
CChhaapptteerr 11

EEsssseennttiiaallss ooff
CC LLaanngguuaaggee

1.1 INTRODUCTION

It is important to note that for the learning of data structures and their implementation

effectively and efficiently; in-depth knowledge of C language is essential. In particular, the

deep understanding of the pointers and their usage is essential.

This chapter gives an overview of the features of C language that are essential for the study of

data structures.

1.2 ENUMERATED DATA TYPE

Variables of enumerated data type enhance the readability of the program. For example, a

payroll program deals with various categories of employees, such as clerks, stenos, assistants,

supervisor, deputy managers and managers. If we decide that code 0 is used for clerks, 1 for

stenos, and so on. Program will not be readable, and later on if the program is to be modified,

the task may be difficult if the program is not properly documented. However, if we use names

of these categories, the program will be more readable.

In C language, you can define your own data type and specify what values a variable of this

type can take. The data type defined this way is known as enumerated (enum) data type.

 Data Structures & Algorithms Using C2

For example, since C language does not support Boolean type data (with false and true), you

can create your own as

enum boolean { false, true };

Here word boolean is called tag name for the user-defined data type. Then we can declare

variables of this data type as follows

enum boolean flag;

Then we can assign value false or true to variable flag, and also we can compare the value of

flag with these values.

Internally, these values are represented as 2-byte integer numbers. By default, these numbers

start from 0. Thus, the first value in the list is represented by number 0, the second value by

number 1, and so on. However, we can override these default numbers by specifying the

starting number along with the first value of the list.

Variables of enumerated type can also be used in arithmetic and relational expressions.

However, the input and output of the variables of enumerated data type is not possible.

1.3 THE void DATA TYPE

The void data type, also known as empty data type, is useful in many situations. These are

enumerated below:

1. When used as a function return type, void means that the function does not return a value.

For example, we may write as

void functionName(int x, int y)
{
 /* body of function */
}

 to indicate that the functionName() does not return a value.

2. When used in the function heading in place of argument list, void means that the function

does not take any argument. For example, we may write as

int functionName(void)
{

}

 to indicate that the functionName() does not take any argument.

3. Used to declare generic pointers. The void pointer cannot be directly de-referenced without

typecasting. This is because the compiler cannot determine the size of the value the pointer

points to.

 Chapter 1: Essentials of C Language 3

The following segment illustrates this.

void main()
{
 void *ptr;
 int x = 5;
 float y = 20.5;
 ptr = &x;
 printf("\nValue pointed to generic pointer now is %d",
 (int)ptr);
 ptr = &y;
 printf("\nValue pointed to generic pointer now is %f",
 (float)ptr);
}

1.4 TYPE DEFINITION

A type definition, typedef, gives a name to a data type by creating a new type that can be used

anywhere a type is permitted.

The syntax for type definition is

typedef dataType IDENTIFIER;

where dataType is either built-in data type or user-defined data type, and IDENTIFIER, usually

in uppercase, is the new and convenient name for the dataType.

The typedef keyword tells the compiler to recognize the IDENTIFIER as synonymous of

dataType.

For example, the statement

typedef enum { false, true } BOOLEAN;

Now to declare variable flag type BOOLEAN, we write

BOOLEAN flag;

1.5 CONTROL STATEMENTS

The C Language provides facilities for controlling the order of execution of the statements,

which are referred to as flow control statements. The various flow control statements are

clubbed in the following categories:

1. Decision Making Statements  In this category, C language provides the following

statements

� if statement

� if − else statement

� else if construct

� switch statement

 Data Structures & Algorithms Using C4

2. Looping Statements  In this category, C language provides the following statements

� for statement

� while statement

� do − while statement

3. Jumping Statements  In this category, C language provides the following statements

� break statement

� continue statement

� goto statement

1.5.1 Decision Making Statements

These statements allow the execution of selective statements based on certain decision criteria.

1.5.1.1 The if Statement

The syntax of if statement is

Figure 1.1: Logic flow control and code of if statement

The expression may represent a relation expression, a logical expression, a numeric variable or

a numeric constant. The specified expression may be a simple expression or compound

expression.

The expression in C language evaluates to a zero or non-zero value. If expression evaluates to a

non-zero value, then the statements in the statement-block are executed; otherwise they are

bypassed.

 if (expression)

 {

 Statement

 }
Statement

true

false

expression

 (a) Logic Flow Control (b) Code

 of if Statement of if Statement

 Chapter 1: Essentials of C Language 5

1.5.1.2 The if −−−− else Statement

The if statement executes a single statement (simple or compound), when the specified

expression evaluates to a non-zero value. It does nothing when it evaluates to a zero value. Is

there any way whereby a one statement is executed if the expression evaluates to a non-zero

value and another statement if the expression evaluates to a zero value? The answer is yes.

This objective is achieved by using if − else statement whose syntax is

Figure 1.2: Logic flow control and code of if-else statement

If expression evaluates to a non-zero value, the statement-1 is executed and the statement-2 is

bypassed. However, if the expression evaluates to a zero value, the statement-1 is bypassed and

the statement-2 is executed.

1.5.1.3 The else −−−− if Construct

If the nesting of if or if-else statements gets deep

and deep, the program becomes more and more

difficult to read. In that case else-if construct is

handier. But it cannot be used as standalone

statement, i.e., it can only be used in

conjunction with opening if statement.

The syntax of else-if construct is given in

Figure 1.3.

(a) Logic Flow Control (b) Code

 of if - else Statement of if - else Statement

 if (expression)

 {

 statement-1

 }

 else

 {

 statement-2

 }

statement-2 statement-1

truefalse
expression

Figure 1.3: Code of else if Construct

if (expression-1)
 statement-1
else if (expression-2)
 statement-2
else if (expression-3)
 statement-3
 :

 :
else if (expression-n)

 statement-n
else

 statement-s

 Data Structures & Algorithms Using C6

Figure 1.4: Logic Flow Control of else if Construct

The expressions are evaluated in order, and if any expression is true then the statement block

associated with it is executed, and this terminates the whole chain. The last else part handles

none of the above or default case where none of the specified expressions are satisfied. This

sequence of if statements is the most general way of writing a multi-way decision.

1.5.1.4 The switch Statement

The switch statement provides an alternative to

else if construct. The switch statement has more

flexibility and a clearer format than else if

construct. The syntax of switch statement is

If expression takes any value from val-1, val-2,

val-3, ..., val-n, the control is transferred to that

appropriate case. In each case, the statements are

executed and then the break statement transfers

the control out of switch statement. If no break

statement is used following a case, except the

last one in the absence of default keyword, the

control will fall through to the next case.

statement-n

true

expression-1

. . .

false

true

expression-2
false

true

expression-3

true

expression-n

false

⋱

false

statement-sstatement-3statement-2statement-1

. . .

switch (expression)
{
 case val-1 : statement-1
 break;
 case val-2 : statement-2
 break;
 case val-3 : statement-3
 break;
 :

 case val-n : tatement-n
 break;

 default : statement-d
}

Figure 1.5: Code of switch Statement

 Chapter 1: Essentials of C Language 7

If the value of the expression does not match any of the case values, control goes to the default

keyword, which is usually at the end of the switch statement. The use of the default keyword

can be of a great convenience. If there is no default keyword, the whole switch statement

simply terminates when there is no match.

Figure 1.6: Logic Flow Control of switch Statement

However, if you want that a same statement is to executed for more than one value of the

expression, then we have to code these cases one after the other, and then the specified

statement as shown below:

switch (expression)
{
 :
 case val-4 :
 case val-5 :
 case val-6 : statement-block
 break;
 :
}

The statement-block will be executed whenever the value of the expression is val-4, val-5, or

val-6.

The following are some more points about switch statement:

� The expression of switch statement must be of type integer or character type.

� The default case need not be used as the last case. It can be placed at any place.

 = val-1
expression

. . . statement-dstatement-3statement-2statement-1

. . .

statement-n

 = val-2 = val-3

 = val-n

default

 Data Structures & Algorithms Using C8

� The case values must be integer constants or character constants. These values can also be

constant expressions as these are evaluated at compilation time. For example, if expression

5 + 7 appears as case value, it will be evaluated to value 12 at compilation. Similarly, if

expression 5 < 7 appears as the case value, it will evaluated to 1 by compiler at compilation

time.

� The case statements can only be used within the scope of switch statement otherwise the

compiler will display en error message similar to "Case outside of switch statement in function

…".

� The case values need not be in any specific order.

1.5.2 Looping Statements

These statements allow the execution of some set of statements repeatedly till either for a

known number of times or till certain conditions are met. In this section, we will see their

working and will illustrate their use with well-designed examples.

1.5.2.1 The while Statement

The while statement is suited for problems where it is not known in advance that how many

times a statement or a statement-block will be executed.

Figure 1.7: Logic flow control and code of while statement

where expression is a constant, a variable or an expression. The statement is executed

repeatedly till the exp evaluates to a non-zero value. Whenever exp evaluates to a zero value,

the execution of while statement will terminate and control will pass to a statement

immediately following it.

 (a) Logic Flow Control (b) Code

 of while Statement of while Statement

 while (expression)

 {

 Statement

 }

true

Statement

false
expression

 Chapter 1: Essentials of C Language 9

Though in C language there are certain exceptions, but in general, the following points must be

kept in mind while using the while statement:

� There must be a statement prior to while statement that initializes the exp.

� In the statement-block, there must be a statement that modifies the expression.

1.5.2.2 The for Statement
The for statement is suited for problems where the number of times a statement or statement-

block will be executed is known in advance.

Figure 1.8: Logic flow control and code of for statement

where init is an expression to initialize the counter, the test is an expression to see when to stop

iterating, and change is an expression to change the counter for each pass of the loop. The init

and change parts can have more than one statement separated by a comma.

The change for the counter can be positive as well as negative, as illustrated below:

 : :
 for (k = r; k <= s; k += t) for (k = r; k >= s; k -= t)
 { {
 // statements // statements
 } }
 : :

 (a) Logic Flow Control (b) Code

 of for Statement of for Statement

true

statements

false
test

init

change

for (init; test; change)

{

 statements

}

 Data Structures & Algorithms Using C10

Figure 1.9: Working of for statement for positive and negative step size

1.5.2.3 The do - while Statement
The do-while statement, like while statement, is also suited for problems where it is not known

in advance that how many times a statement will be executed.

 (a) When step size t is positive (b) When step size t is negative

true

statements

false
Is i ≤ s ?

set i = r

set i = r + t

true

statements

false
Is i ≥ s ?

set i = r

set i = r - t

true

statements

false

expression

 do

 {

 statements

 }

 while (expression);

Figure 1.10: Logic flow control and code of do-while statement

 (a) Logic Flow Control (b) Code of

 of do-while Statement do-while Statement

 Chapter 1: Essentials of C Language 11

where exp is a constant, a variable or an expression. The statement-block is executed repeatedly

till the exp evaluates to a non-zero value.

1.5.2.4 Nested while, for and do-while Statements

Just as if statements can be nested, these statements can also be nested. The inner loop is

executed from the beginning for each iteration of the outer loop. The following sections of

code show the nesting of looping statements within their own types.

for(i=0;i<m;i++)
{
 :
 for(j=0;j<n;j++)
 {
 :

 }
}

i=0;
while(i<m)
{
 :
 j=0;
 while(j<n)
 {
 :

 j++;
 }
 i++;
}

i=0;
do
{
 :
 j=0;
 do
 {
 :

 j++;
 } while(j<n);
 i++;
} while(i<m);

In general, it is possible to nest while and do-while statements inside for statement, for

statement inside the while and do-while statements, i.e., all sort of nesting combinations are

permitted.

1.5.3 Jumping Statements

These statements transfer the control from one part of the program to another part. In this

section, we will see their working.

1.5.3.1 The break Statement
The break statement is always used inside the body of the switch statement, and looping

statements.

In switch statement, it is used as

the last statement of the statement

block of every case except the last

one. When executed, it transfers

the control out of switch statement

and the execution of the program

continues from the statement

following switch statement.

switch (expression)
{
 case val-1 : statement-block-1
 break;
 case val-2 : statement-block-2
 break;
 case val-3 : statement-block-3
 break;

 :
 :

 case val-n : statement-block-n
 break;
 default :
 statement-block-default
}

 Data Structures & Algorithms Using C12

In for, while and do-while statements, it is always used in conjunction with if statement. Note

that it is never used with if statement if it is not part of the body of the looping statement. When

executed, it transfers the control out of looping statement and the execution of the program

continues from the statement following looping statement.

for(i=0;i<m;i++)
{
 :
 if (condition)
 break;
 :
}

i=0;
while(i<m)
{
 :
 if (condition)
 break;
 :
}

i=0;
do
{
 :
 if (condition)
 break;
 :
} while(i<m);

In simple terms, we can say that the break when executed terminates the execution of the loop.

Consider the following code segment

 i = 0;

 while (i <= 100) {

 scanf("%d", &k);

 if (k == 0)

 break;

 m = i / k;

 }

The execution of the while loop will be terminated as soon as the user enters value 0 for

variable k as input or the value of variable i exceeds 100, which ever happens earlier.

1.5.3.2 The continue Statement

The continue statement is always used inside the body of the looping statements. In looping

statements, sometimes a situation may arise where we want that from a given statement

onward, the rest of the statement up to the last statement of the loop are to be bypassed. This

task is accomplished by using continue statement.

The continue statement transfers the control to the beginning of the next iteration of the loop

thus bypassing the statements which are not yet executed. But note that the continue statement

is always used in conjunction with the if statement.

for(i=0;i<m;i++)
{
 :
 if (condition)
 continue;
 :
}

while(i<m)
{
 :
 if (condition)
 continue;
 :
}

do
{
 :
 if (condition)
 continue;
 :
} while(i<m);

 Chapter 1: Essentials of C Language 13

In simple terms, we can say that the continue statement when executed terminates the current

iteration of the loop.

Consider the following segment

 i = 0;
 while (i <= 100)
 {

 if (i % 10 == 0)
 continue;

 }

The use of continue statement in conjunction with if statement skips the rest of the statements

of the while loop for values of i divisible by 10.

1.5.3.3 The goto Statement
Though in C language, every program can be written without the use of goto statement, still a

situation may arise where we are forced to use goto statement. For example, to transfer a

control from deeply nested statements, such as jumping out of two or more loops at once.

Please note a break statement can not be used directly since it exits only from the innermost

loop.

The goto statement can transfer the control to any part of the program. The target destination of

the goto statement is marked by a label. The syntax for using goto statement is

// some statements
 goto label;

 // some more statements

label:
 // still more statements

// some statements
label:

 // some more statements

 goto label;

 // still more statements

Though in C, every program can be written without the use of goto statement, still a situation

may arise where we are forced to use goto statement. For example, to transfer a control from

deeply nested statements, such as jumping out of two or more loops at once. Please note a

break statement cannot be used directly since it exits only from the innermost loop.

1.6 MEMORY USE IN C

Let us understand what is going on in computer’s main memory when running a C program.

When a C program runs, the allocated memory to the program by the operating system is

divided into several different sections/areas.

These sections/areas are  code area, data area, stack area, and heap.

 Data Structures & Algorithms Using C14

Code Area  This is the first area, named _TEXT, where the program resides. This area,

usually, is never changed when a program runs.

Data Area  This area is the second one and is further divided into three sections 

� First is named DATA that contains un-initialized global data, initialized global data, and

initialized static data.

� Second is named CONST that contains read only data, i.e., constants stored in variables.

� Third is named Block Started Segment (BSS) that contains un-initialized static data.

Stack Area  This is the area that is set up at the top of available memory and grows towards

lower memory as it is filled.

STACK

HEAP

BSS

CONST

DATA

_TEXT

Figure 1.11: Use of Memory in a C Program

Heap  This area is located on the top of code and data area. It grows just like stack except it

grows towards high memory rather than towards lower memory.

Memory allocated with malloc(),

calloc(), and realloc() functions

Low Memory

High Memory

.

.

.

Initialized and un-initialized

local variables

Un-initialized static variables

Read Only variables

Initialized & un-initialized global

variables and initialized static

variables

Program Code

 Chapter 1: Essentials of C Language 15

The C language runtime system automatically maintains stack for us, but the allocation of

memory from heap and its use is programmer’s responsibility. To allocate memory from heap,

library functions malloc(), calloc(), and realloc() functions are used. Once the memory

allocated to the program from heap is not required further in the program, it is returned to the

heap using library function free().

1.7 POINTERS

Pointers are one of the most important features of C language. Pointers, by most people, are

regarded as one of the most difficult topics in C. Let me assure you that it is more a myth than a

fact. I would prefer to say that pointers are one of the most delicate aspects of C language, and

you know delicate things need very careful handling. Therefore, pointers need very careful

handling.

There are many reasons for using pointers. Some of them are enumerated below:

� A pointer allows a function or a program to access a variable (better we say memory

location) outside the preview of function or a program. In fact, using a pointer, your

program can access any memory location in the computer’s memory.

� Since using return statement, a function can only pass back a single value to the calling

function, pointers allows a function to pass back more than one value by writing them into

memory locations that are accessible to the calling function.

� Use of pointer increases makes the program execution faster.

� Using pointers, arrays and structures can be handled in more efficient way.

� Without pointers, it will be impossible to create complex data structures, such as linked lists,

trees and graphs.

� To communicate with operating system about memory. For example, the function malloc()

returns the location of free memory block by using a pointer and the function free() returns

the memory block pointed to by a pointer to the operating system.

In totality, we can say that the real power of C language lies in the judicious use of pointers.

Therefore, every reader of C language must learn and master the art of using pointers.

1.7.1 Understanding Pointers

When you give a command to run a program, the operating system first finds a free block of

requisite size from computer (main) memory, and then loads the program into that block. Even

in that block, usually, the program’s code is loaded in one part and the program’s data in

another part of the block. Each of the data operand is stored in a cell and the system associates

each of the variables with these addresses. This is illustrated in Figure 1.12.

 Data Structures & Algorithms Using C16

Figure 1.12: Representation of a Variable in Memory

In order to access the data operand either we use either variable name or we can use address of

the memory cell. Since these addresses are simply positive integer numbers, they can also be

assigned to some variables and stored in memory, like any other variable. Such variables that

hold addresses are known as pointers. A pointer is, therefore, nothing but a variable that

contains address of another variable in memory.

Since pointer is a variable, its value is also stored in memory in another address. Suppose we

assign the address of variable code to a variable ptr. The link between the variables ptr and

code can be visualized as shown in Figure 1.13.

Figure 1.13: Pointer as a Variable

Since the value of the variable ptr is the address of the variable code, we can access the value

of variable code by using the value of variable ptr and therefore, we say that the variable ptr

points to the variable code, and hence ptr gets the name pointer.

1.7.2 Accessing Address of a Variable

The actual address of a variable is a system dependent. During compilation and linking,

addresses are assumed to be relative to some base address, usually 0. When the operating

system loads the program in a free block, all the address are transformed with relative to

2125

code

1500

Value/Operand

Variable

Address

2125

Variable

code

ptr

Value Address

 1500

 2000
1500

 Chapter 1: Essentials of C Language 17

address of the first memory location of the free block. Hence, we do not know the address of a

variable. Therefore, a question arises  how can we determine the address of a variable? This

is done with the help of address of operator (&).

Consider the following statement

 ptr = &code;

It will assign the number 1500 (address of variable code) to the variable ptr.

1.7.3 Declaring and Initializing Pointers

Like other variables, the pointer variables are to be declared first in the declaration block to tell

the compiler that to which kind of values these variables will be pointing.

The syntax for declaring pointer variable is

 type *ptrName;

where type is a pre-defined or user-defined data types and indicates that the pointer will point

to the variables of that specific data type, and character ‘*’ indicates that variable is a pointer

variable.

For example, the statement

 int *intPtr;

declares a pointer variable intPtr that can point to an integer type variable.

The pointer variable(s) declaration can also be combined with the declaration of other variables

provided they are of same type. For example, the statement

 int x, *ptrX;

declares an integer variable x and a pointer variable ptrX.

Once a pointer has been declared, it must be initialized prior to its use. It is important to note

here that like other variables, a pointer variable will take a garbage value, which can be an

address of any storage location. Therefore, if not properly initialized, a pointer may point to any

location in memory including those locations where operating system is running, and your

system may hang-up, i.e., stop responding. Such un-initialized pointers are sometimes referred

to as dangling pointers.

1.7.4 Accessing a Variable through a Pointer
Once a pointer has been assigned the address of a variable, the question remains as how to

access the value of the variable using the pointer. This is done by using operator * (asterisk),

usually known as the indirection or dereferencing operator.

 Data Structures & Algorithms Using C18

Consider the following statements

int *ptrX, x = 10, y;
 :
ptr_x = &x;
 :
y = *ptrX;
printf("Value of variable x = %d\n", x);
printf("Value of variable pointed to by ptrX = %d\n", *ptrX);
printf("Address of variable x = %u\n", ptrX);
printf("Value of variable y = %d\n", y);
 :

The declaration statement tells the compiler that ptrX is pointer variable that will point to an

integer value, x is an integer variable and it also initializes the variable x with value 10, and y is

another integer variable.

And suppose that during the execution of the above segment, a memory location with address

1098 is set aside for variable x. The output of the above segment will look like:

 Value of variable x = 10
 Value of variable pointed to by ptrX = 10
 Address of variable x = 1098
 Value of variable y = 10

Note that writing the statements

 ptrX = &x;
 y = *ptrX

is equivalent to writing

 y = *&x;

or for more clarity as

 y = *(&x);

which in turn is equivalent to writing

 y = x;

It is important to note that assignment of pointers and addresses is always done symbolically,

by means of symbolic names. You cannot access the value stored at address 1098 by writing

*1098. It will not work.

1.7.5 Pointer to a Pointer

As mentioned, a pointer is variable that holds the address of another variable. This concept can

be further extended. We can have a variable that hold an address of a variable that in turn holds

an address of another variable. This type of variable is known as pointer to a pointer. The

underlying concept is known as double indirection. This concept can be further extended to

 Chapter 1: Essentials of C Language 19

triple level, fourth level, and so on. The use of pointer to a pointer usually occurs where calling

function passes pointer argument by reference and the called function can modify the contents

of a pointer variable.

A pointer to a pointer will be declared as

 int **ptr;

The value pointed to by a pointer to another pointer will be accessed as

 **ptr;

1.7.6 Pointer to a Function

A pointer to a function is declared as

ReturnType (*fname)(list of arguments);

However, if the declaration is

ReturnType *fname(list of arguments);

The compiler will consider it as a prototype of a function that returns a pointer.

1.8 MEMORY ALLOCATION

It is important to note that anything that needs to be executed (programs) or processed (data)

must be loaded into memory before it can be executed or processed. Therefore, for every

program to be executed or data to be processed, some memory must be allocated for them. The

memory allocation can be done in two ways – statically and dynamically. Let us look at both

the ways.

1.8.1 Static Memory Allocation

When you give a command to run your program, the operating system allocates a block of

memory for your program, loads it from the secondary storage (Floppy disk, hard disk, CD or

DVD, etc.) into that block and then initiates its execution. When the program finishes its

execution, the memory occupied by the program is automatically released. It means that the

memory requirements are determined prior to execution of your program, and thereafter your

program neither can acquire more memory nor can release the free memory, if not required.

The above situations depicts a situation where the amount of memory required is known

before hand, and the compiler then can determine the memory requirements for the data as well

as the instructions. In such a situation, memory allocation is known as static memory

allocation.

 Data Structures & Algorithms Using C20

1.8.2 Dynamic Memory Allocation

Further, it is important to note that the memory requirements for the instructions are always

fixed. However, there may be situation when the exact memory requirements for the data may

not be known in advance or the data requirements may vary from one program execution to

another program execution, i.e., memory requirements for the data are dynamic.

Therefore, when the amount of memory is not known before hand for a particular data item(s),

then it is allocated at the execution time, i.e., when the program is running. In such a situation,

memory allocation is known as dynamic memory allocation.

1.8.3 Heap/Free Store

As mentioned earlier, every program is provided with a pool of unallocated memory that it can

utilize during execution. This pool of unallocated memory is known as heap or free store.

Therefore, whenever the memory of requisite size (amount) is required by the program, it is

taken from the free store, and when the previously allocated memory is not required further, it

is returned back to the free store.

� The memory requirements for the instructions (program code) are always fixed.

1.9 DYNAMIC MEMORY MANAGEMENT

As mentioned earlier, when you give a command to run your program, the operating system

allocates a block of memory for your program, loads it from the disk into that block and then

initiates its execution. When the program finishes its execution, the memory occupied by the

program is automatically released.

It means that the memory requirements are determined prior to execution of your program.

Thereafter, your program can neither acquire more memory nor can release the free memory, if

not required. However, C language provides a set of library functions (listed in Table 1.1),

called dynamic memory management functions, to allocate and de-allocate memory at

execution time, i.e., dynamically.

Table 1.1: Memory Management Functions

Function Name Description

malloc Allocates memory from heap.

calloc Allocates memory from heap and initializes the allocated memory to

zeros.

realloc Readjusts the existing block and copies the contents to the new location.

free Deallocates a block allocated by malloc, calloc and realloc functions.

coreleft Returns a measure of unused memory.

 Chapter 1: Essentials of C Language 21

By allocation, we mean that your program can obtain as much memory as required by your

program even during execution of your program. By de-allocation, we mean that the memory

acquired dynamically can be released at any time during your program execution. It is

important to note that memory allocated dynamically, must be de-allocated before your

program finishes its execution. Otherwise, even if your program terminates, memory allocated

dynamically is never released automatically, and from operating system point of view that

memory is still in use. Therefore, if you run the same program many times, many users are

using your program concurrently, the operating system may run out of memory. Each of these

memory management functions is described below.

1.9.1 Dynamic Memory Allocation with malloc() Function

The malloc() function dynamically allocates memory from heap. The prototype for malloc()

function is

 void *malloc(size_t size);

It takes one argument that specifies the size of the block in bytes. The function returns a pointer

to the allocated memory on success or a null pointer (0) in case of failure.

1.9.2 Dynamic Memory Allocation with calloc() Function

The calloc() function dynamically allocates memory and automatically initializes the memory

to zeroes. The prototype for calloc() function is

 void *calloc(size_t nitems, size_t size);

It takes two arguments. The first argument is the number of elements and the second argument

is the size of each element. The function returns a pointer to the allocated memory on success

or a null pointer (0) in case of failure.

1.9.3 Changing Size of Dynamically Allocated Memory with realloc() Function

The realloc() function changes the size of previously dynamically allocated memory with

malloc(), calloc() or realloc() functions. The original contents held in the previously allocated

memory are not changed provided the memory allocated is larger than the amount of memory

previously allocated otherwise the contents are unchanged upto the size of new object.

The prototype for realloc() function is

 void *realloc(void *block, size_t size);

It takes two arguments. The first argument is the pointer to the original object and the second

argument is the new size of the object.

 Data Structures & Algorithms Using C22

Depending on the values of these arguments, following things can happen

� If the pointer to the original object is 0 (NULL), the realloc() function works identical to

malloc() function.

� If size of the new object is 0 and pointer is not 0, the memory of the object is freed.

� If the pointer is not 0 and the size of the new object is greater than zero, realloc() function

tries to allocate new block of memory. If new space cannot be allocated, the object pointed

to by the pointer is unchanged.

The realloc() function returns either a pointer to the reallocated block or a null pointer.

1.9.4 Deallocating Memory with free() Function

The free() function deallocates a memory block previously allocated with malloc(), calloc() or

realloc() functions. The prototype for free() function is

void free(void *block);

It takes one argument that specifies the pointer to the allocated block.

But it is important to note that only the allocated block is deallocated, the pointer variable is

not deleted.

Once the block is freed, an attempt to dereference a pointer variable yields undefined results.

Such a pointer variable is called a dangling pointer. Therefore, it is recommended that after

freeing the allocated block, set the pointer variable to NULL explicitly as shown in the next

program. Dereferencing a null pointer is always safe.

1.10 DEBUGGING POINTERS

Pointers can be the source of mysterious and catastrophic program bugs. Common bugs related

to pointers and memory management is dangling pointers, memory leaks, and allocation

failures. Each of these problems is discussed below. Every student must understand these

carefully.

1.10.1 Problem of Dangling Pointers

The most common problem with pointers is that the programmer fails to initialize a pointer

with a valid address. Such an initialized pointer, referred to as dangling pointer, can end up

pointing anywhere in memory that may include the program code itself or to the code of the

operating system. If the programmer assign a value to such pointer, the value will overwrite the

program or operating system instructions, and the computer program may show undesirable

behaviour or may even crash, i.e., stop responding. When the system stop responding, we say

the system has hanged up and the only option left is to reboot the system. Therefore, care must

be taken to initialize pointers with valid address.

 Chapter 1: Essentials of C Language 23

1.10.2 Problem of Null Pointer Assignment

One particular situation that happens is when the pointer points to address 0, which is called

NULL. For example, this may happen that if the pointer variable is declared as global since

global variables are initialized to 0. Likewise, this can also happen for a local un-initialized

pointer variable, particularly for local static variables, they are also initialized to 0. When it

happens, and no catastrophic situations had occurred, then the system will display a message

"Null pointer assignment" on termination of the program.

1.10.3 Problem of Memory Leaks

Another common problem with pointers is that of memory leak. Memory leak is a situation

where the programmer fails to release the memory allocated at run time in a module. Note that

when memory is allocated, a pointer variable is used to hold the address of the allocated block,

however, when the module completes its execution, the pointer variable goes out of scope and

there will be no way to reach that memory block. Therefore, care must be taken to release the

allocated memory block in a module where memory was allocated.

1.10.4 Problem of Allocation Failures

Still another problem with pointers is that of allocation failures. An allocation failure is a

situation when the program through malloc(), calloc(), or realloc() function request for a block

of memory, and the operating system could not fulfill the request of the program because the

sufficient memory may not be available in the free pool. In that case, these functions return a

NULL pointer indicating the allocation failure. Therefore, the programmer should take care of

allocation failures and provide a safe exit in their programs on such failures.

1.11 ARRAYS AND STRINGS

An array is a collection of homogeneous data elements, i.e., of same data type, described by a

single name, and each individual element of an array is referenced by a subscripted variable,

formed by affixing to the array name a subscript or index enclosed in brackets. The term

subscript has the same meaning as in the mathematical notation. If single subscript is required

to refer to an element of an array, the array is known as one-dimensional or linear array, and if

two subscripts are required to refer to an element of an array, the array is known as two-

dimensional array, and so on. Analogously, the arrays whose elements are referred by two or

more subscripts are called multi-dimensional arrays.

Using array of characters, we can store string data. But do remember that as such strings are not

directly supported, though sometimes loosely we refer to array of characters as strings. Array of

characters or the programming languages to manipulate text such as words and sentences use

strings. As with other data types, strings can also be used as constants or variables.

 Data Structures & Algorithms Using C24

1.12 STRUCTURES

A structure is a collection of data elements, called fields, which may be of different type.

Individual elements of a structure variable are accessed using dot operator (‘.’). If a pointer is

used to point to a structure variable, then arrow operator (‘->’) is used. But from the data

structures point of view, we have interest in self-referential structures. A self-referential

structure is a structure that include an at least one element that is a pointer to itself. Self-

referential structures are used in building complex data structure such as linked lists, trees and

graphs, etc.

Following are some examples of complex data structures and the corresponding self-referential

structures to represent these data structures:

Figure 1.14: Linear linked list of integer values with nodes 4

To represent the above linear linked list in memory, we need following declarations

typedef struct nodeType
{
 int info;
 struct nodeType *next;
} node;

node *head;

To represent the above linear linked list in memory,

we need following declarations

typedef struct nodeType {
 struct nodeType *left;
 int info;
 struct nodeType *right;
} node;

node *root;

 Figure 1.15: Binary tree

Next pointer field of second node

Information field of second node

head

 1200 1201 1202 1203 X

70

80

62 75

root

60

30 92

 Chapter 1: Essentials of C Language 25

 Figure 1.16: Undirected graph Figure 1.17: Adjacency list for graph of Figure 1.16

To represent a graph in memory, one of the best representation schemes is adjacency list as

shown in Figure 1.17.

To represent a adjacency list, for a graph with maximum of 5o vertices, we need following

declarations

#define MAX 50
typedef struct nodeType
{
 int vertex;
 struct nodeType *next;
} node;

node *adj[MAX];

1.13 FUNCTIONS

The best way to handle complex problems is to split the problem into small problems, called

subproblems that can be handled easily. This we are used to do in our day-to-day working.

Once all these subproblems are solved separately, solutions of these subproblems can be

synthesized to generate the solution of the given complex problem.

Like was, if program to be developed is very large and complex, it is always recommended to

split into two or more functions (subprograms) that can be developed separately, tested

separately and then integrated.

1.13.1 Defining a Function
The general form of function definition is

ReturnType functionName(LostOfArguments)
{
 Local declarations

 Executable body

}

1

2

3

4

5

2 X

5 X

4 X 1 2

5 X

3 X5 1

2

4

1

3

5

2

 Data Structures & Algorithms Using C26

Following are some points to remember while defining functions:

� The first statement of the function must be the function defining statement specifying the

return type, name and formal arguments.

� If the type of the function is omitted, then it is assumed of type integer (int). But it is

recommended that the return type must be explicitly specified.

� Rules for naming a function are same as for variable names.

� The formal arguments should neither be constants nor expressions.

1.13.2 Function Prototype

A function prototype is a function declaration that specifies the return type and the data types

of the arguments. The main purpose of the function prototyping is to prevent errors caused by

data type mismatches between the values passed to a function and the type of values function is

expecting.

The general form of function prototype is

ReturnType functionName(ListOfArgumentTypes);

The following is an example of function prototype for a function that computes factorial of a

given positive integer number:

 int factorial(int k);

It is important to note that name of the formal argument is optional. Further, names of formal

argument in a function prototype and in the function defining statement can be different.

Therefore, following is equally valid prototype

 int factorial(int);

1.13.3 Accessing a Function

Like library functions, the user-defined functions are accessed from a function simply by its

name, including the actual arguments, if any, enclosed within parentheses. However,

parentheses must follow the function name even if there is no actual argument to be passed to

the function. The actual arguments, if any, must correspond in number, type, and order with

formal arguments. The actual arguments can be constants, variable names, subscripted

variables, or expressions.

When the name of the function is encountered, the control is transferred to the called function.

The formal arguments are replaced by the actual arguments and the execution of the function is

carried out. When the return statement is executed or last statement has finished its execution,

the control is transferred back to the calling function.

 Chapter 1: Essentials of C Language 27

� Note that the semicolon must follow the function call if it is a solitary statement but

not the function definition. However, if the function call occurs as part of another

statement then semicolon after the function call may or may not be used. This will

be determined the actual place of call.

.

1.13.4 The return Statement

The syntax of return statement is

 return [exp];

where exp can be a constant, variable or expression. Use of parentheses around exp is optional.

The return statement serves two purposes:

� Execution of return statement immediately transfers control from the function back to the

calling function.

� Whatever is following the return statement is returned as a value to the calling function.

The return statement need not be at the end of the function. It can be used any where in the

function. As soon as it is executed, the control will return to the calling function. A function

can contain any number of return statements.

�
There is the key limitation of return statement is that it can return only one value. If

you want your function to return two or more values to the calling function, you

need another mechanism.

1.13.5 Passing Arguments to a Function

The mechanism used to pass data to a function is via argument list, where individual arguments

are called actual arguments. These arguments are enclosed in parentheses after the function

name. The actual arguments must correspond in number, type, and order with formal

arguments specified in the function definition. The actual arguments can be constants,

variables, array names, or expressions.

There are two approaches to passing arguments to a function:

� Call by value

� Call by address, also called call by reference

Let us describe these one by one.

 Data Structures & Algorithms Using C28

1.13.5.1 Call by Value

In this approach, the names of the actual arguments are used in the function call. In this way the

values of the actual arguments are passed to the function. When control is transferred to the

called function, the values of the actual arguments are substituted to the corresponding formal

arguments and the body of the function is executed. If the called function is supposed to return

a value, it is returned via return statement.

1.13.5.2 Call by Address

In this approach, the addresses of the actual arguments are used in the function call. In this way

the addresses of the actual arguments are passed to the function. When control is transferred to

the called function, the addresses of the actual arguments are substituted to corresponding

formal arguments and the body of the function is executed. The formal arguments are declared

as pointers to types that match the data types of the actual arguments. This approach is of

practical importance while passing arrays and structures among function, and also for passing

back more than one value to the calling functions.

� It is important to note that arguments in a function in C language are passed from

right to left.

1.13.6 Specifying Argument Data Types

While defining a function, the information to the compiler regarding the return type of the

function and the data types of the arguments must be provided. As described in the beginning

of this chapter that there are two ways to specify the data types of the formal arguments:

1. In the argument list, only the names of the formal arguments are used. The data types of

these arguments are specified before the body of the function begins. To illustrate this

approach, consider an example of defining a sampleFunction() function that takes four

arguments. Of these arguments, first is of type integer, second is of type real, third is of type

character, and fourth one of type integer.

The function definition may look like

float sampleFunction(arg1,arg2,arg3,arg4)
int arg1, arg4;
float arg2;
char arg3;
{
 body of the function
}

 Chapter 1: Essentials of C Language 29

2. In the argument list itself, the data type of each argument is specified individually. Using

this approach the definition of the above sampleFunction() function may look like

 float sampleFunction(int arg1,float arg2, char arg3,int arg4)
 {
 body of the function
 }

Throughout the present text, we will consider the later approach.

I hope with this short recap of C language, you will in a position to take off and enjoy

implementing different data structures.

A QUICK REVIEW

In this chapter, we have learnt

� About the enumerated data type.

� About the void data type.

� About the typedef statement.

� About the working of different control statements.

� About the use of memory by a C program.

� About the different aspects of pointers.

� About the different dynamic memory management functions.

� About the arrays, strings, and structures.

� About the different aspects of functions.

In the next chapter, we will discuss about the various data structures and operations performed on

them in brief to give you a feel about what data structures is all about.

REVIEW EXERCISES

1. Explain the usefulness of enumerated data type.

2. Describe the usage of void data type.

3. How is typedef statement useful?

4. Describe the working of every control statement with suitable examples.

5. With the help of a diagram, demonstrate the use of memory by a C program.

 Data Structures & Algorithms Using C30

6. What is a pointer? What are the advantages using pointers? Discuss various aspects

associated with the use of pointers.

7. Discuss different memory management functions.

8. What is a dangling pointer?

9. What is a memory leak?

10. What is a NULL pointer assignment?

11. How can we declare a pointer to a function?

12. Where we may need to use pointer to a pointer? Illustrate with suitable example.

� � �

