record is a collection of related data items. For example, roll number, name,
date of birth, sex, and a class of a particular student such as 1234, Surbhi, 12/03/1993, F,
9. In fact, a record represents an entity.

File  A file is a collection of related records. For example, a file containing records of
all students in class, a file containing records of all employees of an organization. In fact,
a file represents an entity set.

Key  A key is a data item in a record that takes unique values and can be used to
distinguish a record from other records. It may happen that more than one data item has
unique values. In that case, there exist multiple keys. But at a time, we may be using only
one data item as a key, called the primary key, that too depending on the problem at
hand. The other key(s) are then known as alternate key(s).

In some cases, there is no field that has unique values. Then a combination of some
fields can be used to form a key. Such a key is known as a composite key.

In the worst case, if there is no possibility of forming a key from within the record, then
an extra data item can be added to the record that can be used as a key.

 Data Structures Using C1.16

Information  The terms data and information have been used to mean the same thing. But
actually, information is more than just data. In simple terms, information is processed data.
Data is just a collection of values (raw data), from which no conclusions can be drawn. Thus
data as such is not useful for decision making. When the data is processed, by applying
certain rules, newly generated data becomes information. This newly generated data
(information) conveys some meaning and hence can be used for decision-making. For more
clarity, consider the next example.

Example 1.1: An agricultural scientist wants to study the effect of a particular pesticide
on a new variety of wheat. He uses a different amount of pesticide for different fields of
wheat and notes down the yield of wheat in each field. Here, the amount of pesticide
used and the yield of wheat in each field represent data.

As such these values do not convey anything regarding the effect of pesticides on the
yield. Next, he applies the technique of correlation analysis to determine the correlation
coefficient whose value lies in the range 1 to +1. This coefficient, which is also a value,
conveys valuable information about the effect of pesticides on the yield of wheat. If the
correlation coefficient is greater than 0, it means an increased amount of pesticide has a
positive effect on the yield. If the correlation coefficient is less than 0, it means an
increased amount of pesticide has a negative effect on the yield. If the correlation
coefficient is equal to 0, it means an increased amount of pesticide has no effect on the
yield.

1.5.2 Concept of a Data Type
A data type is a collection of values and a set of operations that act on those values.
Whether our program is dealing with pre-defined data types or user-defined types, the
following two aspects must be considered:

o Set of values
o Set of operations

For example, consider an integer data type that consists of values {MININT, . . ., 3, 2,
1, 0, 1, 2, 3, . . ., MAXINT}, where MININT and MAXINT are the smallest and largest
integers that can be represented by an integer type on a particular computer.

The operations on integers include the arithmetic operations of addition (+), subtraction
(), multiplication (*), and division (/). There are also operations that test for
equality/inequality and the operation that assign an integer value to a variable.

Chapter 1: Fundamental Notations 1.17

1.5.2.1 Primitive Data Type

A primitive data type is a data type that is predefined. The predefined data type is also
known as built-in data type. These primitive data types may be different for different
programming languages. For example, C & C++ programming languages provide built-in
support for integers (int, long), reals (float, double), and characters (char).

1.5.2.2 User-Defined Data Type

A user-defined data type is one that a user defines as per his/her own requirement. The
programming languages provide support for creating user-defined data types. For various
C and C++ languages support user-defined data types by means of structures (struct),
unions (union), and enumerations (enum).

1.5.2.3 Abstract Data Type

An abstract data type is a data type that is organized in such a way that the specification
of the values and the specification of the operations on those values are separated from
the representation of the values and the implementation of the operations.

For example, consider list abstract data type. A list is basically a collection of elements
that can be ordered or unordered. The primitive operations on a list may include adding
new elements, deleting elements, determining the number of elements in the list, and
applying a particular process to each element in the list. Here, we are not concerned with
how a list is represented and how the above-mentioned operations are implemented. We
only need to know that it is a list whose elements are of a given type, and what can we do
with the list.

1.5.3 Concept of Variables and Constants

A constant is a quantity whose value remains fixed, i.e., whose value does not change
during the execution of the program. On the other hand, a variable is a quantity whose
value may change during the execution of the program.

1.5.3.1 Constants

A constant that is directly encoded in the instruction, is usually, referred to as literal.
Depending on the programming language, there can be other features to handle
constants.

 Data Structures Using C1.18

For example, in C language,

o a constant can be handled by assigning an identifier (name) with the literal, as
shown below:

 #define PI 3.143

The #define preprocessor directives associates identifier PI with the literal 3.143.

o a constant can be handled by using the const keyword, as shown below:

 const float PI = 3.143;

The declaration statement declares PI as a variable of type float initializes it with
value 3.143, and marks it as constant. Later on, the value of the variable PI cannot
be modified.

1.5.3.2 Variables

There is three types of variables in the context of C/C++ languages:

o Value Variables – also called ordinary or simple variables that are used to store a
value of a particular type.

o Pointer Variables – quite frequently referred to as pointers, are variables that are
used to store an address of some memory location. Pointer variables play a
significant role in the handling of complex data structures.

o Reference Variables – are aliases that are associated with some variable.

o C language supports value and pointer variables only.
o C++ support all of the above.
o References have the power of pointers and simplicity of value variables.

1.5.4 Data Structure Defined

A data structure is a logical model of a particular organization of data. The choice of a
particular data structure depends on the following consideration:

o It must be able to represent the inherent relationship of the data in the real world.
o It must be simple enough so that it can process efficiently as and when necessary.

Chapter 1: Fundamental Notations 1.19

The study of data structures includes:

o Logical description of the data structure.
o Implementation of the data structure.
o Quantitative analysis of the data structure. This analysis includes determining the

amount of memory needed to store and the time required to process it.

1.5.5 Description of Various Data Structures
The various data structures are divided into following categories:

o Linear data structures  a data structure whose elements form a sequence, and
every element in the structure has a unique predecessor and unique successor.
Examples of linear data structures are arrays, linked lists, stacks, and queues.

o Non-linear data structures  a data structure whose elements do not form a
sequence, there is no unique predecessor or unique successor.. Examples of non-
linear data structures are trees and graphs.

In the subsequent sections, we will have a look at these data structures.

1.5.5.1 Arrays
An array is a list of a finite number of elements of same data type, i.e., integers, reals or
strings etc. The individual elements of an array are accessed using an index or indices to
the array. Depending on the number of indices required to access an individual element
of an array, arrays can be classified as:

o One-dimensional array or linear array that requires only one index to access an
individual element of the array.

o Two-dimensional arrays that require two indices to access an individual element of
the array. In Mathematics, equivalent to a two-dimensional array, we have a matrix
and in business terminology, we have a table.

o The arrays for which we need two or more indices are generally known as multi-
dimensional arrays.

1.5.5.1.1 Linear Array

A linear array is a list of a finite number, say n, of homogeneous data elements such that

o The elements of the array are referenced by an index set consisting of n consecutive
integer numbers.

o The elements of the array are stored in consecutive memory locations.

 Data Structures Using C1.20

The number n of the elements is called the size of the linear array. In general, if lb is the
smallest index, called the lower bound, and ub is the largest index, called upper bound,
then size of the linear array is given by

size = ub  lb + 1

Note that the size of the array = ub if lb = 1. If not explicitly stated, generally we will
consider the index set consists of 1, 2, 3, . . ., n or ub.

Suppose a is the name of the linear array with n elements, then its elements can be denoted
as

a1, a2, a3, . . ., an in mathematical notation
a(1), a(2), a(3), . . ., a(n) in BASIC and FORTRAN languages
a[1], a[2], a[3], . . ., a[n] in PASCAL language
a[0], a[1], a[2], . . ., a[n1] in C/C++ and Java languages

The number k in a(k) or a[k] is called a subscript and a(k) or a[k] itself is called a
subscripted variable.

To be consistent with the C language notation, if an array has n elements for
a given dimension, its index set will be considered as 0, 1, 2, . . ., n1.

Example 1.2: Consider a linear array rn consisting of roll numbers of 5 students of a
particular class. This array can be pictured as shown in Figure 1.1.

 rn
1200
1201
1202
1203
1204

 Figure 1.11: One-dimensional array rn storing roll numbers

Here rn[0] denotes 1200, rn[1] denotes 1201 and so on.

1.5.5.1.2 Two-dimensional Array

A two-dimensional array is a list of a finite number, say m*n, of homogeneous data
elements such that

o The elements of the array are referenced by two index sets consisting of m and n
consecutive integer numbers.

0
1
2
3
4

Chapter 1: Fundamental Notations 1.21

o The elements of the array are stored in consecutive memory locations.

The size of the two-dimensional array is denoted by mn and pronounced as m by n.

Suppose b is the name of the two-dimensional array, then its element in ith row and jth
column can be denoted as

bij in mathematical notation
b(i, j) in BASIC and FORTRAN languages
b[i, j] in PASCAL language
b[i][j] in C/C++ and Java languages

Example 1.3: Suppose a manufacturing company has a chain of five stores and five
departments in each store. The weekly sales for the company can be stored using two-
dimensional array named sale. This array can be pictured as shown in the Figure 1.2.

 sale

2000 1200 1500 1000 1005
1500 1450 2010 1550 1250
1000 1250 1400 2000 3000
1250 1275 1575 3500 1750
5200 4000 1000 1200 1575

Figure 1.12: Two-dimensional array sale to storing sales

Here sale[0][0] denotes 2000, sale[0][1] denotes 1200, . . ., sale[4][4] denotes 1575.

In business terminology, a two-dimensional array is better known as a table, whereas in
mathematical terminology, it is known as a matrix.

1.5.5.2 Linked Lists
A linked list is a linear collection of data elements, called nodes. The linear order is
maintained by pointers. Each node is divided into two or more parts. A linked list can be
a linear linked list (one-way list) or a doubly linked list (two-way list).

1.5.5.2.1 Linear Linked List
In a linear linked list, each node is divided into two parts:

o first part contains the information about the element.
o second part, called the link field or nextpointer field, contains the address of the next

node in the list.

0 1 2 3 4
0
1
2
3
4

 Data Structures Using C1.22

In addition, another pointer variable, say head, is used that contains the address of the
first element of the list. The last element of the linear linked list has NULL value,
pictured as X, in the nextpointer field to mark the end of the list. A Linear linked list can
be traversed only in one direction.

Example 1.4: The following figure shows a linear linked list with 4 nodes.

Figure 1.13: Linear linked list with 4 nodes

1.5.5.2.2 Doubly Linked List
In the doubly linked list, each node is divided into three parts:

o first part contains the information of the element,
o second part, called previouspointer field, contains the address of the preceding

element in the list, and
o third part, called nextpointer field, contains the address of the succeeding element in

the in the list.

Example 1.5: The following figure shows a doubly linked list with 3 nodes.

Figure 1.14: Doubly linked list with 3 nodes

In addition, two pointer variables, say head and tail, are used that contains the address of
the first element and the last element of the doubly linked list, respectively. The first
element contains NULL value in the previouspointer to indicate there is no element

Next pointer field of second node
Information field of second node

 1200 1201 1202 1203 X

head

Next pointer field of first node
Information field of first node
Previous pointer field of first node

head tail

X 1200 1209 X1205

Chapter 1: Fundamental Notations 1.23

preceding it, and the last element of the linked list have NULL value in the nextpointer
field to indicate that there is no element succeeding it. Doubly linked lists can be
traversed in both directions.

1.5.5.2.3 Stack
A stack, also called a Last-In-First-Out (LIFO) system, is a linear list in which insertions
and deletions can take place only at one end, called the top.

Example 1.6: The following figure shows a stack with 6 elements.

12
 15
100

11
200

Figure 1.15: Stack with 5 elements

This structure operates in much the same way as stack of trays. If we want to place
another tray, it can be placed only at the top. Likewise, if we want to remove a tray from
stack of trays, it can only be removed from the top.

1.5.5.2.4 Queue
A queue, also called a First-In-First-Out (FIFO) or First-Come-First-Serve (FCFS)
system, is a linear list in which insertions can take place at one end of the list, called the
rear of the list, and deletions can take place only at other end, called the front of the list.
This structure operates in much the same way a line of people waiting at a bus stop or at
a cinema hall for their turn.

Example 1.7: The following figure shows a queue containing 5 elements.

12 20 44 55 50

Figure 1.16: Queue with 5 elements


rear


front

 top

 Data Structures Using C1.24

1.5.5.2.5 Tree
A tree is a data structure that represents a hierarchical relationship between various
elements. A binary tree is a tree that can have utmost two children. Formerly, a binary tree T
is defined as finite set of elements, called nodes, such that:

o Either T is empty, called the null tree or empty tree, or
o T contains a distinguished node R, called root of T, and remaining nodes form an

ordered pair of binary trees T1 and T2.

Here the binary trees T1 and T2 are known as left and right subtrees, respectively.

A binary search tree is a binary tree with additional property  the key value of any
node N is larger than its left child and smaller than its right child.

Example 1.8: The following figure shows a binary tree and a binary search tree.

 (a) Binary tree b) Binary search tree

Figure 1.17: Binary and binary search trees

1.5.5.2.6 Heap
A heap is a binary tree that satisfies the following properties:

o Shape property
o Order property

The shape property states that a heap is a complete or nearly complete binary tree; and
the order property states that

o Either the element at any node is smallest of all of its children, called min heap, or
o Element at any node is largest of all of its children, called max heap.

A heap is represented in memory by sequential representation, i.e., using linear arrays.
The important applications of a heap structure are to implement priority queues in
addition to being used for sorting an array, a technique popularly known as heapsort.

40

20

516

15 332780

40

50

65

25 45 7060

Chapter 1: Fundamental Notations 1.25

Example 1.9: The following figure shows a min heap and a max heap.

 (a) Min heap (b) Max heap

Figure 1.18: Min and Max heaps

1.5.5.2.7 Graph

A graph G is a ordered set (V, E), where V represent the set of elements, called nodes or
vertices in graph terminology, and E represents the edges between these elements. This
data structure is used to represent relationship between pairs of elements, which are not
necessarily hierarchical in nature. For example, graphs may be used to show the air map,
where the airline flies only between the cities connected by lines as shown in
Figure 1.19.

Example 1.10: The following figure shows the cities for which there is a direct flight.

Figure 1.19: Airline Flights

In the above graph

V = { Srinagar, Amritsar, Delhi, Mumbai, Chennai, Kolkata }
E = { (Srinagar, Amritsar), (Amritsar, Delhi), (Delhi, Mumbai),

(Delhi, Chennai),(Delhi, Kolkata),(Chennai, Kolkata),(Mumbai, Chennai) }

Amritsar

Srinagar

Delhi

Mumbai

Kolkata

Chennai

Figure 1.10: Airline Flights

4

20

2530

35 332745

4

50

4045

35 25 3230

 Data Structures Using C1.26

1.5.6 Common Operations on Data Structures

Various operations that can be performed on different data structures are enumerated
below:

o Traversal  Accessing each element exactly once in order to process it. This
operation is called visiting the element.

o Searching  Finding the location of a given element.
o Insertion  Adding a new element to the structure.
o Deletion  Removing a existing element from the structure.
o Sorting  Arranging the elements in some logical order. This logical order may be

ascending or descending in case of numeric key. In case of alphanumeric key, it can
be dictionary order.

o Merging  Combining the elements of two similar sorted structures into a single
structure.

SUMMARY
In this chapter, we have learnt about the

o concept of problem solving
o need of problem solving
o basic approaches to problem solving – Top-down and Bottom-up
o concept of structured programming
o various control structures adhering to the requirement of structured programming
o notion of an algorithm
o desirable characteristics of a good algorithms
o algorithm complexity and various components – space complexity and time

complexity
o big Oh notation
o various categories of algorithms
o concept of constants and variables
o type of variables
o basic terms related to data organization.
o concept of data type.
o primitive, user-defined, and abstract data types.
o concept of data structure.
o factors that influence the choice of a particular data structure for a given problem.
o brief description of various data structures with suitable examples.
o type of operations that can be performed on these data structures.

Chapter 1: Fundamental Notations 1.27

REVIEW EXERCISE
1. What is problem solving? What is the need of problems solving?
2. Name the approaches used for problem solving.
3. Describe the top-down approach of problem solving.
4. Describe the bottom-down approach of problem solving.
5. Differentiate between top-down approach and bottom-up approach to problem

solving.
6. What do you mean by structured programming?
7. Describe the various control structures that meet the requirement of structured

programming.
8. What is an algorithm? Describe the essential characteristics of an algorithm.
9. What is algorithm complexity?
10. How is algorithm complexity expressed?
11. What is Big Oh notation?
12. What do you understand about the time-space tradeoff?
13. Explain the terms: data, elementary item, entity, primary key, domain, attribute and

information. Also give example in support of your answer.
14. What is the difference between data and information?
15. What is a data type? Differentiate between primitive data type and abstract data

type.
16. What is a data structure? What are the factors that influence the choice of a

particular data structure?
17. What are the areas of study under the domain of data structures?
18. How non-linear structures are different from linear data structures?
19. Describe, in brief, the various data structures.
20. Describe the various operations that, in general, can be performed on different data

structures.

  

