
Set Theory

Among many branches of mathematics, theory of sets, which was introduced by the German
mathematician Cantor occupies a unique place. It helps to reduce many mathematical concepts
to their logical foundations in an elegant and systematic manner. In this chapter we discuss the
basic features of set theory, permutation, combination, mathematical induction inclusion-ex-
clusion and probability theory, multisets.

1.1 SET NOTATION AND BASIC DEFINITIONS
A collection of well-defined objects is said to be a set. The objects in the collection are called

members or elements of the set, and they are said to belong to or contained in the set. The
set inturn is said to contain or composed of its elements.

Sets are usually denoted by capital letters A, B, C, .......and elements by small letters a, b,
c,.......

Let S be a set. We write x ∈ S to mean ��x is an element of S��, or ��x belongs to S��. If  x does
not belong to S, we write x ∉ S. We sometimes designate sets by displaying the elements in
braces ; for example {2, 4, 6, 8} is a set. However, when the elements of a set share a common
property called as the characteristic property, there is a compact notation called the set builder
notation to describe the set.

For a given set S, we constantly use
               A = {a ∈ S : P(a)}
to read ��A is the set of elements of S for which the property P holds��.
For e.g; the set of all numbers between 0 and 1 can be denoted by {x : 0 < x < 1}.
Note that the order in which the elements of a set are listed is not important. For instant,

the set {3, 4} is same as the set {4, 3}.
We introduce here several sets (and their notations) that will be used throughout this book.
             N = Set of all natural numbers

= 

1, 2, 3......




             Z = Set of all integers
= 


......... − 3, − 2, − 1, 0, 1, 2, 3.......




             R = Set of real numbers
             Q = Set of all rational numbers

= 

a/b  :  a, b ∈ R, b ≠ 0




C = Set of all complex numbers
= 


a + ib : a, b ∈ R, i = √− 1 




Note : Think of real numbers as the set of points on a number line.
Definition 1.1.1. Let A and S be sets. A is said to be a subset of S if every element in A is

an element of S, that is if a ∈ A implies a ∈ S. We write A ⊆ S.
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Examples
(a) If A = 


1, 2, 3, 4


, S = 


0, 1, 2, 3, 4, 5, 6


, then A ⊆ S.

(b) N ⊆ Z ⊆ R ⊆ C.
The statement A ⊆ B does not rule out the possibility that B ⊆ A.
Definition 1.1.2. Let A, B be two sets. Then A and B are said to be equal (notation A = B)

if and only if A ⊆ B and B ⊆ A, that is, A and B have the same elements. If A and B are not equal,
we write A ≠ B. If A ⊆ B, A ≠ B, we say A is a proper subset of B.

Null Set and Universal Set.
The null set or empty set, φ, is the set having no elements; it is a subset of every set.
Given any set A, both φ, A, are subsets of A, which we call improper subsets of A.
If all sets under discussion are subsets of a given set U, then U is said to be a universal

set. Universal set is therefore a relative term.
A set consisting of a single element is called a singleton set.
Examples

(a) If A = 

1, 2, 3


, B = {x:  x is a positive integer and x2 < 12}, then A = B.

(b) If A = 

1, 2, 3, 4


, B = 


2, 3


, C = 


1, 2, 3, 4, 5


 then B ⊆ A, B ⊆ C, A ⊆ C, but

A ⊄�B, C ⊄�B, C ⊄�A.

(c) Let A be a set and let B = 

A, 


A






. Then since A and {A} are elements of B,  we have

A ∈ B, 

A



 ∈ B. It then follows that 


A



 ⊆ B, 





A






 ⊆ B. However, it is not true that

A ⊆ B.
Definition 1.1.3. A set A is called finite if it has n distinct elements, where n ∈ N. In this

case n is called the cardinality of A and is denoted by |A|. A set that is not finite is called
infinite. An empty set is said to have cardinality zero. Note that N, Z, R, Q, C are examples of
infinite sets.

Consider the set of natural numbers N = 

0, 1, 2,......


. Although N is infinite, the elements

in N are enumerable or countable, that is the elements can be arranged sequentially. Such a
set is said to be countably infinite or denumerable.

Power set : For a set A, collection or family of all subsets of A is called the power set of A
and is denoted by P(A). If A has k elements, then P(A) had 2k elements. The power set of the
null set φ has only the element φ. That is, P (ϕ) = ϕ.

Example. Let A = {1, 2, 3}. Then P(A) consists of the sets φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}
{1, 2, 3} = A.

Exercise 1.1.
1. Enumerate the elements in the following sets :

(a) 

x ∈ R: x2 − 3x + 2 = 0




(b) 

x ∈ C : x2 + 1 = 0




2. Describe the following sets using set-builder notation
(a) 


3, 5, 7, 9,.........., 77, 79




(b) even integers
3. Let A = 


0, 2, 3


, B = 


0, 2


, C = 


1, 5, 9


. Determine which of the following statements are true.

Give reasons.
(a) 3 ∈ A (b) 


3



 ∈ A
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(c) 

3



 ⊆ A (d) B ⊆ A

(e) A ⊆ B (f) φ ⊆ C
(g) φ ∈ A (h) (B ∩ A) ⊆ C.

4. Let U = 

x : 0 ≤ x ≤ 9, x is an integer




A = 

x ∈ U : x is a multiple of 3




B = 

x ∈ U : x2 − 5 ≥ 0


.

Determine
(a) A ∪ B (b) A ∩ B

(c) BC (d) BC ∪ AC

1.2 VENN DIAGRAMS AND SET OPERATIONS
Given two sets we can combine them to form new sets. There is nothing particular about

this number to be two. We can carry out the same procedure for any number of sets, finite or
infinite. Consider the following figure.

The diagrams, as shown above, which are
used to show relationships between sets are
called Venn diagrams. In a Venn diagram the
universal set U is represented by the interior of
a rectangle and the sets by circle inside the rec-
tangle.

Definition 1.2.1. The intersection of the two
sets A and B written as A ∩ B, is the set



x : x ∈ A  and  x ∈ B


.

If B is any subset of A, then A ∩ B = B. By
Venn diagram we illustrate the intersection of
two sets A and B by Fig. 1.2.

Here A is the circle on the left, B that on the right, while their intersection is the shaded
portion.

Examples
(i) Let A = 


1, 3, 8


, B = 


8, 22, 6


, then A ∩ B = 


8



.

(ii) If A = 

a, b, c, e, f


, B = 


b, e, f, r, s


 C = 


a, t, u, v


, Find A ∩ B, A ∩ C, B ∩ C.

Here A ∩ B = 

b, e, f


, A ∩ C = 


a



, B ∩ C = φ.

A

A B

A B

B

A B

Fig. 1.1

A B

U

Fig. 1.2
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Definition 1.2.2. The union of the two sets A
and B, written as A ∪ B, is the set



x : x ∈ A     or     x ∈ B




when we say x is in A or x is in B we mean x is in
at least one of A or B, and may be in both. When-
ever B is a subset of A, A ∪ B = A. By Venn
diagram we illustrate the union of two sets A and
B by Fig. 1.3.

Here A is the circle on the left, B that on the
right and A ∪ B is the shaded part.

Examples
(i) A = 


a, b, c, e, f


, B = 


b, d, r, s


, then A ∪ B = 


a, b, c, d, e, f, r, s


.

(ii) A ∪ φ = A, for any set A.

Definition 1.2.3. Two sets A and B are said
to be disjoint if A ∩ B = φ. Fig. 1.4 gives
A ∩ B = φ.

Definition 1.2.4. Let A and B be sets. The
complement of A relative to B, denoted by B �
A, is defined to be the set of elements that are in
B and not in A. That is

B − A = 

x : x ∈ B  and  x ∉ A


.

If U is the universal set, then the comple-
ment of A relative to U, denoted by AC is defined to be the set of all elements in U which are
not in A. In symbol

AC = 

x : x ∈ U   and   x ∉ A




Clearly AC = U − A.
Definition 1.2.5. The cartesian product of two sets A and B denoted by A × B is defined

to be the set of all ordered pairs (a, b), where a ∈ A and b ∈ B. That is
A × B = 


(a, b) : a ∈ A and b ∈ B




The pairs (a1, b1), (a2, b2) are equal if and only if a1 = a2 and b1 = b2.
Examples

(i) If A = 

1, 2, 3


, B = 


1, 2




A × B = 

(1, 1), (1, 2), (2, 1), (2, 2), (3, 1) (3, 2)




B × A = 

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)


.

A × B ≠ B × A.
(ii) C the set of complex numbers is the cartesian product R × R = 


(x, y)  :  x, y ∈ R


, where

R is the set of real numbers.
We can define the cartesian product of three (or more) sets similarly. For, example 

A × B × C = 

(a, b, c) : a ∈ A, b ∈ B, c ∈ C


, we denote A × A = A2, A × A × A = A3, and for any

positive integer n, An = 

(a1, a2,........., an) : ai ∈ A, i = 1 to n


.

Symmetic Difference : Symmetic Difference of any two sets A and B, denoted by A ∆ B is
A ∆ B = (A − B) ∪ (B − A).

A B

U

Fig. 1.4

A B

U

Fig. 1.3
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Solved Problems
1. Let A, B, C be sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C, show that B = C.

Proof. Let x ∈ B. Then x ∈ A ∪ B. Since A ∪ B = A ∪ C, x ∈ A ∪ C. That is x ∈ A or x ∈ C.
Suppose x ∈ A. Since x ∈ B, x ∈ A ∩ B. But A ∩ B = A ∩ C, x ∈ A ∩ C. So x ∈ A and x ∈ C.
Therefore x ∈ B implies x ∈ C. Hence B ⊆ C. Similarly we prove C ⊆ B. Hence B = C.

2. Let A, B be sets. Then A − B = A ∩ BC.

Proof. Let x ∈ A ∩ BC. Then x ∈ A and x ∈ BC ⇔ x ∈ A   and   x ∉ B ⇔ x ∈ A − B

Since x is an arbitrary element, A ∩ BC = A − B.
3. Show that if A and B are two sets, then A � B, B � A, and A ∩ B are pairwise disjoint.

Proof. Let x ∈ (A − B) ∩ (B − A). Then x ∈ A − B and x ∈ B − A. That is, (x ∈ A and x ∉ B)
and (x ∈ B and x ∉ A). Clearly there is no such element. Hence (A − B) ∩ (B − A) = φ. Since
A − B = A ∩ BC, (A − B) ∩ (A ∩ B) = (A ∩ Bc) ∩ (A ∩ B) = (A ∩ (B ∩ BC)) = A ∩ φ = φ. Similarly
(B − A) ∩ (A ∩ B) = φ. 

4. Show that A − (B ∪ C) = (A − B) ∩ (A − C) and A − (B ∩ C) = (A − B) ∪ (A − C).
Proof. Let x ∈ A − (B ∪ C). Then x ∈ A and x ∉ B ∪ C. That is x ∈ A and

(x ∉ B and x ∉ C). Therefore (x ∈ A and x ∉ B) and (x ∈ A and x ∉ C). That is x ∈ A − B and
x ∈ A − C. That is x ∈ (A − B) ∩ (A − C). Hence A − (B ∪ C) ⊆ (A − B) ∩ (A − C). The other im-
plications can be proved by retracing the steps. Therefore A − (B ∪ C) = (A − B) ∩ (A − C). The
proof of A − (B ∩ C) = (A − B) ∪ (A − C) is left to the reader.

Note.
(i) x ∉ A ∪ B if and only if x ∉ A and x ∉ B

(ii) x ∉ A ∩ B if and only if x ∉ A or x ∉ B
(iii) x ∉ A − B if and only if x ∉ A or x ∈ B.

5. For any three sets A, B, C, (A ∪ B) = B if and only if A ⊆ B.
Proof. Let A ∪ B = B. Let x ∈ A. Then x ∈ A ∪ B = B. Hence A ⊆ B. Conversely, let A ⊆ B.

Let x ∈ A ∪ B. Then x ∈ A or x ∈ B. Since A ⊆ B, x ∈ A implies x ∈ B. So x ∈ B. Therefore
A ∪ B ⊆ B. Always B ⊆ A ∪ B. Hence A ∪ B = B.

6. For any three sets A, B, C,
(i) A − B = A − (A ∩ B) = (A ∪ B) − B

(ii) (A − B) − C = A − (B ∪ C) = (A − C) − (B − C)
(iii) A − (B − C) = (A − B) ∪ (A ∩ C)
(iv) A ∩ (B − C) = (A ∩ B) − (A ∩ C).

Proof.  (i) x ∈ A − B ⇔ x ∈ A  and  x ∉ B
⇔ x ∈ A and  x ∉ A ∩ B
⇔ x ∈ A − (A ∩ B).

Hence A − B = A − (A ∩ B).
(ii) x ∈ (A − B) − C ⇔ x ∈ (A − B)  and  x ∉ C

⇔ (x ∈ A and x ∉ B) and x ∉ C
⇔ x ∈ A and (x ∉ B and x ∉ C)
⇔ x ∈ A and (x ∉ B ∪ C)
⇔ x ∈ A − (B ∪ C).

Since x is arbitrary, (A − B) − C = A − (B ∪ C). Next we prove A − (B ∪ C)
= (A − C) − (B − C).    For,  x ∈ (A − C) − (B − C) ⇔ x ∈ (A − C) and x ∉ (B − C)
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⇔ (x ∈ A  and  x ∉ C)  and  (x ∉ B or x ∈ C)
⇔ x ∈ A  and  (x ∉ B  and  x ∉ C)
⇔ x ∈ A and (x ∉ B ∪ C)
⇔ x ∈ A − (B ∪ C).

Hence
A − (B ∪ C) = (A − C) − (B − C).
(iii) Let x ∈ A − (B − C). Then
x ∈ A   and   x ∉ B − C ⇔ (x ∈ A  and  x ∉ B)  or  (x ∈ A  and  x ∈ C)

⇔ x ∈ A − B     or     x ∈ A ∩ C
⇔ x ∈ (A − B) ∪ (A ∩ C)

Hence A − (B − C) = (A − B) ∪ (A ∩ C).

(iv) x ∈ (A ∩ B) − (A ∪ C)
⇔ x ∈ A ∩ B     and     x ∉ A ∩ C
⇔ (x ∈ A  and  x ∈ B)    and   (x ∉ A or x ∉ C)
⇔ x ∈ A and (x ∈ B and x ∉ C)
⇔ x ∈ A  and  x ∈ B − C
⇔ x ∈ A ∩ (B − C).
Hence, (A ∩ B) − (A ∩ C) = A ∩ (B − C).
7. Prove by Venn diagram

(A − C) ∪ (B − C) = (A ∪ B) − C.
Proof.

See Fig. 1.5

Region with vertical lines is (A − C) ∪ (B − C).

See Fig. 1.6
Region with horizontal lines is (A ∪ B) − C.

8. If A, B, C are sets, then
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Proof. Let x ∈ A ∩ (B ∪ C). Then x ∈ A  and  x ∈ B ∪ C
⇔ x ∈ A and (x ∈ B  or  x ∈ C)
⇔ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
⇔ x ∈ (A ∩ B) ∪ (A ∩ C)
Hence A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

9. Let A, B, C be sets. Then
A × (B ∩ C) = (A × B) ∩ (A × C).

Proof.
(x, y) ∈ A × (B ∩ C) ⇔ x ∈ A  and  y ∈ B ∩ C
⇔ x ∈ A and (y ∈ B and y ∈ C)
⇔ (x ∈ A and y ∈ B) and (x ∈ A and y ∈ C)
⇔ (x, y) ∈ A × B  and  (x, y) ∈ A × C
⇔ (x, y) ∈ (A × B) ∩ (A × C).
Hence A × (B ∩ C) = (A × B) ∩ (A × C).

A

C

B

Fig. 1.5

A

C

B

Fig. 1.6
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10. Let A and B be sets. A ⊆ B if and only if BC ⊆ AC.

Proof. Let A ⊆ B. To show BC ⊆ AC. Let x ∈ BC. Then x ∉ B. Since A ⊆ B, x ∉ A. So x ∈ AC.
Hence BC ⊆ AC. Conversely, let BC ⊆ AC. Let x ∈ A. That is x ∉ AC, since BC ⊆ AC, x ∉ BC. Hence
x ∈ B, and hence A ⊆ B.

Exercise 1.2.
1. Let U = 


x : x ∈ Z,   1 ≤ x ≤ 10




A = 

x : x ∈ U and x is a prime number




B = 

x : x ∈ U and x is even




C = 

x : x ∈ U and x is a multiple of 3




Find
(a) A ∪ B (b) B ∪ C (c) B ∩ C

(d) A ∩ C (e) A ∪ BC (f) BC ∩ CC

(g) AC ∪ (B ∩ C) (h) A − B (i) B − A
(j) (B ∪ C) − A

2. Prove the following :

  (i) UC = φ and φC = U (ii) A ∩ AC = φ and A ∪ AC = U

(iii) (AC)C = A (iv) If A ⊆ B, then A × C ⊆ B × C

(v) A ∩ B = φ if and only if  A ⊆ BC (vi) (A ∩ BC) ∪ (AC ∩ B) = φ if and only if  A = B.
3. If A = 


1, 2, 3


, and B = 


2, 3, 4


 write down the following sets

 (i) 

(x, y) : (x, y) ∈ A × B   and   x < y




(ii) 

(x, y) : (x, y) ∈ A × B  and  x ≥ y




4. Show that A × B = B × A ⇔ A = φ or B = φ or A = B.
5. Prove : (i) A ∩ B = A if and only if A ⊆ B.

 (ii) A ∩ B = φ if and only if A − B = A
(iii) A ⊆ B if and only if A − B = φ
 (iv) A = B if and only A − B = B − A = φ.

6. Simplify (i) ((A ∩ B) ∪ C)C ∩ BC)C

(ii) ((A ∪ B) ∩ AC) ∪ (B ∩ A)C.
7. If A = 


a, b


, B = 


c, d, e


 and C = 


00, 01, 10, 11




 (i) List all the elements of A × (B × C)

(ii) How many elements do A × (B × C)2 have.

1.3 LAWS OF SET THEORY
1. A ∪ B = B ∪ A Commutative Laws

A ∩ B = B ∩ A
2. A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C Associative Laws
3. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) Distributive Laws
4. A ∪ φ = A = φ ∪ A

A ∩ U = A = U ∩ A Identity Laws
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5. A ∪ AC = U

A ∩ AC = φ Complement Laws
6. A ∪ A = A

A ∩ A = A Impotent Laws
7. A ∪ U = U

A ∩ φ = φ Null Laws
8. A ∪ (A ∩ B) = A

A ∩ (A ∪ B) = A Absorption Laws

9. (A ∪ B)C = AC ∩ BC

(A ∩ B)C = AC ∪ BC De Morgans Laws

10. (AC)C = A Involution law
Theorem 1.3.1. Let A, B be sets. Then

(A ∩ B) ∪ (A ∩ BC) = A

Proof. (A ∩ B) ∪ (A ∩ BC) = A ∩ (B ∪ BC) by distributive law
= A ∩ φ                   by complement law 
= A                          by identity law.

Theorem 1.3.2. Let A, B, C be sets. If A ⊆ B, B ∩ C = φ. Then A ∩ C = φ.
Proof. Let  A ⊆ B,   B ∩ C = φ. Let Α ∩ C ≠ φ.  Suppose  x ∈ A ∩ C. Then x ∈ A and x ∈ C.

Since A ⊆ B, x ∈ A implies x ∈ B. Hence x ∈ B ∩ C, which is a contradiction to the given
hypothesis. Hence A ∩ C = φ.

1.4 PRINCIPLE OF INCLUSION AND EXCLUSION
Theorem 1.4.1. (Principle of inclusion and exclusion).
Let A1 and A2 be sets with cardinalities |A1| and |A2|, then
|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|
Proof. The sets A1 and A2 have some common elements. The number of common elements

between A1 and A2 is |A1 ∩ A2|. Each of these elements are counted twice in |A1| + |A2| (Once
in |A1| and once in |A2|) although it should be counted as one element in |A1 ∪ A2|. Therefore,
the double count of these elements in |A1| + |A2| should be adjusted by the subtraction of the
term |A1 ∩ A2|. Hence |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.

Note. Extending the above result for three sets A1, A2, A3, by using distributive law, we
obtain,

|A1 ∪ A2 ∪ A3| = |(A1 ∪ A2) ∪ A3|
= |A1 ∪ A2| + |A3| − |(A1 ∪ A2) ∩ A3|
= |A1| + |A2| − |A1 ∩ A2| + |A3| − |(A1 ∩ A3) ∪ (A2 ∩ A3)|
= |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3|

− |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|
We extend this result to a collection of n sets, for any +ve integer n.

Theorem 1.4.2. Let A1, A2, �, An be a collection of n sets. Then
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|A1 ∪ A2 ∪ � ∪ An| = Σ
i = 1

n

 |Ai| − Σ
1 ≤ i < j ≤ n

 |Ai ∩ Aj| + Σ
1 ≤ i < j < k ≤ n

 | Ai ∩ Aj ∩ Ak | + � + ( − 1)n − 1

|A1 ∩ A2 ∩ � ∩ An| ...(1.4.1)
Proof. We prove the theorem by induction on n. First we assume (A1 ∪ A2 ∪ � ∪ An − 1) and

An as two sets. Then by Theorem 1.4.1, we have
|A1 ∪ A2 ∪ � ∪ An| = |A1 ∪ A2 ∪ � ∪ An − 1| + |An| − |An ∩ (A1 ∪ A2 ∪ � ∪An − 1|
                                                      ...(1.4.2)
Now
|An ∩ (A1 ∪ A2 ∪ � ∪ An − 1)| = |(An ∩ A1) ∪ (An ∩ A2) ∪ � ∪ (An ∩ An − 1)|
According to the induction hypothesis, for n − 1 sets An ∩ A1, An ∩ A2,  �, An ∩ An − 1, we

have, 
(An ∩ A1) ∪ (An ∩ A2) ∪ ..... (An ∩ An − 1)
= |An ∩ A1| + |An ∩ A2| + � + |An ∩ An − 1|
− |(An ∩ A1) ∩ (An ∩ A2)| − |(An ∩ A1) ∩ (An ∩ A3)|

.........
+ |(An ∩ A1) ∩ (An ∩ A2) ∩ (An ∩ A3)|

..........

+ (−1)n − 2| (An ∩ A1) ∩ (An ∩ A2) � (An ∩ An − 1)|
= |An ∩ A1| + |An ∩ A2| + � + |An ∩ An − 1|
− |An ∩ A1 ∩ A2| − |An ∩ A1 ∩ A3| − ....
+ |An ∩ A1 ∩ A2 ∩ A3| + ....

+ ( − 1)n − 2 |An ∩ A1 ∩ A2 ∩ � ∩ An − 1| ...(1.4.3)
Also, according to the induction hypothesis, for n − 1 sets, A1, A2, � An − 1, we have 
       |A1 ∪ A2 ∪ .... ∪ An − 1| = |A1| + |A2| + � + |An − 1|

− |A1 ∩ A2| − |A1 ∩ A3| − � + ( − 1)n − 2 |A1 ∩ A2 ∩ � ∩ An − 1| ...(1.4.4)
Substituting (1.4.3) and (1.4.4) in (1.4.2), we get (1.4.1).
Example 1.4.3. In an advertising survey conducted on 200 people, it was found that 140

drink tea, 80 drink coffee, and 40 drink both. Find how many drink atleast one beverage and
how many drink neither ?

Solution. Let A denote the set of tea drinkers, and B the set of coffee drinkers. Then
|A ∪ B| = |A| + |B| − |A ∩ B| = 140 + 80 − 40 = 180.
Hence 180 peoples drink atleast one beverage and 200 � 180 = 20 drink neither.
Note. We use [x] to denote the largest integer that is smaller than or equal to x. So the

number of multiples of x that do not exceed n is [n/x]. (See also problem 17 of page 296)
Example 1.4.4. Find how many integer between 1 and 567 are divisible by 3, but not by 5.

Solution. Integers between 1 and 567 divisible by 3 is 



567
3





= 189. Integers between 1 and

567 divisible by both 3 and 5 is 


567
3 × 5





= 37. Hence, the number of integers between 1 and 567

divisible by 3 but not by 5 is 189 � 37 = 152.
Example 1.4.5. How many integers are between 1 and 250 that are divisible by any of the

integers 2, 3, 5 and 7.
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Solution. Let A1, A2, A3, A4 denote the set of integers between 1 and 250 that are divisible
by 2, 3, 5 and 7, respectively.

|A1| = 


250
2





= 125 |A1 ∩ A2| = 



250
2 × 3





= 41

|A2| = 


250
3





= 83 |A1 ∩ A3| = 



250
2 × 5





= 25

|A3| = 


250
5





= 50 |A1 ∩ A4| = 



250
2 × 7





= 17

|A4| = 


250
7





= 35 |A2 ∩ A3| = 



250
3 × 5





= 16

|A2 ∩ A4| = 



250
3 × 7





= 11,  |A3 ∩ A4| = 



250
5 × 7





= 7 

|A1 ∩ A2 ∩ A3| = 



250
2 × 3 × 5





= 8

|A1 ∩ A2 ∩ A4| = 



250
3 × 5 × 7





= 5

|A1 ∩ A3 ∩ A4| = 



250
2 × 5 × 7





= 3

|A2 ∩ A3 ∩ A4| = 



250
3 × 5 × 7





= 2

|A1 ∩ A2 ∩ A3 ∩ A4| = 



250
2 × 3 × 5 × 7





= 1

By Theorem 1.4.2, 
 |A1 ∪ A2 ∪ A3 ∪ A4| = 125 + 83 + 50 + 35 − 41 − 25 − 17 − 16 − 11 − 7 + 8 + 5 + 3 + 2 − 1 = 193

Example 1.4.6. How many words of length 7 can be formed from the letters {a, b, c, d, e} if
the first letter must be �a� or the last letter be �b�.

Solution. There are 56 words that begins with a, there are 56 words that end with b, and
there are 55 words that both begin with �a� and end with �b�. By principle of inclusion and
exclusion, there are 56 + 56 − 55 = 28, 125 words that begin with a or end with b.

Applications of Inclusion Exclusion
We can solve many problems using principle of inclusion - exclusion. The famous hatcheck

problem can be solved using the principle of inclusion exclusion. This problem asks for the
probability that no person is given the correct hat back by a hatcheck person who gives the hats
back randomly.

There is an alternative form of the principle of inclusion-exclusion that is useful in counting
problems.

This form is used to solve problems that is asked to find the number of elements in a set
that have none of n properties P1, P2, .... Pn.

Let Ai be the subset containing the elements that have property Pi. The number of elements
with all the properties Pi1, Pi2, .... Pik are denoted by N (Pi1, Pi2, .... Pik). Note that
|Ai1 ∩ Ai2 ∩ ..... ∩ Aik | = N (Pi1 Pi2 .... Pik). If the number of elements with none of the properties
P1, P2, ...... Pn is denoted by N (P′1, P′2 ..... P′n) and the number of elements in the set is N (say),
then
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N (P′1 P′2 P′3  ..... P′n) = N − Σ
1 ≤ i ≤ n

N (Pi) + Σ
1 ≤ i < j ≤ n

N (PiPj)

− Σ
            1 ≤ i < j < k ≤ n

N (Pi Pj Pk) + ..... + ( − 1)n N(P1 P2 .... Pn)

Example 1.4.7. How many solution does x1 + x2 + x3 = 11 have, where x1, x2, x3 are non-nega-
tive integers with x1 ≤ 3, x2 ≤ 4, x3 ≤ 6 ?

Solution. Let P1 : x1 > 3   ;   P2 : x2 > 4  ;  P3 : x3 > 6. The number of solutions satisfying the
inequalities x1 ≤ 3, x2 ≤ 4, x3 ≤ 6 is :

N (P′1 P′2 P′3) = N − N (P1) − N (P2) − N(P3) + N (P1P2)
+ N (P1P3) + N(P2P3) − N (P1P2P3)

Using the technique of Example 1.8.18, we have
N = total number of solutions  = C (3 + 11 − 1, 11) = 78
N (P1) = (number of solutions with x1 ≥ 4) = C (3 + 7 − 1, 7) = C (9, 7) = 36
N (P2) = (number of solutions with x2 ≥ 5) = C (3 + 6 − 1, 6) = C (8, 6) = 28
N (P3) = (number of solutions with x3 ≥ 7) = C (3 + 4 − 1, 4) = C (6, 4) = 15
N (P1 P2) = (number of solutions with x1 ≥ 4, x2 ≥ 5) = C (3 + 2 − 1, 2) = C (4, 2) = 6
N (P1 P3) = (number of solutions with x1 ≥ 4, x3 ≥ 7) = C (3 + 0 − 1, 0) = 1
N (P2 P3) = (number of solutions with x2 ≥ 5, x3 ≥ 7) = 0
N (P1 P2 P3) = (number of solutions with x1 ≥ 4, x2 ≥ 5, x3 ≥ 7) = 0
Hence N (P′1 P′2 P′3) = 78 − 36 − 28 − 15 + 6 + 1 + 0 − 0 = 6.

The sieve of Eratosthenes 1.4.8
The principle of inclusion and exclusion is used to find the number of primes not exceeding

a specified positive integer. To find the number of primes not exceeding 100, first note that
composite integers not exceeding 100 must have a prime factor not exceeding 10. Because the
only primes less than 10 are 2, 3, 5, 7, the primes not exceeding 100 are these four primes and
those positive integers greater than 1 and not exceeding 100 that are divisible by none of 2, 3,
5, 7.

Let P1 : An integer is divisible by 2
P2  :  An integer is divisible by 3
P3  :  An integer is divisible by 5
P4  :  An integer is divisible by 7

Then by principle of inclusion-exclusion, the number of primes not exceeding 100 is
4 + N (P′1P′2P′3P′4)

Since there are 99 positive integers greater than 1, not exceeding 100, we have
N (P′1P′2P′3P′4) = 99 − N (P1) − N (P2) − N(P3) − N(P4)

+ N (P1 P2) + N (P1 P3) + N (P1 P4) + N (P2 P3) + N (P2 P4) + N (P3 P4)
− N (P1 P2 P3) − N (P1 P2 P4) − N (P1 P3 P4) − N (P2 P3 P4) + N (P1 P2 P3 P4).

We know the number of integers not exceeding 100 (greater than 1) that are divisible by the

primes in a subset of {2, 3, 5, 7} is 



100
N




, where N is the product of primes in this subset. Hence
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N (P′1 P′2 P′3 P′4) = 99 − 


100
2





− 


100
3





− 


100
5





−




100
7





+ 



100
2 × 3





+ 



100
2 × 5





+ 



100
2 × 7





+ 



100
3 × 5





+ 



100
3 × 7





+ 



100
5 × 7





− 



100
2 × 3 × 5





− 



100
2 × 3 × 7





− 



100
2 × 5 × 7





− 



100
3 × 5 × 7





+ 



100
2 × 3 × 5 × 7





= 99 − 50 − 33 − 20 − 14 + 16 + 10 + 7 + 6 + 4 + 2 − 3 − 2 − 1 − 0 + 0
= 21

Hence, there are 4 + 21 = 26 primes not exceeding 100.
The principle of inclusion - exclusion is also used to find the number of onto functions from

a set with m elements to a set with n elements.  
Example 1.4.9 How many onto functions are there from a set with six elements to a set with

three elements.
Solution. Let codomain have 3 elements say b1, b2, b3. Let P1, P2, P3 be the properties that

b1, b2, b3 are not in the range of the function. Note that a function is onto iff it has none of the
properties. P1, P2 or P3. A function corresponds to a choice of one of the 3 elements in the
codomain for each of the 6 elements in the domain. Hence, by the product rule there 3.3.3.3.3.3
= 36 functions (by permutation technique). So N = 36. Note that N (Pi) is the number of functions

that do not have bi in their range. Hence there are two choices for the value of the function at
element of the domain. Therefore N (Pi) = 26. Further there are C (3, 1) terms of this kind.
Similarly N (PiPj) is the number of functions that do not have bi and bj in their range. So
N(Pi Pj) = 16 = 1. Further there are C (3, 2) terms of this kind. Note that N (P1 P2 P3) = 0, since
this term is the number of functions that have none of b1, b2, b3 in their range. Therefore, the
number of onto functions from a set with six elements to one with three elements is

36 − C (3, 1) 26 + C (3, 2) 16 = 729 − 192 + 3 = 540.
Note 1. Let m and n be positive integers with m ≥ n. Then, there are

nm − C (n, 1) (n − 1)m + C(n, 2) (n − 2)m − .... + ( − 1)n − 1 C (n, n − 1) 1m = n ! S2 (m, n)
onto functions from a set with m elements to a set with n elements. Here S2 (m, n) is a

stirling number of the second kind.
Note 2. Number of assignment of five different jobs to four different employees, if every

employee is assigned atleast one job is

45 − C (4, 1)35 + C (4, 2)25 − C (4, 3)15 = 1024 − 972 + 192 − 4 = 240 ways
Example 1.4.10. Hatcheck Problem
A new employee checks the hats of n people at a restaurant, forgetting to put claim check

number on the hats. When customers return for their hats, the checkers gives them back hats
chosen at random from the remaining hats. What is the probability that no one receives the correct
hat ?

Let us identify the hats with the integers 1 to n. Each way of giving back the hats is a
permutation of [n]. For instance, the permutation 1, 2, 3 ... n represents the case that each person
gets back their own hat. Let π be a permutation of [n]. If for all i, we have π(i) ≠ i,  then nobody
gets their own hat back. We call such permutations derangements.

Then the probability asked is  number of derangements of [n]
n!
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Hence our goal is to compute the number of derangements of [n]; we denote the set of
derangements by Dn and its cardinality by dn.

Let Sn be the set of the n! permutations of n elements and for each i with 1 ≤ i ≤ n;  let Ai be
the subset of all permutations π such that π(i) = i. We have

Dn = A1
c ∩ A2

c ∩ � ∩ An
c = Sn − (A1 ∪ A2 ∪ � ∪ An).

Hence, dn = n! − |A1 ∪ A2 ∪ � ∪ An|,
by the principle of inclusion exclusion,

dn = n! − ∑
i = 1

n

 |Ai| + ∑
1 ≤ i < j ≤ n

   |Ai ∩ Aj| − ∑
1 ≤ i < j < k ≤ n

    |Ai ∩ Aj ∩ Ak| + � +( − 1)n |A1 ∩ � ∩ An|.

The only thing left now is to count the sizes of the intersections.
� |Ai| = |


π ∈ Sn |π(i) = i


| = (n − 1)!, since the element i is fixed and we can permute

the remaining n − 1 in any way. Note that this is independent of the element i.
� |Ai ∩ Aj| = |


π ∈ Sn|π(i) = i, π(j) = j


| = (n − 2) !, since two elements are fixed and the

remaining n − 2 can be permuted arbitrarily. Again, the result is the same for all pairs
i, j.

In general,
|Ai1 ∩ Ai2 ∩ � ∩ Aik| = (n − k)!, for 1 ≤ i1 < i2 < � < ik ≤ n.

Therefore, dn = n! − ∑
i = 1

n

( − 1)i 


n
i




(n − i)! = n!  ∑
i = 0

n
( − 1)i

i!
.

Hence, the probability asked is ∑
i = 0

n ( − 1)i

i!
. Does this probability have a limit as n tends

to infinite? Recall the series expansion for the exponential function ex = ∑
i

≥  0  x
i

i!
 ; this series

converges for all real values of x. Hence, as n → ∞, the probability that nobody gets their own
hats gets closer to e − 1 ~ 0.37; actually, the rate of convergence is really fast, since the absolute
error is bounded by 1/(n + 1)!.            

Example 1.4.11. Euler�s φ function. Given a positive integer n, φ(n) is the number of
integers smaller than n that are relatively prime to n (including 1). For instance.

φ(2) = |

1



| = 1,      φ(3) = |


1, 2


| = 2,       φ(4) = |


1, 3


| = 2,      φ(5) = |


1, 2, 3, 4


| = 4.

Note that if n is prime, then φ(n) = n − 1, since all integers smaller than n are relatively
prime to n. Our goal is to find a formula for φ(n) for any integer n. We assume that we have the
decomposition of n into prime factors.

n = Π
i = 1

r

pi
αi,

where r is the number of distinct prime factors of n, the pi are the distinct prime factors, and
αi stands for their multiplicities.

The integers that are relatively prime with n are those that do not contain any of the pi as
a factor. This suggests to define Bi = 


m : m < n, pi |m


, that is, the set of integers smaller than

n that are divisible by pi.

Hence, φ(n) = |B1
c ∩ B2

c ∩ � ∩ Bn
c
|.

By inclusion-exclusion,
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φ(n) = n − Σ
i = 1

r

  |Bi| + Σ
1 ≤ i < j ≤ r

    |Bi ∩ Bj| − Σ
1 ≤ i < j < k ≤ r

     |Bi ∩ Bj ∩ Bk| + � + ( − 1)r |B1 ∩ � ∩ Br|.

Again, the problem reduces to computing the intersections of Bi�s. It is not difficult to show
that

|Bi1 ∩ � ∩ Bik| = |

m : m < n, pi1 � pik|m


| = n

pi1 � pik
.

Note that in this case the size of Bi1 ∩ � ∩ Bik not only depends on k but also on the specific
sets we intersect. Putting this into the formula given by inclusion-exclusion, we have

φ(n) = n − n 



Σ
1 ≤ i ≤ r

1
pi





+ n 



Σ
1 ≤ i < j ≤ r

1
pipj





+ � + ( − 1)rn 1
p1 � pr

,

which can be written more compactly as

φ(n) = 


1 − 1

p1








1 − 1

p2




 � 


1 − 1

pr




.

Example 1.4.12. Five gentlemen A, B, C, D, E attend a party, where before joining the party,
they leave their over coats in a clock room. After the party, the overcoats get mixed up and are
returned to the gentlemen in a random manner. Using principles of inclusion and exclusion, find
the probability that none receives his own coat.

Solution. The probability is 
D5

5!
 where 

D5 = 5! 

1 − 1

1!
+ 1

2!
− 1

3!
+ 1

4!
− 1

5!




= 5! [0.3667]

So 
D5

5!
= 0.3667

Example 1.4.13. Find the number of r-digit quintary sequences (made up to digits 0, 1, 2,
3, 4) that contain at least a 0, a1, and a2 by using principle of inclusion and exclusion.

Solution. Let N be the number of r-digit quintary sequences. Then N = 4r. Let P1, P2, P3
respectively denote the number of r-digit quintary sequences that contain no 0�s, 1�s and no 2�s.
Then the number of r-digits quintary sequences that contain atleast a0, a1, and a2 is

N (P′1P′2P′3) = N − N (P1) − N(P2) − N (P3) + N(P1P2)
+ N(P1 P3) + N(P2 P3) − N (P1 P2 P3)

= 4r − 3r − 3r − 3r + 2r + 2r + 2r − 1 = 4r − (3 . 3r) + 3.2r − 1
Example 1.4.14. A student wants to make up a schedule for a seven day period during which

she will study one subject each day. She is taking four subjects : Mathematics, Economics,
Physics, Chemistry. Find the number of schedules that devote atleast one day to each subject.

Solution. There are 47 different schedules. Let A1, A2, A3, A4 denote the set of schedules in
which Mathematics, Economics, Physics, Chemistry respectively is not included. Then A1 ∪
A2 ∪ A3 ∪ A4 is the set of schedules in which one or more subjects is not included. Now

 |A1| = |A2| = |A3| = |A4| = 37

|A1 ∩ A2| = |A1 ∩ A3| = � = |A3 ∩ A4| = 27

|A1 ∩ A2 ∩ A3| = |A1 ∩ A2 ∩ A4| = |A1 ∩ A3 ∩ A4| = |A2 ∩ A3 ∩ A4| = 17

|A1 ∩ A2 ∩ A3 ∩ A4| = 0
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Hence,   

|A1 ∪ A2 ∪ A3 ∪ A4| = 4(37) − 6 (27) + 4.

Hence schedules in which all subjects will be included = 47 − (4 (37)) − 6(27) + 4)
Exercise 1.4
1. Out of a total of 130 students, 60 are wearing hats to class, 51 are wearing scarves and 30 are

wearing both hats and scarves. Out of 54 students who are wearing sweaters, 26 are wearing hats, 21 are
wearing scarves, and 12 are wearing both hats and scarves. Every one wearing neither a hat nor a scarf
is wearing gloves.

(a) How many students are wearing gloves ?
(b) How many students not wearing a sweater are wearing hats but not scarves ?
(c) How many students not wearing a sweater are wearing neither a hat nor a scarf.

2. Of a graduating class of 153 computer science branch students, 63 have taken English composition
(EC), 54 have taken Technical writing (TW),62 have taken Report writing (RW), 43 have taken EC and
TW, 46 have taken EC and RW, 45 have taken TW and RW and 37 have taken all the three courses. How
many of the students have not taken any one of these three courses ? Use a Venn diagram and obtain the
result.

3. Two programs are running simultaneously. First requires 1200 bytes of memory, second requires
900 bytes. If 200 bytes can be shared what is the total number of bytes that must be allowed to run both
the programs.

1.5 PARTITIONS
A partition or quotient set of a nonempty set A is a collection P of nonempty subsets

A1, A2, �, of A such that
(i) A1 ∪ A2 ∪ � = A (ii)  Ai ∩ Aj = φ    for i ≠ j

The sets in P are called the blocks or cells of the partition.

Example 1.5.1. Let A = 

a, b, c


. Find all the partitions of A.

Solution . {{a, b}, {c}}, {{a}, {b}, {c}}, {{a}, {b, c}}, {{a, c}, {b}} are the possible partitions of A.

Example 1.5.2. Let Z = set of all integers, Z+ =  set of all even integers, Z− =  set of all odd
integers, then. 


Z−, Z+



 is a partition of Z.

Example 1.5.3. Let A = {a, b, c, d, e, f, g, h}. Consider the following subsets of A.
A1 = 


a, b, c, d


 A2 = 


a, c, e, f, g, h




A3 = 

a, c, e, g


 A4 = 


b, d


 , A5 = 


f, h



.

Then 


A1, A4




 is not a partition, since A1 ∩ A2 ≠ φ.

{A1, A5} is not a partition, since e ∉ A1 and e ∉ A5. The
collection P = 


A3, A4, A5



 is a partition of A.

Theorem 1.5.4. Let 


A1, A2, �, An




 be a partition of a

set A and B be any nonempty subset of A. Then



Ai ∩ B  :  Ai ∩ B ≠ φ



 is a partition of A ∩ B.

Proof : By definition of partition
A1 ∪ A2 ∪ � ∪ An = A and Ai ∩ Aj = φ for i ≠ j. Let B be
any subset of A. Since A1, A2, � An are subsets of A, A1 ∩ B, A2 ∩ B,..., An ∩ B are subsets of
A ∩ B. By applying distributive law repeatedly, we get

(A1 ∩ B) ∪ (A2 ∩ B) ∪ � ∪ (An ∩ B) = (A1 ∪ A2 ∪ � ∪ An) ∩ B = (A ∩ B) and
(Ai ∩ B) ∩ (Aj ∩ B) = Ai ∩ B ∩ Aj ∩ B = (Ai ∩ Aj) ∩ B = φ ∩ B = φ,

since for i ≠ j, Aj ∩ Aj = φ,

B1 B2

A1 A2 A3 A4

Fig. 1.7
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Hence 


Ai ∩ B  :  Ai ∩ B ≠ φ



 is a partition of A ∩ B.

Exercise 1.5. 
1. Find all the partitions of the set A = {0, 1, 2}.

1.6 MINSETS
Let B1 and B2 be subsets of a set A. Consider the Venn diagram (Fig. 1.7).
Let the sets A1, A2, A3, A4 be described with B1 and B2 as follows.

A1 = B1 ∩ B2
C

A2 = B1 ∩ B2

A3 = B1
C ∩ B2 A4 = B1

C ∩ B2
C

Each of the A′i s is called a minset or minterm generated by B1 and B2.

Note that for given two sets B1 and B2 there are 22 minsets. If B1, B2, B3 are three sets given,
there are 23 minsets. In general for subsets B1, B2, � , Bn of A, there are 2n minsets. Generally,
we define minset as :

Definition 1.6.1. Let A be a set. Let 

B1, B2, �, Bn



 be set of subsets of A. A set of the form

D1 ∩ D2 ∩ � ∩ Dn, where each Di may be either Bi or Bi
C is called a minset or minterm generated

by B1, B2, �, Bn.

Example 1.6.2. Let A ={1, 2, 3, 4, 5, 6, 7, 8, 9}. Find the minsets generated by 
B1 = 


5, 6, 7


, B2 = 


2, 4, 5, 9


,

B3 = 

3, 4, 5, 6, 8, 9


.

Solution : B1
C ∩ B2

C ∩ B3
C = 


1



, B1 ∩ B2 ∩ B3 = 


5



,

B1 ∩ B2
C ∩ B3 = 


6



,     B1

C ∩ B2 ∩ B3 = 

4, 9


,

B1
C ∩ B2

C ∩ B3 = 

3, 8


, B1 ∩ B2

C ∩ B3
C = 


7



,

B1
C ∩ B2 ∩ B3

C = 

2



,  B1 ∩ B2 ∩ B3

C = ϕ
The above sets are the minsets generated by B1, B2, B3

Example 1.6.3. Consider the following set 
A = 


1, 2, 3, 4, 5, 6


 with subsets B1 = 


1, 3, 5


, B2 = 


1, 2, 3


. Then find the minsets generated

by B1 and B2.
Solution. Note that

B1 ∩ B2 = 

1, 3




B1
C = 


2, 4, 6


, B2

C = 

4, 5, 6




B1 ∩ B2
C = 


5





B1
C ∩ B2 = 


2





B1
C ∩ B2

C = 

4, 6




Then B1 ∩ B2, B1 ∩ B2
C, B1

C ∩ B2, B1
C ∩ B2

C are the minsets generated by B1 and B2. Since the
minsets are mutually disjoint and their union is the given set A, the minsets forms a partition
of A.

Theorem 1.6.4. Let A be a set and let B1, B2, ...., Bn be subsets of A. The set of nonempty
minsets generated by B1, B2,..., Bn is a partition of A.

Proof follows by Theorem 1.5.4.
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Definition 1.6.5. A set is said to be minset normal (or canonical) form, when it is expressed
as the union of distinct nonempty minsets or it is empty.

1.7 DUALITY PRINCIPLE FOR SETS
Let S be any identity involving sets and operations - complement �C�, intersection ∩, and

union ∪. If S∗ is obtained from S by making the substitution ∩ for ∪, ∪ for ∩, φ for U, U for φ,
then the statement S∗ is true, and is called the dual of the statement S.

Example. The dual of A ∪ (B ∩ A) = A is A ∩ (B ∪ A) = A.
The dual of minset is maxset which is defined as
Definition 1.7.1 Let 


B1, B2, ..., Bn



 be  a set of subsets of  a set A. A set of the form

D1 ∪ D2 ∪ � ∪ Dn, where  each  Di may be either Bi or Bi
C is called a maxset generated by

B1, B2, �, Bn.
Note that a set is said to be in max set normal form when it is expressed as the intersection

of distinct nonempty maxsets or it is empty.
Example 1.7.2. Let A = {1, 2, 3, 4, 5, 6,}. Let B1 = 


1, 3, 5


, B2 = 


1, 2, 3


. Find the max sets

generated by B1 and B2.

Solution. Note that B1
C = 


2, 4, 6


, B2

C = 

4, 5, 6




B1 ∪ B2
C = 


1, 3, 4, 5, 6


, B1

C ∪ B2 = 

1, 2, 3, 4, 6


.

B1 ∪ B2 = 

1, 2, 3, 5


, B1

C ∪ B2
C = 


2, 4, 5, 6




Hence B1 ∪ B2
C, B1 ∪ B2, B1

C ∪ B2, B1
C ∪ B2

C are the maxsets generated by B1 and B2. Note
that the set of maxsets does not constitute a partition of A.

Exercise 1.7
1. State the dual of

(a) A ∪ (B ∩ A)C = A

(b) (A ∪ BC)C ∩ B = AC ∪ B
2. Let A = { 1, 2, 3, ...., 9 } and let B1 = 


5, 6, 7


, B2 = 


2, 4, 5, 9


, B3 = 


3, 4, 5, 6, 8, 9


.

(i) Find all max sets generated by B1, B2, B3.
(ii) Illustrate via a Venn diagram all minsets obtained in part A.

(iii) Express the following sets in maxset normal form B1
C, B1 ∪ B2, B2

C ∪ B2
C.

(iv) Find the dual of (i), (ii) and (iii).
3. Is the dual of Theorem 1.5.4 true ? Why ?

1.8 PERMUTATION AND COMBINATION (Generalized)
Permutation : Let A be a set. A permutation of A is an ordering of the elements of A.
Example 1.8.1. Suppose there are r distinct colored balls together with n distinct numbered

boxes are given, where a box can hold only one ball. In how many distinct ways we place the r
balls in n distinct boxes.

Solution. The first ball can be placed in any one of the n boxes, the second ball can be placed
in any one of the remaining (n � 1) boxes, the third ball can be placed in any one of the remaining
(n � 2) boxes, ...... rth ball can be placed in any one of the (n � r + 1) boxes. So the total number
of balls is given by rule of product as n (n � 1) (n � 2) ........ (n � r + 1). For ready reference we
give Rule of sum and Rule of product.

Rule of sum. If an event can occur in m ways and another event can occur in n ways there
are m + n ways in which exactly one event can occur.
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Rule of product. If  there are m outcomes for event E1 and n possible outcomes for event
E2, then there are mn outcomes for the composite event E1 E2. If there are mi outcomes of an
event Ei, i = 1 to k, then there are m1 × m2 × � × mk, outcomes for a designated order of k events.

Remark 1.8.2. If A has n elements then the number of possible permutations of r elements
taken from A is

P (n ; r) = n (n − 1) (n − 2) � (n − r + 1) = n!
(n − r)!

Example 1.8.3. Find the number of three letter words using the given six letters with out
repeating any letter in a given word.

Solution. The first letter can be chosen in six different ways and the second letter can be
chosen in five different ways, the last letter can be chosen in four different ways. So

P (6 ; 3) = 6 . 5 . 4 = 120
There are 120 three letter words possible for the given six letters.
Example 1.8.4. In how many ways can 5 boys and 5 girls be seated around a table so that

no boys are adjacent.
Solution. We fix one seat for a boy, the remaining boys can sit in 4! ways on the alternate

seats. The girls can sit in 5! ways on 5 seats. Thus boys and girls can sit in 5!  ×  4! ways.
Permutation with repetition
Theorem 1.8.5. The number of permutations of n objects of which n1 are alike, n2 are

alike,.... nr are alike is
n!

n1! n2! .... nr!

Note. The permutation of n things, with repetition, taken r at a time is nr.
Example 1.8.6. In how many ways we place r colored balls into n numbered boxes if a box

can hold any number.

Solution. P (n ; r) = nr.
Example 1.8.7. Find the number of permutations of the word ACCOUNTANT, and EN-

GINEERING.
Solution. The total number of letters in the word ACCOUNTANT is 10 of which 2 are A�s,

2 are C�s and 2 are T�s, and 2 are N�s and other two letters are different. Therefore number of
permutations is

10!
2! 2! 2! 2!

Since word ENGINEERING has 11 letters of which 3 are E�s, 3 are N�s, 2 are G�s and 2 are
I�s, the number of permutations are

11!
3! 3! 2! 2!

Example 1.8.8. How many words can be formed from the letters of the word MONDAY if
(a) 4 letters are used at a time (b) All letters are used together
(c) All letters are used but first is vowel

Solution. There are six letters in MONDAY.
(a) We have to find the number of permutations of 6 letters taken 4 at a time. The required

result is P (6 ; 4) = 6 . 5 . 4 . 3 = 360.
(b) P (6 ; 6) = 6 . 5 . 4 . 3 . 2 . 1 = 720
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(c) Since O and A are the vowels in the word MONDAY, and in its permutation�s first
place will be filled in only two ways and the rest five places may be filled by 5 ways.
Thus the total number of words  = 2! P(5 ; 5) = 2! 5! = 240.

Example 1.8.9. In how many ways the letter of the word COMPUTING be arranged so that
the letters N and G are not together in any arrangements.

Solution. Denote the letters (N, G) by a single letter A. So we have A, C, O, M, P, U, T, I to
be arranged. Since the above letters can be arranged in 8! ways and in each one of these
arrangements the letters N and G can be permuted in 2! ways. So by rule of product the number
of arrangement in which N and G occur together is 8! × 2!. In the word �COMPUTING� there are
9 letters, so 9! arrangements are possible. The required number of arrangements in which N
and G are not together is 9! − 8! × 2! = 7 × 8!.

Example 1.8.10. How many odd number of 3 digits can be formed with the figures 1, 2, 3,
4, 5 ?

Solution. The 3 digit number to be odd depends on the last digit. So the last digit is either
1 or 3 or 5. The last digit can be chosen in 3 ways and the first and second digits can be chosen
in 5 ways each. Hence the number of 3 digit number which is odd is 5 × 5 × 3 = 75.

COMBINATION
A permutation of objects involves ordering, where as a combination does not take ordering

into account.

Definition 1.8.10. Let A be a set having n elements then the number of combinations of n
elements taken r at a time is given by

C (n ; r) = nCr = 


n
r





= n!
(n − r)! r!

 , 


n
r




 is the binomial coefficient.

Example 1.8.11. Find the number of strings of 0�s and 1�s having length n that contains
exactly r 1�s.

Solution. We choose the number of strings of length n having r 1�s in nCr ways.

Example 1.8.12. Out of 7 consonants and 4 vowels how many words can be made each
containing 3 consonants and 2 vowels.

Solution. The number of ways of choosing the three consonants is 7C3 and the number of
ways of  choosing the 2 vowels is 4C2.

Since each of the first groups can be associated with each of the second, the combined groups
each containing 3 consonants and 2 vowels is 7C3 × 4C2. Further each of these groups contains
5 letters, which may be arranged among themselves in 5! ways. So the required number of words
is 7C3 × 4C2 × 5!.

Theorem 1.8. (Binomial Theorem).

(x + y)n = Σ
k = 0

n

( n
k

) nn − k yk

This follows from the indentity (1 + x)n = Σ
k = 0

n

C(n, k) xk

Since (x + y)n = xn (1 + (y/x))n,  the coefficient of  xn (y/x)k in (x + y)n is C(n, k).

Note. The quantity 
(r1 + r2 + � + rn)!

r1! r2! � rn!
 is called a multinomial coefficient and is denoted
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r1 + r2 + � + rn
r1, r2, �, rn





Given a set with r1 + r2 + � + rn elements, the multinomial coefficient 


r1 + r2 + � + rn
r1, r2, �, rn




 repre-

sents the number of ways to choose r1 elements, then r2 of the remaining elements, and so forth.
Multinomial coefficients also arise in the Multinomial Theorem, a generalization of the

Binomial Theorem. The result is stated below, but not proved.

(Multinomial Theorem).

(x1 + x2 + � + xn)r = Σ
r1 + r2 + � + rn = r





r
r1, r2, �, rn





xr1 xr2 � xrn

Example 1.8.13. What is the coefficient of x4 in the expansion of (1 + x + 2 x2)5.
Solution.

(1 + x + 2x2)5 = Σ 5!
r! s! t!

(1r . xs (2x2)t)

x4 occurs in 3 cases :

(i) r = 3, s = 0, t = 2,  coefficient = 5!
3! 0! 2!

= 40

(ii) r = 2, s = 2, t = 1,   coefficient = 5! × 2
2! 2! 0!

= 60

(iii) r = 1, s = 4, t = 0,    coefficient = 5! × 1
4! × 1! × 0!

= 5

Hence the answer is 40 + 60 + 5 = 105.

Combinations with Repetition
Now we move from permutations with repetition to combinations with repetition. Let S be

the set 

A, B, C


. This set has three 2-combinations. That is, there are three ways to choose two

distinct elements of S where order does not matter. The three 2-combinations of S are shown
below:



A, B






A, C






B, C




Suppose that we are not required to choose distinct elements of S, but rather can choose the
same element repeatedly. The resulting sets are called the r-combinations with repetition of the
set S. Listed below are the six 2-combinations with repetition of S.



A, B






A, C






B, C






A, A






B, B






C, C




Strictly speaking, these are multisets (bags), not sets, since an element may appear multiple
times.

Counting r-Combinations with Repetition
The following theorem gives a nice formula for the number of r-combinations with repetition

of an n-element set.
Theorem 1.8.13. The number of r-combinations with repetition of an n-element set is




n + r − 1

r




in other words, the number of solutions to the equation a1 + a2 + � + an = r, ai ≥ 0, ai ∈ N, is



n + r − 1

r
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In the example above, we found six ways to choose two elements from the set S = 

A, B, C




with repetition allowed. Sure enough, the theorem says that the number of 2-combinations of a

3-element set is 

3 + 2 − 1

2




= 6.

For comparison, recall that the number of ordinary r-combinations of an n-element set is



n
r




. Every ordinary r-combination is also a valid r-combination with repetition. So, as one would

expect, the number of r-combinations with repetition is greater if r > 1.
The proof of this theorem uses an important trick called ��stars and bars��.
Proof. Let S be a set with n elements that are ordered in some way. We will establish a

bijection between r-combinations with repetition of the set S and strings of stars and bars.
Let R be a particular r-combination with repetition of S. Write down n − 1 bars. These

n − 1 bars divide the line into n regions.
|          |          |          �            |

n − 1 bars define n regions
Put one star in the i-th region for each time that the i-th element of S appears in R. This

procedure maps each r-combination with repetition to a string with r stars and n − 1 bars.
(For example, let S be the set 


A, B, C, D, E


, with elements ordered alphabetically. Let R

be the 7-combination with repetition A, B, B, B, D, E, E

. The stars-and-bars string correspond-

ing to R is shown below.
∗
A  ∗ ∗ ∗

B, B, B  | |  ∗
D  |  ∗ ∗

E, E
The two bars with no stars between indicate that element C never appears in R.)
This mapping is a bijection because it has an inverse. That is, given any stars-and-bars

string, we can construct the corresponding r-combination with repetition. The number of stars
in the first region determines the number of times that the first element of S appears in the
r-combination, the stars in the second region determine the number of times that the second
element appears, etc.

Since, the mapping is a bijection, the number of r-combinations with repetition of an
n-element set is equal to the number of strings containing n � 1 bars and r stars. The number
of such strings is equal to the number of ways to choose r distinct positions for the stars in a
string of n + r − 1 stars and bars. This is the number of ordinary r-combinations of a set with
n + r − 1 elements, which is 


n + r − 1

r



.

Example 1.8.14. Suppose that a sequence of n items has ni identical objects of type i, for i =
1, ..., t, then the number of orderings of S is

n!
n1! n2! � nt!

Proof.
There are C(n, n1) ways of choosing n1 positions for object 1.
With these chosen, there are C(n − n1, n2) ways for object 2 etc.
Hence, number of orderings is
C(n, n1) C(n − n1, n2) C(n − n1 − n2, n3) � C(n − n1 − � − nt − 1, nt)

= n! (n − n1)!
n1! (n − n1)! n2!(n − n1 − n2)! � = n!

n1! n2! � nt!
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Example 1.8.15. Consider 3 books, a computer science, a mathematics and an electronics
book. Suppose that the library has at least 6 copies of each. In how many ways can we select 6
books ?

We could have
CS M E

XXX               | XX            | X
or we could have

CS M E
              | XXXX | XX etc.

The ordering of 2|�s and 5 X�s make a selection
Total number of selections = C(8, 2) = C(8, 6) = 28.

Example 1.8.16. Prove n 


n − 1
r − 1





= 


n
r





r

Proof. Consider choosing a committee of size r and a leader, from n people. One way is to
first pick the leader and then his r � 1 subjects; this can be done in n 



n − 1
r − 1




 ways. Another way

is to pick the r committee members first and then pick a leader from among them; this can be
done in 


n
r





r ways. Thus,

n 


n − 1
r − 1





= 


n
r





r.

Now an important theorem due to Pascal:
Theorem 1.8.17. (Pascal) Suppose 1 ≤ r ≤ n − 1. Then




n
r





= 


n − 1

r




+ 


n − 1
r − 1





Algebraic proof.



n − 1

r




+ 


n − 1
r − 1





= (n − 1)!
r!(n − 1 − r)! + (n − 1)!

(r − 1)!(n − r)!

= (n − r) (n − 1)!
r!(n − r)! + r (n − 1)!

r!(n − r)! = n (n − 1)!
r!(n − r)! = n!

r!(n − r)! = 


n
r





Combinatorial proof. We use case analysis (a tree diagram) and the sum rule. Let S ::
= 


1, � , n


. Let A be the set of r-element subsets of S. Let B be the set of r-element subsets of S

that contain n. Let C be the set of r-element subsets of S that don�t contain n.
Then A = B ∪ C, and B and C are disjoint. So |A| = |B| + |C|,  by the Sum Rule. But now

we can get expressions for |A|, |B| and |C| as numbers of combinations:

|A| = 


n
r




.

Course Notes 9 : Permutations and Combinations

|B| = 


n − 1
r − 1




.

This is because, in addition to n, another r − 1 elements must be chosen from 

1, � , n − 1


.

|C| = 


n − 1

r



.

This is because r elements must be chosen from {1, ..., n � 1}.
So (by the Sum Rule)
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n
r





= |A| = |B| + |C| = 


n − 1
r − 1





+ 


n − 1

r



.

Pascal�s theorem has a nice pictorial representation: The row represents n, starting with 0
in the top row. Successive elements in the row represent r, starting with 0 at the left.

(Note that it�s just the double-induction matrix ��reshaped��.)
This triangle has lots of nice properties. Experiment with it. For example, what happens if

we add the coefficients in one row?
For the following two theorems we provide their combinatorial proofs, only. The correspond-

ing algebraic proofs are easy inductive arguments.
Theorem 1.8.18. Suppose n is any natural number. Then

Σ
r = 0

n



n
r





= 2n.

Combinatorial proof. We use case analysis and the sum rule for disjoint unions. There
are 2n different subsets of a set of n elements. Decompose this collection based on the sizes of
the subsets. That is, let Ar be the collection of subsets of size r. Then the set of all subsets is the
disjoint union UrAr. These are 


n
r




 subsets of size r, for r = 0, 1, ..., n. Hence the theorem follows.

Theorem 1.8.19. (Vandermonde). Suppose 0 ≤ r ≤ m, n. Then




m + n

r




= Σ
k = 0

r 



m
r − k








n
k





Combinatorial proof. We use case analysis with the sum and product rules. Suppose there
are m red balls and n blue balls, all distinct. There are 


m + n

r



 ways to choose r balls from the

two sets combined. That�s the LHS. Now decompose this collection of choices based on how many
of the chosen balls are blue. For any, k, 0 ≤ k ≤ r, there are 


m

r − k



 ways to choose r − k red balls,

and 

n
k




 ways to choose k blue balls. By the product rule, that makes 


m

r − k







n
k




 ways to choose r

balls such that k of them are blue. Adding up these numbers for all k gives the RHS.
Restricted Combination

(i) The number of combinations on n things taken r at a time in which p particular things
always occur is n − pCr − p

Figure 6: Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

44 6 
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(ii) The number of combinations on n things taken r at a time in which p particular things
never occur is n − pCr.

Example 1.8.20. Find the value of r if 18Cr = 18Cr + 2.
Solution. Since  nCr = n Cn − r, 18Cr = 18C18 − r.   Given  18Cr = 18Cr + 2. So 18Cr + 2 =

18C18 − r. This implies r + 2 = 18 − r, which implies r = 8.

Example 1.8.21. In how many ways can 14 books from a set of 20 be arranged on 3 shelves,
if 6 books are to be placed on first shelf, 3 on the second, and 5 on the third.

Solution. On the first shelf, 6 books can be arranged in C (20 ; 6) ways. In the second shelf,
3 books can be arranged in C (14 ; 3) ways. On the third shelf 5 books can be arranged in C (11,
5) ways. Hence applying product rule there are C (20, 6) C (14, 3) C (11, 5) ways to arrange 14
books in the required manner.

Theorem 1.8.22. If X is a set containing t elements the number of unordered, k element
selection from X, repetitions allowed is

C (k + t − 1, t − 1) = C (k + t − 1, k).
Proof. Let X = 



a1, a2, � at




. Consider the k + t − 1 slots. Here k + t − 1 symbols consisting

of k x�s and (t − 1) y�s. Each placement of these symbols into the slot determine a selection. The
number n1 of x�s up to the first y′ represents the selection of n1 a1′s ; the number n2 of x�s between
the first and second y�s represents the selection of n2 a2�s so on. Since there are
C (k + t − 1, t − 1) ways to select the positions for the y�s there are also C (k + t − 1, t − 1)
selections. This is the same as the number C(k + t − 1, k) of ways to select the positions for the
x�s ; hence there are C (k + t − 1, t − 1) = C (k + t − 1, k) unordered k-element selection from x,
repetitions allowed.

Example 1.8.23. Suppose that there are piles of red, blue, and green balls and that each pile
contains at least eight balls. In how many ways we can select eight balls.

Solution. The number of ways of selecting eight balls is 
C(8 + 3 − 1, 3 − 1) = C (10, 2) = 45.

Example 1.8.24. How many solutions does the equation
x1 + x2 + x3 = 11

have, where x1, x2, x3 are non-negative integers ?
Solution. To count the number of solutions, note that a solution corresponds to a way of

selecting 11 items from a set with three elements, so that x1 item of type 1, x2 item of type 2,
and x3 item of type 3 are chosen. Hence the number of solutions is equal to the number of
11-combinations with repetition allowed from a set with three elements are

C (3 + 11 − 1, 11) = C (13, 11) = C (13, 2) = 13 × 12
1 × 2

= 78 Solutions.

Note. For the problem if the constraints x1 ≥ 1, x2 ≥ 2, x3 ≥ 3 are included, then the solution
to the equation subject to these constraints corresponds to a selection of 11 items with x1 items
of type one, x2 items of type 2, x3 items of type 3, in addition, there is atleast one item of type
one, two items of type 2, 3 items of type 3. So choose one item of type 1, two item of type 2, 3
item of type 3. Then select five items. Hence, this can be done in C (3 + 5 − 1, 5) = C (7, 5)

= C (7, 2) = 7 × 6
1 × 2

= 21 ways. There are 21 solutions.

Example 1.8.25. How many ways are there to place ten indistinguishable balls into eight
distinguishable bins ?

24 DISCRETE MATHEMATICS



Solution. The number of ways to place ten indistinguishable balls into eight bins equals
the number of 10 combinations from a set with 8 elements when repetition is allowed. Hence

C (8 + 10 − 1, 101) = C (17, 10) = 17!
10! 7!

= 19, 448

Example 1.8.26.
1. A college library has 40 text books on sociology and 50 text books dealing with

anthropology. By the rule of sum, a student at this college can select among 40 + 50 =
90 text books in order to learn more about one or the other of these two subjects.

2. The drama club of a college is holding tryout for a play. With six men and 7 women
auditioning for the leading male and female roles, by the rule of product the director
can cast his leading couple in 6 × 7 = 42 ways.

3. In a set of 20 administrators 15 are graduates and the rest are not. In how many ways
a committee of 4 can be formed so that 3 are graduates and one is not a graduate.

Solution. There are 15 graduates and 5 non-graduates 3 graduates from 15 graduates can
be selected in 15 C3 ways and at the same time one non-graduate can be selected in 5C1 ways.
Hence the required answer is 15 C3 × 5C1.

4. How many digits between 1000 and 104 contain exactly one 8 and one 9.
Solution. The maximum number of digits a number can contain is 4. Of the 4 positions, 8

and 9 can be placed in (4 × 3) ways. The remaining 2 positions can be placed by any of the
remaining 8 digits (0, 1, 2 ..... 7) in (8 × 8) ways. Hence the required number is 4 × 3 × 8 × 8.

5. How many 5 letter words can be formed when the first and last letters are
(a) Consonants, (b) Vowels and (c) Vowels and the middle letters being consonants

Solution. (a) The first and last letters, which must be consonants can be chosen in
(21 × 21) ways ; in the remaining 3 positions, any of the 26 letters can appear. Hence the required
number is (21 × 21) × (26 × 26 × 26)

(b) If the first and last letters should be vowels, (5 × 5) × (26 × 26 × 26) arrangements are
possible.

(c) Vowels can be chosen in the first and last positions in (5 × 5) ways and consonants for
the three middle positions in (21 × 21 × 21) ways. Hence the required number is
(5 × 5) × (21 × 21 × 21).

6. How many 5-letter words can be formed from the word WARIWASSU ?
Solution. We have 2 W�s, 2 A�s, 2 S�s, and the remaining letters appear once.
Case 1. Any two letters be same and the remaining 3 letters are different. It can be done in

3C1 × 5C3 ways. The number of permutations of each of these is 
5!

(5 − 3) !. Hence the required

answer in this case is 3C1 × 5C3 × 5!
2!

.

Case 2. Two pairs of same letter and one letter is different. Out of 3 pairs we can choose 2
pairs in 3C2 ways and the one letter from the remaining can be done in 4C1 ways and the number

of permutations of each of these is 5!
2! × 2!

, thus giving 3C2 × 4C1 × 5!
4

.

Case 3. All 5 letters are different. Hence the number of arranging a words in 6P5 ways.
The required number is

        3C1 × 5C3 × 5!
2!

+ 3C2 × 4C1 × 5!
2! × 2!

+ 6P5
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Example 1.8.27. (Counting Poker Hands)
In the poker game five-card draw, each player is dealt a hand consisting of 5 cards from a

deck of 52 cards. Each card in the deck has a suit (clubs ♣, hearts ♥, diamonds ◊, or spades ♠)
and a value (A, 2, ... 10, J, Q, k).

The order in which cards are dealt does not matter. Two cards are a pair if they have the
same values.

(i) How many different hands are possible in 5-card draw.
(ii) How many hands are there with four-of-a-kind? For example, 9 ♠, 4 ♦, 9 ♣, 9 ♠, 9 ◊

has a four-of-a kind, because there are four 9�s.
(iii) How many 5 card hands consists of a pair and a triple (In poker, such a hand is called

a �full house�) (e.g. : 7 ♠, 7 ◊, J ♣, J ♠, J ◊)
(iv) How many 5 card hands consists of 2 pairs.
(v) How many 5-card hands consists of cards from a single suit?

Solution. (i) A hand is just a 5-card subset of the 52 card deck. The possible hands in 5-card

draw are exactly the 5-combinations of a 52-element set. There are 52C5 = 52!
47! 5!

= 2,596,960

possible hands.
(ii) Choose one value to appear in all four suits from the set of 13 possible values. There are

13 choices of this value, and if we pick one we can�t have any others (that would require 8 cards).
So the choice of value gives 13 disjoint cases to count. Then we have to choose one more card
from the remaining set of 48. This can be done in 48C1 = 48 ways. In total there are 13 × 48
= 624 hands with four-of-a kind.

(iii) We can choose the value that appears three times in 13 ways. Then we can pick any
three of the four cards in the deck with this value, and can be done in 4C3 = 4 ways. There are
then 12 remaining choices for the value that appears two times. We can pick any two of the four
cards with this value, and can be done in 4C2 = 6 ways. Hence the total number of full house is
13 × 4 × 12 × 6 = 3744.

(iv) Choose the values for the two pairs in 13C2 ways and choose the 2 suits for the pair with
the larger value in 4C2 ways. Then choose the suits for the pair with the smaller value in 4C2
ways and choose the remaining cards from the 4 × 11 cards that have different values from the
pairs. The required number is 13C2 × 4C2 × 4C2 × 44 = 123,552.

(v) For each of the 4 suits there are 13C5 5-card hands. Hence there are a total of 4 × 13C5
such  hands.

Generation of permutations and combinations.
Suppose we want to write down the n ! permutations of n distinct objects. For n = 3, there

are only six permutations. For n = 4, there are 24 permutations, so there is no difficulty in
writing all the permutation. Now we give a procedure which generate all the permutations
exhaustively with no repetitions in some order called lexicographic order. Suppose {1, 2, 3,.....,
n} be the n objects to be permuted. For two permutations a1 a2 ...... an and b1, b2 ..... bn, we say
a1 a2 ..... an comes before b1 b2 .... bn in the lexicographic order if, for some 1 ≤ m < n, a1 = b1,
a2 = b2, ......, am − 1 = bm − 1, and am < bm. For example, the permutation 124635 comes before the
permutation 125643, and the permutation 125463 comes after the permutation 125346.

Suppose we were given a permutation a1 a2 ..... an. According to lexicographic order we
compute the next permutation b1 b2 ..... bn as follows.

1. ai = bi  1 ≤ i ≤ m − 1, and am < bm for the largest possible m.
2. bm is the smallest element among am + 1, am + 2, .... an that is larger than am.
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3. bm + 1 < bm + 2 < ..... < bn

For example, the permutation following 124653 in the lexicographic order is 125346. For a
given permutation a1 a2 ..... an we note that the largest possible m for which (1) is satisfied is
the largest possible m for which am is less than at least one of am + 1, am + 2, .... an. Also, it is
possible that am < am + 1. Therefore, if we examine the permutation a1 a2 .... an element by
element from right to left, the first time we observe a decrement, we know the value of m and
can determine bm bm + 1 .... bn according to (2) and (3). For example, suppose we were given the
permutation 124653. When we scan the permutation from right to left element by element,
according to (1), we determine that the next permutation is of the form 12 xxxx. In other words
the subscript m = 3. According to (2), we can further determine that the next permutation is of
the form 125 xxx. Finally, according to (3), we determine that the next permutation is 125346.
(Actually, we can make use of the fact that am + 1 > am + 2 > ...... > an to carry out steps 2 and 3 in
a rather simple manner).

This observation leads immediately to a systematic procedure for generating the n !
permutations of n objects by starting with the permutations 1234.....n and stopping at the
permutation n......4321.

Suppose we want to generate all subsets of size k of the set {1, 2, 3,....., n}. Introduce a
lexicographic order of the subsets, let us agree first that each subset will be represented by a
sequence with the elements in the subset arranged in increasing order. We can then arrange
the sequences according to the lexicographic order. For example, the subsets of size 4 of {1, 2,
3, 4, 5, 6} are represented and ordered as

1234
1235
1236
1245
1246
1256
1345
1346
1356
1456
2345
2346
2356
2456
3456

Along exactly the same line as our procedure to generate permutations, let us observe how
we can design a procedure to generate all subsets of size k of the set {1, 2, ....., n}. Let
a1 a2 .... ak be a subset with size k.

It can be shown that the next subset with size k b1 b2 ...... bk according to the lexicographic
order must be such that

1. ai = bi   1 ≤ i ≤ m − 1 and am < bm for the largest possible m.
2. bm = am + 1.
3. bj + 1 = bj + 1 for m ≤ j ≤ k − 1.
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In the sequence a1 a2 ..... ak, we define the maximum possible value of aj to be n − k + j. Thus,
the maximum possible value of aj to be n − k + j. Thus, the maximum possible value of ak is n,
the maximum possible value of ak − 1 is n − 1, the maximum possible value of ak − 2 is n − 2, ....
and the maximum possible value of ai is n − k + 1. Since in  a1 a2 ..... ak the largest m for which
am is not equal to its maximum possible value is the largest m that satisfies (1), we can determine
m by examining a1 a2 .... ak from right to left, element by element. Once the value of m is
determined, we can determine bm bm + 1 .... bk according to (2) and (3).

Example 1.8.28. Generate the permutations of the four objects 1, 2, 3, 4.
Solution.         1234 → 1243 → 1324 → 1342 → 1423 → 1432 → 2134

→ 2143 → 2314 → 2341 → 2413 → 2431 → 3124
→ 3142 → 3214 → 3241 → 3412 → 3421 → 4123
→ 4132 → 4213 → 4231 → 4312 → 4312 → 4321

Exercise 1.8
1. How many 6-digit phone numbers are there if the first digit cannot be 2 or 3 ?
2. How many three-letter words can be formed from the letters in the set 


a, b, y z


.

3. In how many ways can be committee of three faculty members and two students can be selected
from seven faculty members and eight students ?

4. How many ways can you arrange the letters in the following words ?
(a) COMBINE       (b) SUBSET

5. How many integers in {1, 2, .... 500} are divisible by 3 or 5 ?

1.9 MATHEMATICAL INDUCTION
Let P(n) be a proposition or statement involving a positive integer n. Then P(n) is true for

all positive values of n provided
(i) P(1) is true                                           (1.9.1)

(ii) If P(k) is true, then so is P (k + 1)                              (1.9.2)
Condition (1.9.1) is called the Basis step and (1.9.2) is called Inductive step.

Example 1.9.1. Using induction, show that

n! ≥ 2n − 1,     for     n = 1, 2....

Solution. Let P (n) : n! ≥ 2n − 1, for n = 1, 2,.....
Basis step : For n = 1,

P(1) = 1! = 1 ≥ 1 = 21 − 1.

Inductive step. Let P (n) : n! ≥ 2n − 1 be true.
Then
P (n + 1) : (n + 1)! = (n + 1) n!

≥ (n + 1) 2n − 1        by assumption

≥ 2.2n − 1               since n + 1 ≥ 2

= 2n

Therefore P(n + 1) is true. Hence P(n) is true for all positive values of n.

Example 1.9.2. Using induction show that 5n − 1 is divisible by 4, for n = 1, 2, .....

Solution. Let P(n) = 5n − 1 be divisible by 4, for n = 1, 2,....

Basis step. If n = 1, 5n − 1 = 5 − 1 = 4, which is divisible by 4.
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Inductive step. Assume P(n) is true. We prove P(n + 1) is also true.

P(n + 1) : 5n + 1 − 1 = 5.5n − 1 = (5n − 1) + 4.5n.

By assumption 5n − 1 is divisible by 4, and since 4 × 5n is divisible by 4, the sum is divisible
by 4. So P (n + 1) is true. By induction P(n) is true for all n = 1, 2,.....

Example 1.9.3. Using induction, show that

12 + 22 + 32 + .... + n2 = n (n + 1) (2n + 1)
6

.

Solution. Let P(n) = 12 + 22 + 32 + ...... + n2 = n (n + 1) (2n + 1)
6

.

Basis step : P (1) = 12 = 1.2.3
6

, which is true. Suppose P(n) is true. Then

P(n + 1) = 12 + 22 + 32 + ..... + n2 + (n + 1)2

= n(n + 1) (2n + 1)
6

+ (n + 1)2 = n (n + 1) (2n + 1) + 6 (n + 1)2

6

= (n + 1) [2n2 + 7n + 6]
6

= (n + 1) (n + 2) (n + 3)
6

P (n + 1) is true. Hence the result is true for all n.

Example 1.9.4. Let A be a finite set with n elements. Then using mathematical induction
prove that cardinality of P(A) = 2n.

Solution. Let P(n) be the statement that a set with n elements, has exactly 2n subsets. For
n = 1, there are two distinct subsets φ and A. So P(1) is true. Assume that P(k) is true. Let
P(k + 1) be the statement that a set with k + 1 elements has exactly 2k + 1 subsets. Let A be a set
with k + 1 elements. Let B = A − 


x



. Then B has k elements. By induction B has 2k subsets of A.

To each subset S ⊂ B, we form a new set S ∪ 

x



. Hence we obtain another 2k such subsets. Then

A has 2k + 2k = 2k + 1 subsets. Hence P(k + 1) is true and so P(n) is true for all n.

Example 1.9.5. Using mathematical induction prove n3 − n is divisible by 3, n > 0.

Solution. Let P(n) : n3 − n is divisible by 3.

Basis step. For n = 1, 13 − 1 = 0 is divisible by 3. Hence the basis step is true.

Inductive step. Assume the result for n = k. That is, assume k3 − k is divisible by 3. For
n = k + 1,

(k + 1)3 − (k + 1) = (k + 1) [(k + 1)2 − 1]

= (k + 1) [k2 + 2k] = k3 + 3k2 + 2k = (k3 − k) + 3 (k2 + k)
Since both the terms are divisible by 3, hence for n = k + 1 the result in true. By induction

the result is true for all n.

Example 1.9.6. Using induction prove n < 2n, n > 0.

Solution. Let P(n) : n < 2n,  n > 0
Basis step. For n = 1, 1 < 2. Hence the basis step follows.
Inductive step. Assume the result for n = k.

That is, k < 2k. Now k + 1 < 2k + 1

< 2k + 2k,    since 2k > 1,  for k > 0< 2 × 2k = 2k + 1
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Hence by induction the result is true for all n.

Example 1.9.7. Show that n4 − 4n2 is divisible by 3 for all n ∈ N.

Solution. Let P(n) : n4 − 4n2 is divisible by 3.

Basis step. For n = 1, 14 − 4 × 12 = − 3 is divisible by 3. Hence for n = 1, the result is true.

Inductive step. Assume for n = k the result is true. That is assume, k4 − 4k2 is divisible by
3. Now

(k + 1)4 − 4 (k + 1)2 = (k + 1)2 [(k + 1)2 − 4]

= (k2 + 2k + 1) [k2 + 2k − 3] = k4 + 4 k3 + 2k2 − 4k − 3

= (k4 − 4k2) + 4k3 + 6k2 − 4k − 3 = (k4 − 4k2) + 4
k

k4 − 4
k

k2 + 6k2 − 3

= k4 − 4k2 + 3
k

k4 + 1
k

 [k4 − 4k2] + 6k2 − 3

= (k4 − 4k2) + 1
k

(k4 − 4k2) + 3 (k3 + 2k2 − 1)

Since each term is divisible by 3, the result is true for n = k + 1. Hence the result is true for
all n.

Example 1.9.8. Show by induction 2n < 3n for all n ∈ N.

Solution. Basis step : For n = 1, 2 < 31. Hence the result is true for n = 1.

Inductive step. Assume the result is true for n = k. That is, assume 2k < 3k. Now for
n = k + 1,

2 (k + 1) = 2k + 2 < 3k + 2 < 3k + 3k + 3k, since 3k > 2k > 2, for all k ∈ N.

Hence 2 (k + 1) > 3.3k = 3k + 1. So the result is true for all n ∈ N.
Example 1.9.9.  Suppose that am, n is defined recursively for (m, n) ∈ N × N by a0, 0 = 0 and

am, n = 



am − 1, n + 1       if n = 0 and m > 0
am, n −1 + n        if   n > 0               

  Show that am, n = m + n (n + 1)
2

 for all (m, n) ∈ N × N.

Solution. We prove by generalized version of mathematical induction. This is valid when
(m, n) = (0, 0) we show, if the formula is true for all pairs smaller than (m, n) in the lexicographic
ordering of N × N, then it is true for (m, n).

Basic Step. Let (m, n) = (0, 0). Then a0, 0 = 0. Further when m = n = 0,  m + n (n + 1)
2

= 0 + 0 × 1
2

= 0

Inductive Step. Let (m′, n′) is less than (m, n) such that am′, n′ = m′ + n′ (n′ + 1)
2

. By

recursion, if n = 0, then am, n = am − 1, n + 1. Because (m − 1, n) is smaller than (m, n), by induction
hypothesis,

am − 1, n = (m − 1) + n (n + 1)
2

.

Hence am, n = (m − 1) + n (n + 1)
2

+ 1 = m + n (n + 1)
2

.
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Suppose n > 0, so am, n = am, n − 1 + n. Since (m, n − 1) is smaller than (m, n), the induction

hypothesis tells that am, n − 1 = m + (n − 1)n
2

. So am, n = m + (n − 1) n
2

+ n = m + n (n + 1)
2

. Hence

the inductive step.

Exercise 1.9

1. Prove by induction that for all n ≥ 1, n3 + 2n is a multiple of 3.
2. Prove that if n ≥ 1, then 1 (1!) + 2 (2!) + ...... + n(n!) = (n + 1)! − 1.
3. Prove that every positive integer greater than or equal to 2 has a prime decomposition.

4. Using mathematical induction prove that 13 + 23 + 33 + ........ = n2(n + 1)2

4
.

5. Using mathematical induction prove the number 22n − 1 is divisible by 3, for any positive integer
n.

1.10 PROBABILITY THEORY
Experiment 1.10.1. An experiment is any well-defined process from which observations

(data) can be obtained.
Under certain conditions, when an experiment is conducted repeatedly, it doesn�t give

unique results but may result in any one of the several possible outcomes. The experiment is
known as trial and the outcomes are known as events or cases.

Example.
(i) Throwing a die is a trial and getting 1 or 2 or 3 or 4 or 5 or 6 is an event.

(ii) Tossing a fair coin is a trial and getting a head or tail is an event.
(iii) Drawing two cards from a pack of cards is a trial and getting a king and queen are

events.
Sample space 1.10.2. The set S of all possible outcomes in an experiment is called a sample

space. Each element of a sample space is called a sample point or sample.
Example 1.10.3. (i) In tossing a fair coin, there are two possible outcomes, namely head

(H) and tail (T). Thus, the sample space is {H, T}.
(ii) When two coins are tossed together, the sample space is {HH, HT, TH, TT}.

Definition 1.10.4. A sample space is said to be discrete if it has finitely many or countably
infinite elements. If the elements of a sample space constitutes a continum, for e.g. all the points
on a line, the sample space is said to be continuous.

Exhaustive events. The total number of possible outcomes in any trial is known as
exhaustive events.

Example. (i) In tossing a coin there are two exhaustive events, namely head and tail.
(ii) In throwing a die there are 6 exhaustive events, any one of the 6 faces 1, 2, .... 6 come

in upper most.

Favourable cases. The number of cases favourable to an event in a trial is the number of
outcomes which entail the happening of the event.

Example. In throwing of two dice, the number of cases favourable to get the sum 5 is (1, 4),
(4, 1), (2, 3), (3, 2).

Mutually Exclusive events. Events are said to be mutually exclusive if happening of any
one of them precludes the happening of all others. In other words no two of the mutually
exclusive events can occur simultaneously.
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Example 1.10.5. If we toss a coin, the sample space is S = 

H, T


. Let A = event of getting a

head and B = event of getting a tail. Then A ∩ B = φ. So A and B are mutually exclusive.
Equally Likely Events. The given events are said to be equally likely, if none of them is

expected to occur in preference of the other.
Example. If we roll an unbiased die, each outcome is equally likely to happen.
Complementary Event. Let S be a sample space and let A be an event. Then, clearly

A ⊆ S. Moreover A
__

, the complement of A is also a subset of S. So A
__

 is called the complementary
event of A.

Independent Events. Events are said to be independent if the happening or not happening
of an event doesn�t depend on the occurrence of any number of the remaining events.

Example 1.10.6. In tossing an unbiased coin, the event of getting a head in the first toss is
independent of getting a head in the second, or third and subsequent throws.

Combination of events.
Since an event is a set, we can combine events through various set operations to form new

events. Thus
(i) A ∪ B is the event that occurs only when A occurs or B occurs.

(ii) A ∩ B is the event that occurs only when each one of A and B occurs.
(iii) A

__
 is the event that occurs only when A does not occur.

1.10.7 Mathematical or Classical Probability
If a trial results in n exhaustive, mutually exclusive and equally likely cases of which m are

favourable to an event E, then the probability p of the happening of the event E is
Favourable number of cases
Exhaustive number of cases

= m
n

.

Remark. (i) Probability p of the happening of an event is known as the probability of success
and the probability of the non-happening of an event as the probability of failure.

(ii) If p(E) = 1, E is called a certain event and if p (E) = 0, E is called an impossible event.

1.10.8 Statistical or Empirical probability
If a trial is repeated a number of times under essentially homogeneous and identical

conditions then the limiting value of the ratio of the number of times the event happens to the
number of trials as the number of trials become indefinitely large, is called the probability of

happening of the event. That is p (E) = lt
n → ∞

m
n

.

Example 1.10.9. A bag contains 3 red, 6 white, 7 blue balls. What is the probability that two
balls drawn are white and blue ?

Solution. Total number of balls  = 3 + 6 + 7 = 16. Out of 16 balls, 2 can be drawn in 16 C2
ways. Out of 6 white balls, 1 ball can be drawn in 6C1 ways and out of 7 blue balls 1 ball can be
drawn in 7C1 ways. So total number of favourable case is 6C1 × 7C1 = 6 × 7 = 42. The Required

Probability = 42
120

= 7
20

.

Example 1.10.10. One card is drawn at random from a well shuffled pack of 52 cards. Find
the probability that the drawn card is

(i) a king (ii) a diamond (iii) a red  card or a king.
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Solution. If S denotes the sample space, then number of exhaustive events is n = 52.
(i) If A is the event that the card drawn is a king, then the number of favourable cases

is 4. So p (a king) = 4
52

.

(ii) p (a diamond) = 13
52

= 1
4

, where B is the event that the card drawn is a diamond and

the number of favourable cases is 13.
(iii) Let C be the event that the card drawn is a red card or a king. We know that there

are 26 red cards which include 2 kings. There are 2 more kings. Therefore number of

favourable cases is 26 + 2 = 28. So p (red card or king) = 28
52

= 7
13

.

Example 1.10.11. What is the probability that a leap year selected at random will contain
53 sundays.

Solution. A leap year contains 366 days i.e. 52 weeks and 2 days. Clearly there are 52
sundays in 52 weeks. For the remaining 2 days, we have the following combinations.

(i) Sunday and Monday (ii) Monday and Tuesday
(iii) Tuesday and Wednesday (iv) Wednesday and Thursday
(v) Thursday and Friday (vi) Friday and Saturday

(vii) Saturday and Sunday.
For having 53 sundays, one of the two overdays must be a sunday. Since out of the 7

possibilities 2 favour the event that one of the two days is a Sunday.

...  Required probability  = 2
7

.

Example 1.10.12. An integer is chosen at random from the first 100 natural numbers. What
is the probability that the chosen integer is divisible by 4 or 6 ?

Solution. The integers from 1 to 100 that are divisible by 4 are 4, 8, 12, ..... 100. These
numbers form an A.P. If this sequence contains n terms, then 100 = 4 + (n − 1) . 4 or n = 25.

Again, the numbers from 1 to 100 that are divisible by 6 are 6, 12, 18, .... 96. This is also in
A.P. Let it contain m terms. Then 

96 = 6 + (m − 1)6     or   m = 16.
But there are integers which are divisible by both 4 and 6. Each of such integers is divisible

by 12 (i.e. L.C.M of 4 and 6). These numbers are 12, 24,.....96. This are also in A.P. If this contains
k terms, then

96 = 12 + (k − 1) 12 or k = 8. Thus, if A denotes the events that the chosen integer is divisible
by 4 or 6, then the number of favourable cases is (25 + 16 − 8) = 33. So p (a number divisible by

4 or 6) = 
33
100

.

Example 1.10.13. If a  pair  of a  balanced  dice  is thrown,  what is  the  probability  of
getting 7 ?

Solution. Let A be the event of getting 7 if a pair of dice is thrown.

p(A) = Favourable cases
Exhaustive cases

= 6
36

= 1/6

Note that the number of ways of getting 7 is (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3) and number
of exhaustive event is 62 = 36.
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Various Results on Probability.
Theorem 1.10.14. If in an experiment the sample space is S, then (i) p (A) ≥ 0, for A ⊆ S.

That is, the probability of occurrence of an event is non-negative.
(ii) The probability of occurrence of an impossible event is 0 i.e. p (φ) = 0.

(iii) p (S) = 1.
Proof. By the definition of probability we have

(i) p(A) = Favourable cases
Exhaustive cases

≥ 0 (ii) p (ϕ) = 0
Exhaustive cases

= 0

(iii) p (S) = Favourable cases
Exhaustive cases

= n
n

= 1

Finite Probability Space and Probability Function. Let S = 

A1, A2, .... An



 be a finite

sample space. If there is a function p : S → R where R is the set of all real numbers, which
associates to each element Ai ∈ S, a unique real number p (Ai) satisfying (i) of Theorem 1.10.14
and Theorem 1.10.15, then p is known as a probability function on S and the set


p (Ai) : Ai ∈ S


 is known as a probability space.

Theorem 1.10.15. If A and B are mutually exclusive events, then
(i) p (A ∩ B) = 0   (ii) p (A ∪ B) = p(A) + p(B)
Proof. Since A and B are mutually exclusive, A ∩ B = φ. Now (i) p (A ∩ B) = p(φ) = 0.

(ii) Since A ∩ B = φ, the number of favourable cases   
n (A ∪ B) = n (A) + n(B). So

p(A ∪ B) = n (A ∪ B)
n (S) = n(A) + n(B)

n (S) = n(A)
n(S) + n(B)

n(S)
= p(A) + p(B).

Theorem 1.10.16. The probability of the complemen-
tary event A

__
 of A is p(A

___
) = 1 − p(A).

Solution. A and A
__

 are disjoint events such that
A ∩ A

__
= S. Then p (A ∩ A

__
) = p(A) + p(A

___
) = 1, since p(S) = 1.

Hence p(A
___

) = 1 − p(A).
Addition Theorem 1.10.17. If A and B are two events

and are not disjoint, then 
p(A ∪ B) = p(A) + p(B) − p(A ∩ B).

Proof. A ∪ B = A ∪ (A
__

∩ B). Since A and A
__

∩ B are disjoint, 
p(A ∪ B) = p(A) + p(A

___
∩ B) by Theorem 1.10.15

= p(A) + [p (A
___

∩ B) + p(A ∩ B)] − p(A ∩ B) since A
__

∩ B and A ∩ B are disjoint
= p(A) + p(B) − p(A ∩ B),

since (A ∩ B) ∪ (A
___

∩ B) = B.
Theorem 1.10.18. If B ⊂ A, then (i) p (A ∩ B

__
) = p(A) − p(B) (ii) p(B) ≤ p(A).

Proof. When B ⊂ A, B and A ∩ B
__

 are mutually exclusive and their
union is A.

p(A) = p(B ∪ (A ∩ B
__

)) = p (B) + p(A ∩ B
__

)
⇒ p(A ∩ B

__
) = p(A) − p(B).

We know that p (A ∩ B
__

) ≥ 0 ⇒ p(A) − p(B) ≥ 0. Hence
p (A) ≥ p(B).

Example 1.10.19. p(A1 ∪ A2) = 2/3, p (A1 ∩ A2) = 1/6. Find
p (A

___
1 ∪ A

__
2) and p(A

___
1 ∩ A

__
2).

A
B

A
B

A B
c

Fig. 1.8

A B

B A
c

Fig. 1.9
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Solution. We know that A1 ∪ A2 = A
__

1 ∩ A
__

2,
p (A

__
1 ∪ A

__
2) = p (A1 ∩ A2

________
) = 1 − p(A1 ∩ A2) = 1 − 1/6 = 5/6

p (A
___

1 ∩ A
__

2) = p (A1 ∪ A2

________
) = 1 − p(A1 ∪ A2) = 1 − 2/3 = 1/3.

Example 1.10.20. If p(A1) = 1
3

, p(A2) = 3/4, p(A1 ∩ A2) = 1/6, find the probabilities of A1 alone

and A2 alone.
Solution. A1 alone means A1 ∩ A

__
2 and A2 alone means A

__
1 ∩ A2. Now 

A1 = (A1 ∩ A2) ∪ (A1 ∩ A
__

2). So p (A1) = p (A1 ∩ A2) + p(A1 ∩ A
__

2) and   p(A1 ∩ A
__

2) =

p(A1) − p(A1 ∩ A2) = 1
3

− 1
6

= 1
6

 and p(A
___

1 ∩ A2) = p(A2) − p(A1 ∩ A2) = 3
4

− 1
6

= 7
12

.

Example 1.10.21. If A, B, C are independent events prove that (i) A and B ∪ C, (ii) A and
B ∩ C are independent.

Solution. p(A ∩ (B ∪ C)) = p ((A ∩ B) ∪ (A ∩ C))
= p (A ∩ B) + p (A ∩ C) − p(A ∩ B ∩ C)
= p(A) p (B) + p (A) . p(C) − p(A) . p(B) . p(C)

                                since A, B, C are mutually independent
= p(A) [p(B) + p(C) − p(B) . p(C)]
= p(A) [p(B ∪ C)]

Hence A and B ∪ C are independent. Similarly p (A ∩ (B ∩ C)) = p(A) . p(B ∩ C).
Example 1.10.22. If two events A and B are independent, show that A

__
 and B

__
 are also

independent.
Solution. Since A and B are independent, p (A ∩ B) = p(A) . p(B). Now
p (A

___
∩ B

__
) = p(A ∪ B

______
) = 1 − p(A ∪ B)

= 1 − (p (A) + p(B) − p(A ∩ B)) = 1 − (p(A) + p(B) − p(A) . p(B))
= 1 − p(A) − p(B) + p(A) . p(B) = (1 − p(A)) − p(A) (1 − p(B))
= (1 − p(A)) (1 − p(B))

Therefore A
__

 and B
__

 are independent events.
Definition 1.10.23. Conditional Probability
The conditional probability of occurrence of B when the event A has already happened is 

p(B/A) = p (A ∩ B)
p (A)  provided p (A) > 0. The conditional probability of happening of A when B

has already happened is

p(A/B) = p (A ∩ B)
p (B)  provided p(B) > 0.

Note :
(i) For p(B) > 0, p(A/B) ≤ p(A). (ii) For p(A) > 0, p(B/A) ≤ p(B)

(iii) The conditional probability p(A/B) is not defined if p(B) = 0.
(iv) p(B/B) = 1.

Multiplication law of probability for Independent Events
If A and B are independent, then p(A/B) = p(A) and p(B/A) = p(B). Hence p(A ∩ B)

= p(A) . p(B).

Mutually Exclusive Events and Independent Events.
Let A and B be mutually exclusive events with positive probabilities (p(A) > 0, p(B) > 0).

That is, both A and B are possible events such that
A ∩ B = φ ⇒ p(A ∩ B) = p(φ) = 0.
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...(1.10.1)
Further by compound probability theorem

p(A ∩ B) = p(A) . p(B/A) = p(B) . p(A/B) ...(1.10.2)
Since p(A) ≠ 0, p(B) ≠ 0, from (1.10.1) (1.10.2), p(A/B) = 0 ≠ p(A), p(B/A) = 0 ≠ p(B).
Hence A and B are dependent events. Hence two possible mutually disjoint events are

always dependent.
If A and B are independent events, then p(A ∩ B) = p(A) . p(B) ≠ 0. Hence A and B cannot

be mutually exclusive. Hence two independent events with p(A) > 0, p(B) > 0 cannot be mutually
disjoint.

Example 1.10.24. For any three events A, B, C, p(A ∩ B
__

/C) + p (A ∩ B/C) = p (A/C)
Solution. p(A ∩ B

__
/C) + p(A ∩ B/C)

= p (A ∩ B
__

∩ C)
p(C) + p (A ∩ B ∩ C)

p (C) = p (A ∩ B
__

∩ C) + p(A ∩ B ∩ C)
p(C)

= p ((A ∩ B
__

∩ C) ∪ (A ∩ B ∩ C))
p (C)

= p ((A ∩ C) ∪ (A ∩ B ∩ C)) ∩ (B
___

∪ (A ∩ B ∩ C))
p (C)

                                          Using distribution law

= p [(A ∩ B ∩ C) ∩ (B
__

∪ A) ∩ (B
__

∪ C)]
p (C)

                             Using Absorption law and distributive law.

= p ((A ∩ B ∩ C) ∩ (B
__

∪ (A ∩ C))
p (C)     using distributive law

= p((A ∩ B ∩ C ∩ B
__

) ∪ ((A ∩ B ∩ C) ∩ (A ∩ C))
p (C)

= p (A ∩ C)
p (C)   using absorption law = p (A/C).

Note. p (A2 ∪ A3 ∪ ..... ∪ An/A1) = p(A2/A1) + p (A3/A1) + ..... + p (An/A1) provided A2, A3,
 ...... An are pairwise disjoint sets.

Example 1.10.25. Prove p (A ∩ B) ≤ p(A) ≤ p (A ∪ B) ≤ p(A) + p(B),
Solution. Since A ∩ B ⊂ A, p(A ∩ B) ≤ p(A). Also  A ⊂ A ∪ B, p(A) ≤ p(A ∪ B) and

p (A ∪ B) = p (A) + p(B) − p(A ∩ B) implies p (A ∪ B) ≤ p(A) + p(B).
Example 1.10.26. A problem in statistics is given to three students A, B, C whose chance of

solving it are 1/2, 3/4, 1/4 respectively. What is the probability that the problem will be solved if
all of them try independently.

Solution. Let A, B, C denote the events that the problem is solved by the students A, B, C
respectively. Then p(A) = 1/2, p(B) = 3/4, p(C) = 1/4. The problem will be solved if atleast one of
them solves. Thus we have to calculate the probability of occurrence of atleast one of the three
events A, B, C or p(A ∪ B ∪ C).

Now 
p (A ∪ B ∪ C) = p(A) + p(B) + p(C) − p(A ∩ B) − p(A ∩ C) − p(B ∩ C) + p(A ∩ B ∩ C).

= p(A) + p(B) + p(C) − p(A) . p(B) − p(A) . p(C) − p(B) . p(C) + p(A) . p(B) . p(C)

= 29
32

.

Example 1.10.27. Let A and B be two events such that p(A) = 3/4, p(B) = 5/8, show that
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p(A ∪ B) ≥ 3/4 and 3/8 ≤ p(A ∩ B) ≤ 5/8.
Solution. Since A ⊆ A ∪ B, p(A) ≤ p(A ∪ B) which implies 3/4 ≤ p(A ∪ B). Now

(A ∩ B) ⊆ B implies p(A ∩ B) ≤ p(B) = 5/8. We know
p(A ∪ B) = p(A) + p(B) − p(A ∩ B) ≤ 1

⇒ 3
4

+ 3
8

− 1 ≤ p(A ∩ B) ⇒ 3/8 ≤ p(A ∩ B) ≤ 5/8.

Baye�s Theorem 1.10.28.
Let S be a sample space. Let A1, A2, ..... Ak be disjoint subsets of S such that

A1 ∪ A2 ∪ ..... ∪ Ak = S. Let H be an event in S. That is H ⊆ S. Then

p (Ai/H) = p (Ai) . p (H/Ai)

Σ
i = 1

n

p(Ai) p(H/Ai)

Proof. Since H ⊆ S, so we write
H = (H ∩ A1) ∪ (H ∩ A2) ∪ ..... ∪ (H ∩ Ak)

where (H ∩ Ai) ∩ (H ∩ Aj) = φ for i ≠ j.
p(H) = p(H ∩ A1) + p(H ∩ A2) + ..... + p(H ∩ Ak)

= Σ
i = 1

k

p(H ∩ Ai) ...(1.10.3)

we know p (H ∩ Ai) = p(H) . p(Ai/H) and
p(H ∩ Ai) = p (Ai) . p (H/Ai)

Now p (Ai/H) = p (Ai) . p (H/Ai)
p (H)

...(1.10.4)

Substituting (1.10.3) in (1.10.4) we get

p(Ai/H) = p (Ai) . p (H/Ai)

Σ
i = 1

k

p(Ai) . p (H/Ai)

The probabilities p(A1) p(A2) ....... p(Ak) are termed priori probabilities since they exist before
we gain any information from the experiment.

Example 1.10.29. Two urn contain 4 white and 6 black balls and 4 white and 8 black. One
urn is selected at random and a ball is taken out. It turns out to be white. Find the probability
that it is from the first urn.

Solution. Let A1 and A2 be events that the first and second urn respectively are selected.

Since the urn was selected at random, p (A1) = 1
2

, p(A2) = 1
2

.

Let W be the event that the ball taken out is white. Then
W = (A1 ∩ W) ∪ (A2 ∩ W)

with (A1 ∩ W) ∩ (H2 ∩ W) = φ. Now
p(W) = p (A1 ∩ W) + p (A2 ∩ W)

= p(A1) . p (W/A1) + p (A2) . p (W/A2)

= 1
2

× 4
10

+ 1
2

+ 4
12

= 11
30

.

By Baye�s theorem
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p (A1/W) = p (A1) . p(W/A1)
p (W) =

1
2

× 4
10

11
30

= 6/11.

The probability that the ball is from the first urn is 6/11. Similarly p (A2/W) =
1 − 6/11 = 5/11.

Example 1.10.30. The contents of urns I, II, III are as follows.
1 white 2 black 3 red balls
2 white 1 black 1 red balls
4 white 5 black 3 red balls
One urn is chosen at random and two balls are drawn. They happen to be white and red.

What is the probability that they come from urns I, II or III.
Solution. Let A1, A2, A3 denote the events that the urn I, II, III is chosen respectively and

let H be the event that the two balls taken from the selected urn are white and red. Then

p (A1) = p(A2) = p(A3) = 1
3

.

Now p (H/A1) = 1 C1 × 3 C1

6C2
= 1

5

p (H/A2) = 2C1 × 1C1

4C2
= 1

3

p (H/A3) = 4 C1 × 3C1

12 C2
= 2/11.

Hence p (A2/H) = p (A2) . p (H/A2)

Σ
i = 1

3

p (Ai) . p (H/Ai)
=

1
3

× 1
3

1
3

× 1
5

+ 1
3

× 1
3

+ 1
3

× 2
11

= 55
118

Similarly p (A3/H) =

1
3

× 2
11

1
3

× 1
5

+ 1
3

× 1
3

+ 1
3

× 2
11

= 30
118

p (A1/H) = 1 − 55
118

− 30
118

= 33
118

.

Baye�s Theorem for Future Events.
The probability of materialization of another event C given p(C/A ∩ H1), p (C/A ∩ H2)...... is

p (C/A) =
Σ

i = 1

n

p (Hi) p (A/Hi) p (C/A ∩ Hi)

Σ
i = 1

n

p (Hi) p (A/Hi)

Example 1.10.31. Three boxes of the same appearance have the following proportion of balls.
I 2 black 1 white

II 1 black 2 white
III 2 black 2 white
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One of the urn is selected and ball is drawn. It turns out to be white. What is the probability
of drawing white ball again, if the first one is not replaced.

Solution. Let Ai denote the event of selection of ith urn. Let E be the event of drawing white
ball. p(A1) = p (A2) = p(A3) = 1/3. Now

p (E/A1) = 1
3

, p(E/A2) = 2/3, p(E/Al3) = 2/4.

Let C denote the future event of drawing other white ball from the urns.

p (C/Ai ∩ E) = 0, p(C/A2 ∩ E) = 1
2

 ;

p (C/A3 ∩ E) = 1/3. Then

p (C/A) =
Σ

i = 1

3

p(Ai) . p(E/Ai) p (C/Ai ∩ E)

Σ
i = 1

3

p (Ai) . p(E/Ai)

=

1
3

× 1
3

× 0 + 1
3

× 2
3

× 1
2

+ 1
3

× 1
2

× 1
3

1
3

× 1
3

+ 1
3

× 2
3

+ 1
3

× 1
2

= 1/3.

Example 1.10.32. Let A and B be events with p(A) = 1
3

, p(B) = 1
4

 and p(A ∩ B) = 1
5

. Find (i)

p (A/B) (ii) p (B/A) (iii) p (B
___

/A
__

)
Solution.

(i) p (A/B) = p (A ∩ B)
p (B) =

1
5
1
4

= 4
5

(ii) p (B/A) = p (A ∩ B)
p (A) = 1/5

1/3
= 3/5

(iii) p (B
___

/A
__

) = p (A
___

∩ B
__

)
p (A

___
) = p (A ∪ B

______
)

1 − p(A) = 1 − p (A ∪ B)
1 − p (A)

= 1 − [p(A) + p(B) − p(A ∩ B)]
1 − p(A) =

1 − 1
3

− 1
4

+ 1
5

1 − 1
3

= 37
40

Bernoulli�s Theorem. In a single trial of an experiment if the probability of occurrence of
an event be p, then the probability of occurrence of this event r times in n trials is nCr pr qn − r,
where q = 1 − p.

Example 1.10.33. One biased coin is tossed twenty times and in each trial probability of
getting head is the same and is given by 1/3. Find the probability of occurrence of

(i) Getting exactly 18 heads
(ii) Not more than 18 heads

(iii) Atleast 4 heads
Solution. Let A be the event that we get a head in a toss of a coin. Then p(A) = 1/3 (given).

p(A
___

) = 1 − p(A) = 2/3.
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(i) p (getting exactly 18 heads in 20 tosses)

= 20 C18 p18 (1 − p)2, = 20 × 19
1 × 2




1
3





18

(2/3)2

(ii) p (getting not more than 18 heads)
= 1 − p (getting either 18 or 19 or 20 heads)
= 1 − p (getting 18 heads) − p (getting 19 heads)

− p (getting 20 heads)

= 1 − 

740/320 + 20 C19




1
3





19

(2/3) + 20 C20 (1/3)20

 = 1 − (801/320)

(iii) p (getting atleast 4 heads)
= 1 − p (getting 0 or 1 or 2 or 3 heads)
= 1 − 


p (getting no head) + p (getting 1 head)

+ p (getting 2 head) + p (getting 3 head)}

= 1 − 

(2/3)20 + 20C1 (1/3) (2/3)19 + 20 C2




1
3





2



2
3





18

+ 20 C3



1
3





3

(2/3)17



Note. The probability of the number of success so obtained p (X = x) = nCx px qn − x is called the
Binomial probability distribution. Note that
qn + nc1 pqn − 1 + ...... + ncx px qn − x + ...... + pn = (q + p)n = 1. If n independent trials constitute one experi-
ment and the experiment is repeated N times, then x successes would be expected to occur is
N n Cx px qn − x. This is called the expected frequency of x successes in N experiments.

Note. The mean and standard deviation of Binomial distribution is np and √npq  respectively.
Example 1.10.34. Find the binomial distribution whose mean is 6 and standard deviation

is √2. Find the first two terms of the distribution.
Solution. Mean is np = 6, and standard deviation
= √npq = √np(1 − p) . That is np(1 − p) = 2 ⇒ 6 (1 − p) = 2 ⇒ p = 2/3. So n = 9. Now

f (x) = p(X = x) = nCx px qn − x = 9Cx (2/3)x 


1
3





9 − x

x = 0, 1, 2 .... 9.

The first term  = f(0) = 9C0 p0 q9 = q9 = (1/3)9

Second term  = f (1) = 9C1 p q8 = 9 

2
3








1
3





8

= 2
2187

.

Example 1.10.35. A coin is tossed 400 times. Calculate the expected mean and standard
deviation.

Solution. Given n = 400, p = 1/2, q = 1/2. Mean  = np = 400/2 = 200. Standard Deviation

= √npq = √400
4

= 10.

Example 1.10.36. If 20% of bolts produced by a machine are defective. Determine the
probability that out of 4 bolts choosen at random.

(i) 1 will be defective (ii) less than 2 will be defective
(iii) atmost 2 will be defective.
Solution.

(i) p (X = 1) = nCx px qn − x = 4C1 (0.2)1 (0.8)3 = 0.4096
(ii) p(X < 2) = p (X = 0) + p (X = 1)
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= 0.4096 + 4C0 (0.2)° (0.8)4 = 0.4096 + 0.4096 = 0.8192
(iii) p (X ≤ 2) = p (X = 0) + p (X = 1) + p (X = 2)

= 0.8192 + 4 C2 (0.2)2 (0.8)2 p= 0.8192 + 0.1536 = 0.9728

Example 1.10.37. Deal two packs of shuffled cards simultaneously. What is the probability
that no pair of identical cards will be exposed simultaneously?

Solution. Fix the first pack, and consider all possible rearrangements of the second pack.
For each i in the range 1 ≤ i ≤ 52 let Ai denote the set of all arrangements of the second pack
which happen to have the property that the card in position i matches the card in position i of
the first pack. Obviously |Ai| = 51! for every i. Moreover, if i ≠ j, then |Ai ∩ Aj| = 50! and so on.
Let X = ∪i Ai, so the probability of at least one match is |X|/52!. We calculate this using the
inclusion-exclusion principle.

|X|/52! = (52!) − 1 





52
1




 51! − 



52
2




 50! + 



52
3




 49! − � − 



52
52




 0!



= 1 − 1/2! + 1/3! − � − 1/52! ≈ 1 −







Σ
i = 0

∞
( − 1)i/i!








= 1 − 1/e.

Thus the probability of no coincidences is (to an excellent approximation 1/e.
Here we have use the fact that

ex = 1 + x + x2/2! + � = Σ
i = 0

∞
xi/i!

and put x = − 1.
Exercise 1.10

1. Let A and B be events with p (A) = 3/8, p(B) = 5/8 and p (A ∪ B) = 3/4. Find (i) p(A/B) (ii)
p (B/A).

2. Two fair dice are thrown. If the two numbers appearing are different, find the probability that
the sum is 6.

3. An urn contains 3 red, 4 white and 5 black balls. Three balls are drawn at random. Find the
probability that (i) all are black, and (ii) all are of different colours.

4. Let A and B be events with p (A) = 3
8

, p(B) = 1
2

 and p(A ∩ B) = 1
4

. Find

   (i)  p (A ∪ B) (ii)   p (A
___

) and p(B
___

)
(iii)  p (A

___
∩ B

__
) (iv)  p (A

___
∪ B

__
)

(v) p (A ∩ B
__

) (vi)  p (B ∩ A
__

)
5. Suppose there are three boxes containing 2 white and 3 black balls ; 3 white and 2 black 4 white

and 1 black balls respectively. There is equal probability of each box being chosen. One ball is
drawn from a box at random. What ball is drawn from a box at random ? What is the probability
that a ball drawn is white ?

6. A box contains five balls. Two balls are drawn and found to be white. What is the probability
of all the balls being white ?

(Hint. Let B be the probability that two white balls are drawn, A1, A2, A3, A4 be the probability that
the box contains 2, 3, 4, or 5 white balls. Then p (A1) = 1/4, p(A2) = 1/4,  p(A3) =  1/4, p (A4) = 1/4 p (B/A1) is

the probability that the box contains 2 white balls and both been drawn is 
1
4

× 2
5

= 1
10

p(B/A2) = 1
4

× 3
5

= 3
20

 ; p (B/A3) = 1
4

× 4
5

= 1/5 ; p (B/A4) = 1
4

× 5
5

= 1/4.

7. A die is thrown 5 times. What is the probability of getting exactly 3 sixes ?
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8. The probability of solving a question given to three students are 1
2

, 1
3

, 1
4

 respectively. Find the

probability that the question is solved.
9.  A die is rolled. If the outcome is an odd number, what is the probability that it is prime.

(Hint. S = 

1, 3, 5


. A be the event of getting a prime from S is {3, 5}. The required probability = 2/3.)

10. Two numbers are selected at random from the integers 1 to 9. If the sum is even, find the
probability that both numbers are odd.

Hint. The sum of two numbers is even if either both are even or both are odd. The given numbers contain
4 even numbers and 5 odd numbers. The number of ways to choose 2 even numbers out of 4 is 4C2 = 6. The
number of ways to choose 2 odd numbers out of 5 = 5C2 = 10. Number of ways to choose 2 numbers whose

sum is even = 16. ...  p = 10/16 = 5/8.

1.11. MULTISETS
Multisets are sets where an element can occur as a member more than once. For example :

A = 

1, 1, 1, 0, 0


 ;   B = 


a, a, a, b, c




The multisets A and B can be written as
A = 


3.1, 2.0


    and  B = 


3. a, 1. b, 1. c




The multiplicity of an element in a multiset is defined to be the number of times the element
appears in the multiset. The multiplicities of the elements 1 and 0 in the multiset A are 3, 2 and
the multiplicities of the elements a, b, c are 3, 1, 1 respectively.

The theory of multisets is more general than the theory of sets.
The cardinality of a multiset is defined to be the cardinality of the set corresponds to,

assuming that the elements in the multiset are all distinct.
Let A and B be multisets. The union of A and B denoted by A ∪ B, is the multiset where the

multiplicity of an element is the maximum of its multiplicities in A and B.
The intersection of A and B, denoted by A ∩ B is the multiset where the multiplicity of an

element is the minimum of its multiplicities in A and B.
The difference of A and B, denoted by A − B, is the multiset where the multiplicity of an

element is equal to the multiplicity of the element in A minus the multiplicity of the element in
B if the difference is positive, and is equal to zero if the difference is 0 or negative.

The sum of A and B, denoted by A + B, is the multiset where the multiplicity of an element
is the sum of multiplicities of the element in A and B.

Example. 1.11.1 Let P and Q be two multisets {3.a, 2.b, 1.c} and {4.a, 3.b, 2.d} respectively.
Find

(a) P ∪ Q      (b) P ∩ Q      (c) P − Q     (d) P + Q.
Solution. P ∪ Q = 


4.a, 3.b, 1.c, 2.d




P ∩ Q = 

3.a, 2.b




P − Q = 

1.c




P + Q = 

7.a, 5.b, 1.c, 2.d




1.12. Classified Solved Examples

Example 1.12.1 (a) Define Power set and give the powersets of the following :
(i) 


a, 


b






 (ii) 


1, φ, 


φ









                                (Visveswaraiah Tech. University, BE, March 2001)
Solution. If S is any set, then the set of all subsets of S is called the Power set of S. The

power set of S is denoted by p(S).
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(i) The power set of 

a, 


b






 is






a



, 



a, 


b







, 






b







, φ





(ii) The power set of 

1, φ, 


φ






 is 





1



, 



φ



, 






φ






, 



φ, 


φ






, 



1, 


φ






, 



1, φ


, φ, 


1, φ, 


φ






.

(b) Prove that ��Null set is a subset of every set��.
                                (Visveswaraiah Tech. University, BE, March. 2001)
Solution. Let A, B be two sets. We say A is a subset of B if every element of A is also an

element of B. So the null set containing no element is contained in any set A.
(c) Let A and B be sets such that A ∪ B ⊆ B, B ⊆ A. Find the venn diagram representation.

Solution. Fig. 1.10
(d) Prove that
(i) Symmetric difference is associative.

(ii) A − B = A − (A ∩ B).
                                (Visveswaraiah. Tech. University, BE, March 2001)
Solution. Let A and B be two sets. The symmetric difference of A and B denoted by A ∆ B

is

A ∆ B = (A − B) ∪ (B − A) = (A ∪ B) − (A ∩ B)
To prove (i). Now for any sets A, B, D,

A ∆ (B ∆ D) = A ∆ ((B ∪ D) − (B ∩ D))

= A ∆ ((B ∪ D) ∩ (B ∩ D)C) = A ∆ (B ∪ D ∩ (BC ∪ DC))

= [A ∪ ((B ∪ D) ∩ (BC ∪ DC))]  − [A ∩ ((B ∪ D) ∩ (BC ∪ DC))]

= [(A ∪ B ∪ D) ∩ (A ∪ BC ∪ DC)] − [(A ∩ B ∩ DC) ∪ (A ∩ D ∩ BC)]

= [(A ∪ B ∪ D) ∩ (A ∪ BC ∪ DC)] ∩ [(A ∩ B ∩ DC) ∪ (A ∩ D ∪ BC)]C

= (A ∪ B ∪ D) ∩ (A ∪ BC ∪ DC) ∩ (AC ∪ BC ∩ D) ∩ (AC ∪ DC ∪ B)
...(1)

If we interchange A and D in eq. (1), then we get (A ∆ B) ∆ D = D ∆ (A ∆ B) = D ∆ (B ∆ A).

(A ∆ B) ∆ D = (D ∪ B ∪ A) ∩ (D ∪ BC ∪ AC) ∩ (DC ∪ BC ∪ A) ∩ (DC ∪ B ∪ AC)
which is same as (1). 

Hence A ∆ (B ∆ C) = (A ∆ B) ∆ C.
To prove (ii) A − B = A − (A ∩ B)
Let x ∈ A − B ⇔ x ∈ A and x ∉ B
⇔ x ∈ A and x ∉ A ∩ B, since x ∉ B implies x ∉ A ∩ B.

⇔ x ∈ A − A ∩ B.

Fig. 1.10

A

A B BC

A

B

B

U U
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Hence, since x is arbitrary,
A − B = A − (A ∩ B).

Example 1.12.2. (a) Find the number of permutations of letters in the words
(i) ACCOUNTANT (ii) ENGINEERING

(iii) BOOLEAN (iv) ASSASSINATIONS.
                               (Visveswaraiah Tech. University, BE, March 2001)
Solution.

(i) The letter A occur 2 times, hence there are 2 ! ways in which these A�s can be
rearranged among themselves. But then as this does not change the word as such. We
have to divide by 2! to count the word ACCOUNTANT once. Similarly C occurs 2 times,
N occur 2 times and T occur 2 times. Hence the number of ways ACCOUNTANT can
be arranged is

10 !
2 ! 2 ! 2 ! 2 !

(ii) 11 !
3 ! 3 ! 2 ! 2 !

(iii) 7 !
2 !

(iv) 14 !
3 ! 5 ! 2 ! 2 !

Example 1.12.3. How many different seven-person committees can be formed, each contain-
ing three female members from an available set of 20 females and four male members from an
available set of 30 males.   

                                                       (Visveswaraiah Tech. University, BE, March 2001)
Solution. Three women�s can be selected in C (20, 3) ways. Four men�s can be selected in

C (30, 4) ways. Therefore by multiplicative permutation law, the number of committees having
7 members are C (20, 3) C (30, 4).

(a) State the pigeon hole principle and show that if any eight positive integers are chosen,
two of them will have the same remainder when divided by 7.

                               (Visveswaraiah Tech. University, BE, March 2001)
Solution. If n + 1 or more objects are placed in n boxes, then there is atleast one box

containing two or more of the objects.
According to pigeon hole principle, for any eight positive integers, there must be two integer

with same remainder, since we are dividing the integer by 7.
(b) Let n be an integer. If n2 is odd, then n is odd. Suppose n is even, then n = 2 m, where

m = 1, 2, ...... Now n2 = (2 m)2 = 4 m2, an even integer. Hence a contradiction. So n is
odd.

(c) Prove that for all n ≥ 1, n ! ≥ 2n − 1 using Mathematical Induction.
                               (Visveswaraiah. Tech. University, BE, March 2001)

Solution. Basis step : 1 ! = 1 ≥ 1 = 21 − 1

Inductive Step : Assume n ! ≥ 2n − 1 we prove

(n + 1) ! ≥ 2n. Now (n + 1) ! = (n + 1) (n !) ≥ (n + 1) . 2n − 1 ≥ 2 . 2n − 1, since n + 1 ≥ 2

= 2n.
Example 1.12.4 Show that,

A × (B ∩ C) = (A × B) ∩ (A × C)
                    (Sri. Venkateswara Engg. College, Suryapet, A.P, B.Tech, March 2001)
Solution. Proved already.
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Example 1.12.5 With the usual notations prove that
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
                              (Visveswaraiah Tech. University, MCA, August 2001)
Solution.

x ∈ A ∪ (B ∩ C) ⇔ x ∈ A or x ∈ (B ∩ C)
⇔ x ∈ A or (x ∈ B and x ∈ C)
⇔ (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)
⇔ (x ∈ A ∪ B) and (x ∈ A ∪ C) ⇔ x ∈ (A ∪ B) ∩ (A ∪ C)

Since x is an arbitrary element,
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Example 1.12.6. (i) Prove by mathematical induction that

        1.2 + 2.3 + 3.4 + .... = n (n + 1) (n + 2)
3

(ii) 




∩
i = 1

n
Ai





C

= ∪
i = 1

n
Ai

C

                              (Visveswaraiah Tech. University, M.C.A, August 2001)
Solution.

(i) Basis step. n = 1

1.2 = 1 . 2 . 3
3

Hence for n = 1, the result is true. Assume the result is true for n = k. Now we show the

result holds for n = k + 1. Let 1.2 + 2.3 + ..... + k (k + 1) = k (k + 1) (k + 2)
3

.

Now 1.2 + 2.3 + ...... + k (k + 1) + (k + 1) (k + 2)

= k (k + 1) (k + 2)
3

+ (k + 1) (k + 2)

= (k + 1) (k + 2) 


k
3

+ 1



= (k + 1) (k + 2) (k + 3)
3

Hence the result is true for n = k + 1. By induction the result is true for all n.

(ii) Let x ∈ (A1 ∩ A2 ∩ ..... ∩ An)C

⇔ x ∉ (A1 ∩ A2 ∩ ....... ∩ An)
⇔ x ∉ A1 or x ∉ A2 or ...... x ∉ An

⇔ x ∈ A1
C or x ∈ A2

C or ...... x ∈ An
C

⇔ x ∈ (A1
C ∪ A2

C ∪ ...... ∪ An
C)

Hence (A1 ∩ A2 ∩ ....... An)C = (A1
C ∪ A2

C ∪ ...... ∪ An
C).

Example 1.12.7. Prove that | A × B | = |A| |B|.
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Solution. Let m = |A| and n = |B|. If n = 0, then B and A × B are both empty and the result
holds trivially. Assume n > 0 and let the distinct elements of B be b1, b2, ..... bn. For each

i = 1, 2, ...... n, let Xi be the set A × 


bi




. Then Xi is a subset of A × B and A × B = ∪

i = 1

n

Xi. Also for

i ≠ j, yi ≠ yj and so Ai ∩ Aj = φ. Further, for every i, the function fi : A → Xi defined by
fi (a) = (a, bi) is clearly a bijection. So |Xi| = |A| = m for every i. Since

| ∪
i = 1

n

Xi| = m + m + ..... + m (n times) = mn.

In general for any finite sets A1, A2, ......, An,
|A1 × A2 × ..... × An| = |A1| × |A2| × .... × |An|.

Example 1.12.8. For any three sets A, B, C, prove that
A × (B ∪ C) = (A × B) ∪ (A × C)

                                             (Andhra University, B.Tech. March 2001)
Solution.

(x, y) ∈ A × (B ∪ C) ⇔ x ∈ A and (y ∈ B ∪ C)
⇔ x ∈ A and (y ∈ B or y ∈ C)
⇔ (x ∈ A and y ∈ B) or (x ∈ A and y ∈ C)
⇔ (x, y) ∈ A × B  or (x, y) ∈ A × C
⇔ (x, y) ∈ (A × B) ∪ (A × C)

Hence the result follows.

Example 1.12.9. If A ∩ B = A ∪ C and A ∩ B = A ∩ C, then B = C.
                                    (Madras University, BE, April 1998)

Solution. (Solved already)

Example. 1.12.10. How many 4 digits number can be formed with the ten digits 0, 1, 2,.....,9
if

(i) Repetitions are allowed
(ii) Repetitions are not allowed

(iii) The last digit must be zero and repetitions are allowed.
                   (Bellary Eng. College, U.T, University, Karnataka, B.E., August 2001)
Solution.
(ii) Since this is a problem of arranging 4 of the ten digits 0, 1, 2,...., 9, the answer is

P (10, 4) = 5040. Among these 5040 numbers, 9 × 8 × 7 = 504 of them have a leading
0. Consequently, 5040 � 504 = 4536 of them do not have a leading 0. The first digits
can be one of the nine digits 1, 2,....9, the second digits can be any of the nine remaining
digits and so on.

Example 1.12.11. (a) Show that A ∪ (B ∪ C)C = (A ∪ BC) ∩ (A ∪ CC)

(b) Show by induction on n that a set with n elements has precisely 2n subsets.
                                (Bharathiar University, B.Sc. (C.T), October 2001)
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Solution.

(a) x ∈ A ∪ (B ∪ C)C

⇔ x ∈ A or x ∈ (B ∪ C)C

⇔ x ∈ A or (x ∈ BC ∩ CC)

⇔ x ∈ A or (x ∈ BC and x ∈ CC)

⇔ (x ∈ A or x ∈ BC)  and  (x ∈ A or x ∈ CC)

⇔ x ∈ (A ∪ BC) and x ∈ A ∪ CC

⇔ x ∈ (A ∪ BC) ∩ (A ∪ CC)
Hence the result follows.
(b) Proved Already.

Example 1.12.12. (a) (i) Prove using venn diagram

(A ∪ B)C = AC ∩ BC

(ii) If A, B, C be sets if A ⊆ B, B ∩ C = φ, then A ∩ C = φ.

(iii) Prove by induction 5 divides 8n − 3n for n ≥ 1.
                                (Bharathiar University, M.Sc (SE), October 2001).
Solution. (Proved already)

Example 1.12.13. Find the intersection of the following sets 

x : x2 − 1 = 0


 and



x : x2 + 2x + 1 = 0




Solution. {�1}

Example 1.12.14. Using Mathematical induction prove n < 2n (n > 1) (proved already).
Example 1.12.15. If S is any set and P(S) is its power set and A and B belong to P(S), prove

that B ∩ (A − B) = φ.

Solution. Since A − B = A ∩ BC, B ∩ (A − B) = B ∩ (A ∩ BC) = A ∩ φ = φ.
(Madras University, B.E., October 1995).

Example 1.12.16. List all the proper subsets of {1, 2, 3}.
Solution. {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.
Example 1.12.17. State the duality principle in set theory.
Solution. (Explained in page 15).

(Madras University, BE April 1996).
Example 1.12.18. Show that for any two sets A and B, A − (A ∩ B) = (A − B)
Solution. (Worked out on Page 5, Example b (i))

(Madras University, B.E., April 1996).
Example 1.12.19. Survey is taken on methods of computer travel. Each respondent is asked

to check bus, train or automobile, as a major method of travelling to work. More than one answer
is permitted. The results reported were as follows :

  (i) 30 people checked bus
 (ii) 35 people checked train
(iii) 100 people checked automobile
 (iv) 15 people checked bus and train
 (v) 15 people checked bus and automobiles
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(vi) 20 people checked train and automobile
(vii) 5 people checked all three methods.

How many respondents completed their surveys ?
Solution. Let A, B, C be the persons who checked bus, train and automobiles respectively.

Then by principle of inclusion and exclusion we have
|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|

+ |A ∩ B ∩ C|
= 30 + 35 + 100 − 15 − 15 − 20 + 5
= 120

The number of respondents who have completed their survey is 120.
Example 1.12.20. If A ∪ B = A ∪ C, must B = C ? Explain.
Solution. B need not be equal to C. Only when A ∩ B = A ∩ C, the result is true.

(Madras University, BE, April 1997)
Example 1.12.21. How many proper non empty subsets are there for {1, 2, 3, 4}.

Solution. There are 24 − 1 proper non empty subsets for {1, 2, 3, 4}.
Example 1.12.22. If survey of 500 television watchers produced the following information.

285 watch football games ; 195 watch hockey games ; 115 watch basket ball games ; 50 watch
hockey and basket ball games ; 50 do not watch any of the three games. 45 watch football and
basket ball games ; 70 watch foot ball and hockey games.

(i) How many people in the survey watch all three games ?
(ii) How many people watch exactly one of the three games ?

(Madras University, BE, April 1997, October 1998)
Solution. Let A, B, C be the persons watching football, hockey, basketball games respec-

tively.

Given : |(A ∪ B ∪ C)|c = 50. So |A ∪ B ∪ C| = 500 − 50 = 450. By principle of inclusion and
exclusion, |A∪B∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|  + |A ∪ B ∪ C|

⇒ 450 = 285 + 195 + 115 − 70 − 45 − 50 + x

⇒ x = |A∩B∩C| = 20
i.e. Number of peoples watching all the three games is 20 and

number of peoples watching exactly one is 325.
Example 1.12.23. If the cardinality of a set A is K, what is the

cardinality of its power set P(A).

Solution. Cardinality of the power set  = 2k.
(Madras University, BE, October 1996)

Example 1.12.24. If the cardinality of the power set P(A) is
256, what is the cardinality of the set A ?

Solution. Cardinality of the power set P(A) = 256 = 28. Then
cardinality of the set A = 8.

Example 1.12.25. Prove using mathematical induction

2 + 5 + 8 + ..... + (3n − 1) = n(3n + 1)
2

(Madras University, BE, October 1997)
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Fig. 1.11

Fig. 1.12
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Example 1.12.26. (a) If A ∪ B = A ∪ C and A ∩ B = A ∩ C, prove B = C.
(b) Among 50 students in a class, 26 passed in first semester and 21 passed in second

semester examination. If 17 did not pass in either semester, how many passed in both
semesters.

(Madras University, BE, April 1998)
Solution. (b) 8 persons passed in both semester, since |(A ∪ B)c| = 17 implies

|A∪B| = 33 and hence |A∪B| = 20 + 21 − |A∩B| implies |A ∩ B| = 8.
Example 1.12.27. Let A = 


+, �


 and B = 


00, 01, 10, 11


. List the elements of A × B.

Solution. A × B = 

( + , 00), (+, 01), (+, 10), (+, 11), (�, 00), (�, 01), (−, 10), (− , 11)




(Madras University, BE, October 1998)
Example 1.12.28. Enumerate the elements in the following sets :

(a) 

x ∈ R : x2 − 3x + 2 = 0


 (b) 


x ∈ R : x2 + 1 = 0




Solution.  (a)  x = 1, 2    (b)  x = 1
Example 1.12.29. For any two sets A and B prove that

A − (A ∩ B) = A − B
Solution. (Proved in page 5)

(Madras University, BE, April 2000)

Example 1.12.30. (a) If A = 

x : x2 − 1 = 0


, B = 


x : x2 − 3x + 2 = 0


. Find A ∩ B and A − B.

A = 

1, − 1


, B = 


1, 2


, A ∩ B = 


1



, A − B = 


 − 1




    (b) Prove by mathematical induction

1 + 2 + 3 + ..... + n = n (n + 1)
2

(Madras University, BE, April 2001)

Solution. LHS : P(1) = 1,   RHS : P(1) = 1 × 2
2

= 1

Hence it is true for n = 1.
Let it be true for some integer k.

Therefore P(k) = 1 + 2 + 3 + .... + k = k (k + 1)
2

Now P (k + 1) = 1 + 2 + 3 + ..... + k + (k + 1) = k (k + 1)
2

+ (k + 1)

= k (k + 1) + 2 (k + 1)
2

= (k + 1) [k + 2]
2

     Hence it is true for k + 1.

     By induction, 1 + 2 + .... + n = n(n + 1)
2

.

Example 1.12.31. Prove by using counting argument that

(i) 


n
k





+ 2 


n
k − 1





+ 



n
k − 2





= 


n + 2

k




(ii) 


n
m





= Σ
k = 0

r 


r
k









n − r
m − k





(B.Tech, U.P. Technical Univ., Lucknow, 2002-2003)
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Solution.   (i)    

n
k





+ 2 


n
k − 1





+ 



n
k − 2





= n!
k! (n − k)! + 2 n!

(k − 1)! (n − k + 1)!

+ n!
(k − 2)! (n − k + 2)!

= n!
k (k − 1) (k − 2)! (n − k)! + 2n!

(k − 2)! (k − 1) (n − k)! (n − k + 1)

+ n!
(n − k + 2) (n − k + 1) (n − k)! (k − 2)!

= n!
(k − 2)! (n − k)!





1
k (k − 1) + 2

(k − 1) (n − k + 1) + 1
(n − k + 2) (n − k + 1)





= n!
(k − 2)! (n − k)!





n2 + 3n + 2
k (k − 1) (n − k + 1) (n − k + 2)





= n! (n + 1) (n + 2)
(k − 2)! (n − k)! (k − 1) k (n − k + 1) (n − k + 2) = (n + 2)!

k! (n + 2 − k)!

= 


n + 2

k




Example 1.12.32. In a meeting of 50 scientists and poets, 35 are scientists, 30 have short
hair and 25 are scientists with short hair. How many long-haired poets are there ? 

(BE (CSE), Rajiv Gandhi Univ., Bhopal, 2001-2002)
Solution. Let A be the set of scientists and B be the set of poets. Given |A| + |B| = 50 and

|A| = 35, so |B| = 50 − 35 = 15. Number of peoples having short hair is 30, so number of peoples
with long hair is 50 � 30 = 20. Given 25 are scientists with short hair. So number of scientists
with long hair  = 35 � 25 = 10. Hence number of poets with long hair = 20 � 10 = 10.

Example 1.12.33. Among 100 students, 32 study mathematics, 20 study physics, 45 study
chemistry, 15 study mathematics and chemistry, 7 study mathematics and physics, 10 study
physis and chemistry, 30 do not study any of the three subjects. Find the number of students
studying exactly one of the three subjects.

(BE (CSE), Rajiv Gandhi. Univ., Bhopal, May-June 2002)

Solution. Let A1 be the set of students studying Mathe-
matics, A2 be the set of students studying Physics, A3 be the set
of students studying Chemistry. Then, given
|A1| = 32, |A2| = 20, |A3| = 45,|A1 ∩ A3| = 15, |A1 ∩ A2| = 7, 
|A2 ∩ A3| = 10 and |(A1 ∪ A2 ∪ A3)c| = 30. So |A1∪A2 ∪ A3|
= 100 − |(A1 ∪ A2 ∪ A3)c| = 100 − 30 = 70. Now |A1 ∪ A2 ∪
A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩
A3| + |A1 ∩ A2 ∩ A3|

⇒ 70 = 32 + 20 + 45 − 7 − 15 − 10 + |A1 ∩ A2 ∩ A3|
⇒ |A1 ∩ A2 ∩ A3| = 70 − 65 = 5

So number of students who have taken mathematics only
is 32 − (10 + 5 + 2) = 15. Number of students who have taken physics only is
20 − (5 + 5 + 2) = 8. Number of students who have taken chemistry only is
45 − (10 + 5 + 5) = 25. So the number of students studying exactly one subject is
15 + 8 + 25 = 48.
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15 8

A

A

A1 2

3

5

5

2

Fig. 1.13.
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Example 1.12.34. How many solutions are there for the equation x1 + x2 + x3 + x4 = 20 ?
(i) If all xi must be non-negative integers.

(ii) If all xi must be non-negative integers and x4 is atmost 10.
(B. Tech., U.P. Technical University, Lucknow, 2002-2003)

Solution. (i) We know the number of unordered samples of size k can be formed from a set

of n elements, if repetition is allowed is n(n + 1) ..... (n + k − 1)
k!

= (n + k − 1)Ck. That is, the

number of distinct solutions to the equation x1 + x2 + ...... + xn = k equals the number of unor-
dered samples of size k (repetition allowed) from the n-element set 


x1, x2, .... xn



 is

(n + k − 1) Ck. Hence the number of solution for the equation x1 + x2 + x3 + x4 = 20 is
(4 + 20 − 1)C20 = 23C20.

(ii) Let x1 + x2 + x3 = 10 and x4 is atmost 10 making x1 + x2 + x3 + x4 = 20. The number of
distinct solutions to the equation x1 + x2 + x3 = 10 is (3 + 10 − 1)C10 = 12C10 = 66. So the number
of solutions for the equation x1 + x2 + x3 + x4 = 20 such that all xi must be non-negative integers
and x4 is atmost 10 is 23 C20 − 66.

Example 1.12.35. Determine the minimum number of elements that one needs to take from
the set A = 


1, 2, 3, ..... 8


 to be sure that two of the numbers add up to 9.

Solution. We have four pigeon holes here namely {1, 8}, {2, 7}, {3, 6}, {4, 5}. One can observe
from here that any choice of five elements of A will generate that two of the numbers add upto
9. So 5 elements are needed to take from the set A.

Example 1.12.36. One hundred students were asked whether they had taken courses in any
of the three areas namely Information Technology (IT), Bio-Technology (BT) and Management
(M). The result are as follows :

45 had taken IT, 38 had taken BT, 21 had taken management ; 18 had taken I.T and BT ; 9
had taken I.T and M ; 4 had taken BT and M and 23 had taken no courses in any of the three
areas. Construct the venn diagram for the above data.

(Bharathiar Univ., M.Sc (SE), April 2002)

Solution. Out 100, 23 had taken no courses in any of the three
areas. Let A, B, C be the set of all students who have taken IT, BT
and M respectively. Then |A ∪ B ∪ C|c = 23 and hence
|A ∪ B ∪ C| = 100 − 23 = 77. Given |A| =  45 ; |B| = 38 ; |C| =
21 ; |A ∩ B| = 18 ;|B ∩ C|  = 4 ; |A ∩ C| = 9  ;  |A ∩ B ∩ C| = x
(say). Then, we know

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C|
− |A ∩ C| + |A ∩ B ∩ C|

⇒ 77 = 45 + 38 + 21 − 18 − 9 − 4 + x
⇒ 77 = 73 + x
⇒ x = 4.

The venn diagram representation is Fig. 1.14

Example 1.12.37. A computer company must hire 25 programmers
(a) to handle systems programming jobs and 40 programmers for applications program-

ming. Of these hired, ten will be expected to perform jobs of both types. How many
programmers must be hired ?

22 2014

4
5
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0
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100

(
)

=23

A B CU U c

Fig. 1.14.
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(b) Show that the relation defined in N × N by (a, b) R (c, d) iff a + d = b + c is an equi-
valence relation.

(c) Let L denotes the relation ��less than or equal to�� and D denotes the relation �divides�.
Both L and D are defined on the set 


1, 2, 3, 6


. Write L and D and find L ∧ D. What is

the properties of L and D ? Give graphs of L and D.

(d) Using mathematical induction, prove 2 + 22 + 23 + ..... + 2n = 2n + 1 − 2
(Bharathiar University, B.E. (CSE), April 2003)

Solution.
(a) Let S be set of systems programmers, then |S| = 25. Let A be set of applications

programmers, then |A| = 40. Given |A ∩ S| = 0. The number of programmers to be
hired is S ∪ A and

 |S ∪ A| = |S| + |A| − |S ∩ B| = 25 + 40 − 10 = 50
(b) For (a, b) ∈ N × N, (a, b) R (a, b) as a + b = b + a is true. Hence R is reflexive. Let

(a, b) R (c, d) ⇒ a + d = b + c ⇒c + b = d + a ⇒ (c, d) R (a, b). Hence R is symmetric.
Let (a, b) R (c, d), (c, d) R (e, f) ⇒ a + d = b + c  and c + f = d + e. Now

a + d + c + f = b + c + d + e ⇒ a + f = b + e
⇒ (a, b) R (e, f). Hence R is transitive. That is, R is an equivalence relation.

(c) X = 

1, 2, 3, 6




L = 

(1, 1), (2, 2), (3, 3), (6, 6), (1, 2), (1, 3), (1, 6), (2, 3), (2, 6), (3, 6)




D = 

(1, 1), (2, 2), (3, 3), (6, 6), (2, 6), (3, 6), (1, 6)




L ∧ D = 

(1, 1), (2, 2), (3, 3), (6, 6), (2, 6), (3, 6), (1, 6)




= D
L is reflexive, non-symmetric, transitive, antisymmetric. D is reflexive, non-symmetric, transi-
tive, antisymmetric.

Graph of L

(d) Let p (n) = 2 + 22 + 23 + � + 2n = 2n + 1 − 2

p (1) = 2 = 21 + 1 − 2
Hence P (1) is true. Assume for n = k. That is P (k) is true. Consider

P (k + 1) = 2 + 22 + .... + 2k + 2k + 1 = 2k + 1 − 2 + 2k + 1

= 2 . 2k + 1 − 2    = 2k + 2 − 2

Hence P (k + 1) is true which implies P (n) is true for any n ∈ N.
Example 1.12.38. (a) Among 50 students in a class, 26 passed in first semester and 21

passed in second semester examination. If 17 did not pass in either semester, how many passed
in both semesters.
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Fig. 1.15
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(b) Show that an − bn is divisible by (a − b) for all n ∈ N.
(Bharathiar Univ., M.Sc. (SE), April 2003)

Solution.
(a) Let A be the set of students passed in first semester. Then |A| = 26. Let B be the set

of students passed in second semester. Then |B| = 21, |(A ∪ B)c| = 17 which implies
| A ∪ B| = 50 − 17 = 33.

Now |A ∪ B| = |A| + |B| − |A ∩ B|
⇒ 33 = 26 + 21 − |A ∩ B|
⇒ |A ∩ B| = 26 + 21 − 33 = 14.

(b) We prove the result by mathematical induction. For n = 1, a − b is divisible by a − b.
Hence the basis step. Let P (k) : ak − bk is divisible by a − b.

Now  ak + 1 − bk + 1 = ak . a − bk . b = ak . a − bk . b + bk a − bk a = a (ak − bk) + bk (a − b)

Since ak − bk is divisible by a − b, and (a − b) is divisible by (a − b), the sum
a (ak − bk) + bk (a − b) is divisible by a − b. Hence ak + 1 − bk + 1 is divisible by a − b. By induction,
an − bn is divisible by (a − b).

Example 1.12.39. Let S (n) be the statement. For n ∈ Z+, Σ
i = 1

n

i  =
(n + (1/2))2

2
. Show that the

truth of S (k) implies the truth of S (k + 1) for any k ∈ Z+. Is S (n) true for all n ∈ Z+. Justify your
answer. 

(Anna University, ME (CSE), April 2003)
Solution. Assume S (k) is true. That is

Σ
i = 1

k

i =
(k + (1/2))2

2

Now Σ
i = 1

k + 1
i = 1 + 2 + ..... + k + (k + 1) =

(k + (1/2))2

2
+ (k + 1)

=
(k + (1/2))2 + 2 (k + 1)

2
= k2 + 3k + 9/4

2
=

(k + (3/2))2

2
=

((k + 1) + (1/2))2

2

Hence S (k + 1) is true. It is not true for all n ∈ Z+. For example, for n = 1, L.H.S.
= S(1) = 1 and R.H.S. =

=
[1 + (1/2)]2

2
= 9

4 × 2
= 9

8 Hence L.H.S. ≠ R.H.S.

Example 1.12.40. (a) Given U = 

1, 2, 3, 4, 5, 6, 7, 8, 9


, 

A = 

1, 2, 4, 6, 8


, B = 


2, 4, 5, 9


 and C = 


x : x is a positive integer

such that x2 ≤ 16}.
Compute (i) A ∪ B

______
 (ii) B ⊕ C.

(b) Prove that the set of all real numbers in [0, 1] is
uncountable.

(c) If fA and fB are characteristic functions of the sets A
and B, prove that fA ∩ B = fA fB.

A B

C
Fig. 1.16.
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(d) In a survey of 260 college students, the following data were obtained :
64 had taken mathematics course
94 had taken computer science course
58 had taken business course
24 had taken mathematics and business courses
26 had taken mathematics and computer science courses
22 had taken computer science and business courses
14 had taken all the three courses

Find the number of students who have taken
(i) none of the courses and (ii) only the computer science courses

(VTU Karnataka, BE (CSE/IT), Feb. 2003)
Solution. (a) U = 


1, 2, 3, ......., 9




A = 

1, 2, 4, 6, 8




B = 

2, 4, 5, 9




C = 

1, 2, 3, 4




(i) A ∪ B
______

= 

3, 7




(ii) B ⊕ C is the set of elements that belong to B or C but not to both B and C. Hence
B ⊕ C = (B − C) ∪ (C − B)

= 

x : x belongs to exactly one of B and C


 = 


1, 3, 5, 9


.

(b) To show that the set of real numbers in [0, 1] is uncountable set.
If possible, let the set of real numbers in [0, 1] is countable. Then all the real number in

0 ≤ x ≤ 1 can be listed in some order, say, x1, x2, ...... Let the decimal representation of these real
numbers be

x1 = 0 . a11 a12 a13 .....     x2 = 0 . a21 a22 a23 .....
where each aij is one of the number of set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let C be a new real number
such that C = 0. b1 b2 b3 ....., where b1 = 1 if aii = 9 and b1 = 9 − aii if aii = 0, 1, 2, 3, 4, 5, 6, 7, 8
for all i. For those numbers which can be expressed in two different expansions e.g.,
1
2

= 0.5000000  = 0.4999999 we choose the expansion which ends with nines. Clearly, the number

0 . b1 b2 ..... is a real number between 0 and 1 that does not have trailing 0�s. Then the real
number C is not equal to any of x1, x2, .... since it differs from the first in the first digit, the
second number in the second digit, the ith number in the ith digit, and so on. Since there is a
real number C between 0 and 1 that is not in the list which contradicts the assumption that this
set is countably infinite. Hence the set of real numbers between 0 and 1 is uncountable.

(c) fA ∩ B (x) = 1  if  x ∈ A ∩ B
For       x ∈ A and  x ∈ B,

fA (x) = 1  and  fB (x) = 1,   therefore  fA (x) fB (x) = 1
Thus fA ∩ B (x) = fA (x) fB (x).
(d) |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |A ∩ C|  + |A ∩ B ∩ C|

= 64 + 94 + 58 − 24 − 26 − 22 + 14   = 158
Students who had taken none of the courses is 260 − 158 = 102.
Students who had taken computer science only is 60.
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Example 1.12.41 (a) Prove by induction 13 + 23 + .... + n3 = n2(n + 1)2

4
.

(b) Find the number of ways in which a committee of 6 people can be selected from a
group of 10 people if one of them is to be designed as the chair person of the
committee.

(VTU, Karnataka, BE, Feb. 2003)
Solution. (a) Basis step n = 1.

        L.H.S = 13 = 1   R.H.S = 12 (1 + 1)2

4
= 1, Hence for n = 1, the result is true.

Induction step. Assume

13 + 23 + ..... + n3 = n2(n + 1)2

4

Now 13 + 23 + ..... + n3 + (n + 1)3 = n2 (n + 1)2

4
+ (n + 1)3

= n2 (n + 1)2 + 4(n + 1)3

4
= (n + 1)2 [n2 + 4 (n + 1)]

4

= (n + 1)2 (n2 + 4n + 4)
4

= (n + 1)2 (n + 2)2

4
Hence the result is true for all n.

(b) The number of ways in which a committee of 6 people can be selected from a group of
10 people is 10C6. Out of the grouping, one person can be selected as a chain person
of the committee. That can be done in 6C1 ways. Hence the required number of ways
is (10C6) (6C1) ways.

Example 1.12.42. If there are 14 boys and 12 girls in a class, find the number of ways of
selecting one student as class representative.

Solution. Using sum rule, there are 14 + 12 = 26 ways of selecting one student.
Example 1.12.43. Three persons enter into a car, where there are 5 seats. In how many ways

can they take up their seats.
Solution. The first person has a choice of 5 seats and can sit in any one of the 5 seats. The

second person has a choice of 4 seats and so on. Hence, the required number of ways in which
all the three persons can take the seat is 5 × 4 × 3 = 60.

Example 1.12.44. Show that in any set of eleven integers, there are two whose difference is
divisible by 10.

Solution. Let A be the given set of eleven integers, say (pigeons), B is the set {0, 1, 2, .... 9}
of pigeon holes, the possible right hand digits. By pigeonhole principle, two of integers have
same right hand digit, thus their difference is divisible by 10.

Example 1.12.45. What is coefficient of x3y2z2 in (x + y + z)9 ?
Solution. This is same as how many ways one can choose x from three brackets, y from two

bracket, z from 2 brackets in the expansion
(x + y + z) (x + y + z) ...... (x + y + z) (9 times)

This can be done in 


9
3 2 2





= 9!
3! 2! 2!

= 15120 ways.

Example 1.12.46. Find the coefficient of

(i) x10 in (1 + x5 + x10 + ....)3 (ii) x12 in (x3 + x4 + x5 + ....)3
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Solution.
(i) We know

(1 + x5 + x10 + ...)3 = [(1 − x5) − 1]3 = (1 − x5) − 3 = Σ C (3 + r − 1, r) x5r

Since we have to find the coefficients of x10, 5r = 10 ⇒ r = 2. The required coefficient is
c (3 + 2 − 1, 2) = C (4, 2) = 6.

(ii) (x3 + x4 + x5 + ....)3 = x9 [1 + x + x2 + ....]3 = x9 [(1 − x) − 1]3

= x9 (1 − x) − 3 = x9 Σ C(3 + r − 1, r) xr = Σ C(3 + r − 1, r) x9 + r

The coefficient of x12 have r + 9 = 12 ⇒ r = 3, hence the required coefficient is
C(3 + 3 − 1, 3) = 10.

Example 1.12.47.
1. How many even numbers. of three digits can be obtained using 1, 2, 3, 4, 5 and 6, no digit

being used more than once in each number?
Solution. The unit place can be filled up by 2 or 4 or 6. This can be done in 3 ways. After

filling up the  unit place, we will have remaining 5 numbers. The 10th place can be filled by any
of the 5 numbers. This can be done in 5 ways. So 100th place can be filled by any one of four
numbers. Hence required number = 3 × 5 × 4 = 60.

2. How many numbers of 6 digits which are divisible by 5 can be formed using the figures 3,
4, 5, 6, 7, 8.

Solution. The unit place can be filled by only one way(s). The other 5 blank spaces can be
filled up in 5p5 = 120 ways. Total number = 5P5 × 1 = 120.

3. How many numbers between 5000 & 7000 can be formed by using the figures 1, 2, 3, 4, 5,
6, 7 and 8 if each figure is not used more than once in a number.

Solution. To find out numbers between 5000 & 7000, we have.

Place 1000th 100th 10th Unit

Ways 2 7 6 5

The required answer is 2 × 7 × 6 × 5 = 14 × 30 = 420 ways.
4. A cricket club consists of 15 members of whom 7 are bowlers. In how many ways can a

team of 11 chosen so as to include atleast 5 bowlers.

Bowlers Non Bowlers Total
(7) (8) (15)
5 6 11
6 5 11
7 4 11

Required number of ways  = 7C5 × 8C6 + 7C6 × 8C5 + 7C7 × 8C4 = 1050
5. In how many ways can 3 persons be selected out of 15 persons so as to include always one

particular person.
Solution. First select the particular person. Then out of 14 persons, select 2 and include

the particular person in all the sections required number of ways = 14C2.
6. Determine the number of positive integers n, 1 ≤ n ≤ 2000 that are not divisible by 2, 3 or

5 but are divisible by 7.
Solution. Let A denote the set of integers in 1 ≤ n ≤ 2000 that are divisible by 2
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B || 3
C || 5
D || 7

To find n ((A
__

∩ B
__

∩ C
__

) ∩ D)
n ((A

__
∩ B

__
∩ C

__
) ∩ D) = n((A ∪ B ∪ C)

___________
∩ D)

= n(D) − n((A ∪ B ∪ C) ∩ D)
= n(D) − n((A ∩ D) ∪ (B ∩ D) ∪ (C ∩ D))
= n(D) − [n (A ∩ D) + n (B ∩ D) + n (C ∩ D)

− n (A ∩ B ∩ D) − n(A ∩ C ∩ D) −
n(B ∩ C ∩ D) + n (A ∩ B ∩ C ∩ D)]

= 285 − (142 + 95 + 57 − 47 − 28 − 5 + 9) = 76.
7. A computer is used for 99 hours over a period of 12 days, an integral number of hours each

day. Show that on some pair of 2 consecutive days, the computer was used for atleast 17 hours.

Solution. Among 12 days there are 6 pairs of days (pigeon holes) ... n = 6, k+ 1 = 17
⇒ k = 16.

Hence among kn + 1 = 97 hours.

8. The members of a class of 27 pupils each go swimming on some of the days from Monday
to Friday in a certain week. If each people goes atleast twice, show that there must be two pupils
who go swimming on exactly the same days.

Solution.
Members = pigeons

Days = pigeon holes
n = 5

k+1 = 2 ⇒ k = 1
Among kn + 1 = 6 members who go swimming in exactly the same days (by generalized pigeon

hole principle) ... Among 27 pupils definetely there must be two pupils who go on swimming in
the same day.

9. How many four digit numbers begin with 4 or a 5.
Solution. Numbers begin with 4 can be done in 1 × 10 × 10 × 10 = 1000 ways. Similarly

numbers begin with 5 can be done in 1000 ways. By the addition principle, there are 1000 +
1000 = 2000 total possible outcomes.

10. A jeweller designing a pin has decided to use five stones chosen from diamonds, rubies
and emeralds. In how many ways can the stones be selected?

Solution. We want the number of combinations of five objects out of 3 objects with
repetitions allowed.

The pin might consists of one diamond, three rubies, one emerald, for instance, or five
diamonds. We can represent these possibilities by representing the stones chosen by five
asterisks and placing markers between the asterisks to represent the distribution among the
three types of gem. For example we represent the choice of one diamond, three rubies, one
emerald by

                                                         * | *** | *
and the choice of five diamonds, no rubies, no emerald by
                                                             ***** ||
The number of ways to choose five items out of seven is 7C5 ways.

SET THEORY 57



11. Find the number of distinguishable permutations of the letters in the word ANNAMALAI.
Among these permutations, in how many permutations the two N�s appear next to each other.

Solution. Number of distinguishable permutations = 9!
4! 2!

. Considering two N�s as a single

letter, the required permutations is 8!
4!

.

12. The total number of bookings in 31 days in a month in a railway reservation counter is
7613. Show that on any one of these 31 days, there are atleast 246 bookings. Find also the
minimum total number of bookings in 31 days to guarantee atleast 246 bookings on any one of
these 31 days.

Solution. If the maximum number of bookings for each day is 245, then maximum number
of bookings for 31 days  = 245 × 31 = 7595, where it is given as 7613. Hence there will be atleast
246 bookings on any of 31 days.

Minimum total number of bookings to satisfy the given condition is 7595 + 1 = 7596.
13. How many 6-letter words not necessarily meaningful can be formed from the letters of

CARACAS.
Solution. Total number of letters = 7, 2C�s, 3 A�s, 1 R�s and 1S. For 6 letter words, we have

four options ��1C, 3A, 1R, 1S��, ��2C, 2A, 1R, 1S��, ��2C, 3A, O R, 1S��, ��2C, 3A, 1R, OS��.

Total number  = 6!
1! 3! 1! 1!

+ 6!
2! 2! 1! 1!

+ 6!
2! 3! 0! 1!

+ 6!
2! 3! 1! 0!

= 420

14. Find the total number of three digit even integers that can be formed from the digits 1,
2, 3, 4, 5, 6, 7 if no digit is repeated in any of these integers.

Solution. The last digit can be filled up by 2, 4, or 6. Hence the required number of even
integers = 6 × 5 × 3 = 90.

15. A die is thrown twice. What is the probability of getting the sum 9, given that the number
turned in one of the dice is 6?

Solution.
S = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

... n(s) = 11
E = 


(3, 6), (6, 3)




n(E) = 2.

Hence probability = 2
11

.

16. A coin is tossed two times. If you get atleast one head, you win Rs. 100, otherwise you lose
Rs. 200. What is your expectation?

Solution. p (atleast one head) = 3
4

p (no head)                = 1
4

Expectation = 3
4

(100) + 1
4

( − 200) = 25.

17. A problem in discrete structure is given independently to 4 students A, B, C, D whose
chances of solving it are 0.3, 0.5, 0.7 and 0.9 respectively. What is the probability that the problem
is solved atleast by one of them? Also find the probability that the problem is solved by atmost
one of them.
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Solution. P (at least one to solve)
= 1 − P (no body solves) = 1 − (0.7)(0.5)(0.3)(0.1) = 0.9895.

P (at most one to solve) = P (no body solves) + P (only one to solve)
= (0.7) (0.5) (0.3) (0.1) + (0.3) (0.5) (0.3) (0.1) + (0.7) (0.5) (0.3) (0.1) + (0.7) (0.5) (0.7) (0.1) 
+ (0.7) (0.5) (0.3) (0.9) = 0.1445
18. In a cell phone manufacturing company 50%, 30%, 20% of the phones are produced in

the units A, B and C respectively. It is estimated that 90%, 80%, and 70% of the phones produced
in units A, B and C respectively are accepted after inspection. A cell phone produced in this
company is drawn at random and found to be in acceptable condition. Using Bayes theorem find
the probability that the cell phone drawn was produced in unit C.

Solution.

P(C|acceptable) = P(acceptable|C P(C)
[P(acceptable|A) P(A) +
P(acceptable|B) P(B) +

P(acceptable|C) P(C)]      

= (0.7)(0.2)
(0.9)(0.5) + (0.8)(0.3) + (0.7)(0.2) = 14

83
= 0.1687.

1.13. Classified Unsolved Problems.
1. Consider the subsets A = 


1, 7, 8


, B = 


1, 6, 9, 10


, C = 


1, 9, 10


, where U = 


1, 2, 3, .... 10


. List

the non-empty minsets generated by A, B, C. Do they form a partition of U.
(Madras University, BE, October 2000)

2. (a) Define Union of sets, disjoint sets. Let A and B be two arbitrary sets. Show that
P (A ∩ B) = P(A) + P(B).

(b) Let A, B, C be subsets of universal set U. Given that A ∩ B = A ∩ C and A
__

∩ B = A
__

∩ C. Is it
necessary that B = C  ? 

3. (i) Let A = 

1, 3, 5


, B = 


1, 2, 3


, C = 


2, 3, 4


. Find A × (B ∩ C).

(BE, Maharashtra).
(ii) Using Venn diagram, verify

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(iii) State the principle of mathematical induction.
(iv) Using mathematical induction prove that n ! ≥ 2n for n ≥ 4

[Bharathiar University, M.Sc (S.E) April 2002]
4. (i) Of the 32 people who save paper or bottles (both) for recycling, 30 save paper and 14 save

bottles. Find the number of people who save only paper.
(ii) A debating team consists of r boys and s girls. Find the number n of ways they can sit in a

row if (i) the boys and girls are each to sit together, (ii) just the girls are to sit together.
(Anna University, MCA, Dec. 2001)

5. The members of a class of 27 pupils each go swimming on some of the days from Monday to
Friday in a certain week. If each pupil goes atleast twice, show that there must be two pupils
who go swimming on exactly the same days.                              (Anna Univ., MCA, Dec. 2001)

6. Prove by induction Σ
i = 1

n
i (i − 1) = n

3
(n2 − 1)                                     (Anna Univ., MCA, Dec. 2001)

7. Using Mathematical induction show that

Σ
t =  1

n
t3 = n2(n + 1)2

4
=





Σ
t = 1

n
t





2

                             (Anna Univ., ME (CSE), Dec. 2001)
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8. Let A, B, C be subsets of the universal set U
__

.

(i) Given that A ∩ B = A ∩ C and Ac ∩ B = Ac ∩ C, is it necessary that B = C ? Justify your
answer.

(ii) Define infinite sets and countability. What is the cardinality of the following sets
 (i)  Z = 


�  − 4, − 3, − 2, − 1, 0, 1, 2,...




(ii) N × N, N is the set of natural numbers.
9. (a) Let U = 


a, b, c, d, e, f, g, h


,  A = 


a, c, f, g


, B = 


a, e


, C = 


b, h


. Compute

  (i)  A ∪ B
______

 (ii)  A ∩ B
______

(iii) B ⊕ B (iv)   U
__

 (v)  B
__

∪ C
__

(vi)  A − B.
(b) Let A, B, C be finite sets. Show that
 (i) | A ∪ B| = |A| + |B| − |A ∩ B|
(ii) |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |C ∩ A| + |A ∩ B ∩ C|.
(c) Using characteristic functions show that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
(V.T.U. Karnataka, BE (CSE), July/Aug. 2002)

10. Prove by mathematical induction that

      12 + 32 + 52 + ........ + (2n − 1)2 = n (2n + 1) (2n − 1)
3

(VTU, Karnataka, BE (CSE), July/August 2002)
11.    (i) How many bit strings of length 10 begin and end with a 1 ?

 (ii) Using mathematical induction, prove that 2n < n! for every positive integer n with n ≥ 4.
(iii)A committee of k people is to be chosen from a set of 7 women and 4 men. How many ways

are there to form the committee if
1. the committee has 5 people, 3 women and 2 men
2. the committee can be any positive size but must have equal numbers of women and men
3. the committee has 4 people and atleast two are men
4. the committee has 4 people, two of each sex and Mr. and Mrs. Singh cannot be on the

committee.                                                                          (Anna Univ., MCA, Nov./Dec. 2002)

(Hint : (i) 1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 1 = 28

(ii) Proved already
(iii) 1. 7C3 × 4C2       2. 7C1 × 4C1 + 7C2 × 4C2 + 7C3 × 4C3 + 7C4 × 4C4

3. 4C2 × 7C2 + 4C1 × 7C3 + 4Co × 7C4 4. 4 C2 × 5C2

12. (a) Using induction principle prove that 4n < (n2 − 7) for all n ≥ 6.
(Hint : Assume n2 − 7 > 4n, n ≥ 6, then (n + 1)2 − 7 = (n2 − 7) + 2n + 1 > 4n +  2n + 1

>  4n + 4,  since n ≥ 6. Hence the result is true for n + 1 and hence the result is true for all
n.)

(b) State the principle of Inclusion and Exclusion. Determine the number of positive integers n,
where 1 ≤ n ≤ 100 and n is not divisible by 2, 3 or 5.

(Hint : Find number of integers that are divisible by 2, 3 or 5. Then 100 � that number, gives
the required result).

(c) Determine the number of positive integers n, 1 ≤ n ≤ 2000 that are not divisible by 2, 3, or 5
but are divisible by 7.                          (Anna Univ., ME, Dec. 2002)

13. Prove the following by mathematical induction 

(a) 1
1 × 3

+ 1
3 × 5

+ 1
5 × 7

+ .... + 1
(2n − 1) (2n + 1)

= n
2n + 1
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(b) Explain the pigeon hole principle with the help of suitable example.
(B.E, IV Sem IT, Rajiv Gandhi, Tech. Univ., Bhopal, June 2002)

14. If A and B are two non-empty sets then prove that
 (i) B − A = B ∩ A
(ii) B ∆ A = (B − A) ∪ (A − B)

(M.C.A., I Sem., Rajiv Gandhi Tech. Univ. Dec. 2002)
15.  (i) State the principle of inclusion and exclusion.

(ii) What do you understand by multisets ?
(B.E (III Sem. CSE), Rajiv. Gandhi. Tech. Univ., 2001-2002)

16. Show that

              1 + 2 + 22 + ...... + 2n = 2n + 1 − 1
by induction                  (BE (CSE), Rajiv. Gandhi. Tech. Univ., 2001-2002)

17. Assume A, B, C are arbitrary sets. You don�t have to prove (i) anything or provide counter
examples but only state if the following statements are true or false.

(i) 

a, φ


 ∈ 


a, 


a, φ








(ii) If A ∈ B and B ⊆ C, then A ∈ C
(iii) If A ∈ B and B ⊆ C, then A ⊆ C
(iv) If A ⊆ B and B ∈ C, then A ∈ C
(v) If A ⊆ B and B ∈ C, then A ⊆ C

(vi) Prove the following or provide a counter example
A ∪ B ⊆ A ∩ B ⇒ A = B.

(vii) Fibonacci numbers Fn are defined by
F0 = 0, F1 = 1, Fn = Fn − 1 + Fn − 2 for all n ≥ 2. Let the sequence of numbers Gn be defined by
G1 = 1, G2 = 3, Gn = Gn − 1 + Gn − 2 + 1 for all n ≥ 3. Prove, using induction, that Gn = 2Fn − 1 for all

n ≥ 1.
(viii) Use Induction to show that

2 + 4 + 6 + ..... + 2n = n2 + n.
(ix) For all integers, n ≥ 2, prove that

Σ
i = 1

n − 1
i (i + 1) = (n (n − 1) (n + 1))

3

(x) In a teaching room there are 20 seats, which are formed by 5 rows, each 4 tables wide. A certain
class using that room has 9 students.

In how many ways can these 9 students be seated in that teaching room ?
(B.Tech, V sem. U.P. Technical. Univ., Lucknow, 2002-2003)

18. Show that

12 − 22 + 32 − 42 + ..... + ( − 1)n − 1 n2 = ( − 1)n − 2 n (n + 1)
2

 by mathematical induction.

(BE (CSE), Rajiv Gandhi, Univ., May-June 2002)

19. (a) Prove that 2n < n! for all n ≥ 4 and n ∈ Z+.
(b) How many positive integers ≤ 100 are relatively prime to 100 ?

(Anna Univ., M.E., April 2003)
20. State the principle of inclusion and Exclusion. Determine the number of positive integers n,

1 ≤ n ≤ 2000 that are not divisible by 2, 3 or 5 but are divisible by 7.
(Anna Univ, M.E., April 2003)

21. If P = 

a, c, e


, Q = 


100, 101, 102


, R = 


m, c, e, 101


, compute

((Q ∪ P − P ∩ R) × R
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where ∪, �, ∩, X are set-theoretic binary operations.                                (IGNOU, MCA II yr, June 2003)
22.(a)  Suppose that a department contains 10 men and 15 women. How many ways are there to form

a committee with 6 members if it must have more women than men.
(b) A computer is used for 99 hours over a period of 12 days, an integral number of hours each day.

Show that on some pair of 2 consecutive days, the computer was used for atleast 17 hours.
(c) Using mathematical induction prove that

   12 + 22 + � + n2 = n (n + 1) (2n + 1)
6

,  where n is a +ve integer.

(d) A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and
French, 23 have taken courses in both Spanish and Russian. 14 have taken courses both French
and Russian. If 2092 students have taken atleast one of Spanish, French, Russian, how many
students have taken a course in all three languages.

(e) How many ways are there to form a three letter sequence using the letters a, b, c, d, e, f
  (i) with repetition of letters allowed ?

(ii) without repetition and containing the letter e  ?
(Anna Univ., MCA, April/May 2003)

23. Define multinomial theorem. 
The multinomial theorem states that for all real numbers a1, a2, ......, ak, n ∈ N, we have

(a1 + a2 + ..... + ak)n = Σ
n1 + n2 + � + nk = n





n
n1 � nk





a1
n1 a2

n2 .... ak
nk

Here 




n
n1 n2 .... nk





= n!
n1! n2! .... nk!

 ,  is called the multinomial coefficient

Given real numbers a1, a2, .... ak, (a1 + a2 + .... + ak)n = (a1 + a2 + ..... + ak) (a1 + a2 + ....
+ ak)...(a1 + a2 + � ak). After performing this product but before collecting like terms, a typical
term in this product has the from a1

n1 a2
n2 .... ak

nk. The coefficient of a1
n1 a2

n2 .... ak
nk after collecting

like terms is equal to a1, n2 factors equal to a2, so on, as we multiply the n copies of

(a1 + a2 + .... ak). This is precisely the multinomial coefficient 


n
n1 n2 .... nk




.

24. Show that if any 11 numbers are chosen from the set {1, 2, ........., 20}, then one of them will be
a multiple of another.
Hint : Create 10 or fewer pigeon holes in a such a way that each number chosen can be assigned
to only one pigeonhole and when x and y are assigned to the same pigeonhole, either x/y or y/x.
There are 8 prime numbers between 1 and 20 but knowing that x and y are multiples of the
same prime will not guarantee that either x/y or y/x.
We try again. There are 10 odd numbers between 1 and 20. Every positive integer n = 2k m,
where m is odd, k ≥ 0. If 11 numbers are chosen from {1, 2, ...., 20}, then two of them must have
the same odd part, follows by pigeonhole principle.

Let n1 and n2 be chosen numbers with same odd part m. That is, n1 = 2k1 m ;  n2 = 2k2 m for
same  k1, k2 with k1 ≥ k2. If k1 ≥ k2, then n1 is a multiple of n2 ; Otherwise n2 is a multiple of
n1.
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