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Introduction to Electric Power Systems—
Generalised Circuit Constants

Introduction—Transmission System as a Vital Link in Power Systems—
Classification of Transmission Lines—Review on Short, Medium and
Long Lines—Illustrations—General Circuit Equations—Relations
between the Generalized Circuit Constants ABCD—Generalized
Constants of Simple Networks—Charts of Transmission Line Con-
stants—Constants of Combined Networks—Ferranti effect—Losses
in transmission Lines on open circuit—Tuned Power Lines.

Introduction. Power System Engineering is that special branch of
Electrical Engineering which concerns itself with the technology of genera-
tion, transmission and distribution of electrical power. The power system
growing into a vast and complex system represents one of the most vital
systems in every modern nation. The Power System Engineer has an uphill
task in designing and operating the Power System, and is confronted with a
number of challenging problems.

The special responsibility of a Power System is that, in addition to
maintaining the generation of electrical power at adequate level, the power has
to be transmitted to the various load centres in response to the changing
demands, in proper, form and quality, in accordance with the individual
consumers’ specifications.

The Power Systems which were hitherto operating in isolation are in
the process of being interconnected. The interconnected operation offers many
advantages such as improved economy and reliability ; but these benefits can
be realised only after the implementation of a number of sophisticated controls
both at the local level and at the system’s level. Power System Engineer should
have a thorough knowledge regarding the operation and control of intercon-
nected Power Systems which will be of immense help, especially when
interconnecting the local grids to form an integrated power pool.

In the last few years, there has been a gradual increase in academic
interest in the field of Power System Engineering, essentially due to the energy
crisis all over the world Numerous problems concerned with the planning and
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operation of large interconnected Power Systems are being studied both in
academic circles as well as by practising engineers. Although the present book
is essentially devoted to Analysis, stability and protection of Electric Power
Systems, it is worth noting that the courses in this area are being updated with
considerable emphasis on the use of computers, control, system theory, & c.

The course on hand is a necessary pre-requisite to the study of methods
of analysis, stability and protectiop problems pertaining to the Electric Power
Systems.

The current Chapter deals with the principles and performance char-
acteristics of transmission systems and development of generalized circuit
constants as applicable to Power System problems.

1.1. Classification of Transmission Lines

The student is expected to have studied the principles of transmission
line and its properties, in earlier courses. Essentially, a transmission line
possesses resistance, inductance, capacitance and leakance or leakage conduc-
tance. While the first two are represented as series constants in the portrayal
of a t-ansmission circuit, the last two are displayed as shunt circuit constants.
In fact, all the four are distributed parameters and, as such, will have to be
taken cognizance of appropriately, depending on the voltage and length of the
transmission line in question. The constants may be lumped suitably in the
representation on an equivalent circuit depicting the transmission system.

The transmission lines may be classified as short, moderately long (or
medium) and long lines. In the case of overhead transmission lines of upto,
say, 80 km length, they may be branded as short lines, in which case the shunt
constants, viz., capacitive susceptance and leakance may be ignored, with the
result that the electrical equivalent circuit may be shown as in Fig. 1.1, by
means of a simple series impedance as a lumped constant

I : 1
>3 Z=R+ JX >
Is=1=lf
13 Y |Loao
TTTTTTTTTNEUTRAL T T TTT T

Fig. 1.1. Short transmission line.
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Z=R+jX

where R is the total resistance in ohm per phase, X is the total inductive
reactance per phase and Z, the series impedance represented in the complex

form ;
|Z|=VR? + X*

is the numerical value of the impedance.

The transmission line may be three-phase or single phase. Fig. 1.1
shows an electrical equivalent circuit per phase of the three-phase line. In the
case of single-phase line, R and X denote the resistance and reactance of both
conductors of the single phase circuit.

The lines of length between 80 km and, say, 240 km may be treated as
moderately long (medium) lines, in which case they may be represented by
nominal ‘T or ‘n’ method as shown in Figs. 1.2 and 1.3 respectively. It is to
be noted that Z is the total series impedance of the entire line and Y, the total
shunt admittance of the line. As in Fig. 1.1, these two figures show the single
phase electrical equivalent circuits, irrespective of whether the transmission
line is three phase or single phase. Accordingly, the voltages and currents at
the sending and receiving ends represent the per-phase values.

7] S ;) M
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Fig. 1.2. Medium lines : Nominal ‘T circuit.

V, = sending end voltage per phase

V, = receiving end voltage per phase

I; = sending end current per phase

I, = receiving end current per phase

Z =R + j X = series impedance per phase
Y =G + jB = shunt admittance per phase

where G = leakance or leakage conductance per phase,

B = capacitive susceptance per phase.
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Fig. 1.3. Medium lines : Nominal ‘%’ circu.t.
In case of medium lines, the leakance may generally be ignored, unless
otherwise specified, in which case
Y=jB=joC,
where  w = radian frequency of the power supply,
C, = capacitance to neutral of the transmission line in Farad.

The transmission lines more than 240 km long are considered as long
lines, in which case a more rigorous solution is required. The impedance and
admittance are treated as uniformly distributed, rather than lumped, unlike the
short and medium lines.

With the above introduction, we shall proceed to consider the perfor-
mance of short, medium and long lines separately, with appropriate examples
incorporated in the pertinent articles.

1.2. Short Transmission Lines

Asseen from Fig. 1.1, the sending and receiving end currents are equal,

I, =1, = I (say). The receiving end voltage is equal to the sending end voltage
minus the voltage drop in the transmission line.

V.=V,-12 (1.1)

¢ 4, IR
I
Fig. 1.4. Phasor diagram, for short transmission line.
It should be noted that the Eq. (1.1) is a vector relation between the
two end voltages and / Z is the impedance drop in vector form, / and Z being

current and impedance phasors respectively. The impedance drop should be
clearly distinguished from the arithmetic difference between the measured
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values of sending end voltage V and receiving end voltage V.. Fig. 1.4 shows

the vector relation between the above voltages. It is assumed that the line
delivers a load at lagging power factor, ¢, being the angle of lag. d is the angle
by which the sending end voltage leads the receiving end voltage and is
referred to as ‘‘displacement angle’’.

Vo=V, 412

Sending end voltage is equal to the receiving end voltage plus the
impedance drop in the line. The above relation is clearly the same as Eq. (1.1).
If the load characteristics are specified, viz., V,, I, and ¢, are given, the sending
end voltage V; and power factor cos ¢, can be evaluated. ¢ is the phase angle
between the sending end voltage and current. It is clearly seen that for lagging
power factor of load, the sending end power factor is less than the receiving
end power factor, as the line adds to the equivalent inductive reactance of the
lagging load.

In a practical transmission system, step-up and step-down transformers
may be used at the sending and receiving ends of the transmission line, as
shown in the single line diagram of Fig. 1.5 with the result that the overall
transmission system may be represented by the same model as in Fig. 1.1, by
adding the series impedances contributed by the transformers to the series

impedance of the transmission line.
Thus Z=2r,+2,+ 21,

where Z = total transmission system impedance

Z7, = Equivalent series impedance of the transformer T, referred to
transmission line (H.V. side of the transformer).
Zr, = Equivalent series impedance of the transformer T, referred to
transmission line (H.V. side of the transformer).
It is assumed that the shunt admittance of each transformer is too small
to be taken into consideration. The equivalent single phase circuit of Fig. 1.5
is depicted in Fig: 1.6.

STEP-UP STEP - DOWN
TRANSFORMER TRANSFORMER
S l l R
~ %% __TRANSMISSION_LINE §§ L04D
ki T

Fig. 1.5. Single line diagram of a transmission system comprising
power transformers and transmission line.

The sending end voltage and power factor can be evaluated by adding
vectorially the impedance drop to the receiving end voltage to determine the
sending end voltage in vector-form. The phase angle at the sending end is
determinable from the above. A typical example is given below :
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Fig. 1.6. Equivalent single phase circuit of
the transmission system in Fig. 1.5.

Example 1.1. A three-phase load of 5 MVA at 80% power factor
lagging is supplied at 11 kV from a step-down transformer having a ratio of
3 : 1 (line values). The primary side of the transformer is connected to a
transmission line ; the line constants are : resistance per conductor, 2 ohm,
and reactance of line to neutral, 3 ohm. The resistance and reactance per
Pphase of the primary windings of the transformer (star-connected) are 5 ohm
and 10 ohm respectively, and the corresponding values for the secondary
windings (delta-connected) are 1.5 and 3.0 ohm respectively per phase.
Determine the voltage and power factor at the sending end of the transmission
line. Neglect shunt admittances of the transformer and line.

Solution. A single line diagram for the problem is shown in Fig. 1.7.
At the receiving end of the transmission line, a transformer is used with a line
voltage ratio of 3 : 1, viz., 33 kV to 11 kV. As the primary windings are
star-connected and the secondary delta-connected, the phase voltage ratio from
primary to secondary would be V3 : 1.

k = V3 = primary to secondary turn ratio

The equivalent series impedance of the H.V. winding is 5 + j 10 ohm.
The equivalent series impedance of the L.V. winding (secondary) referred to
H.V. side would be k* x actual impedance.

=kK(15+j30)=3(1.5+j3.0)ask=V3

=4.5+;9.0 ohm.
s 31
@___ 7434 __é%_
W00 1040
TRANSMISSION LINE /

Fig. 1.7. Single line diagram for Example 1.1.
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Hence the total equivalent series impedance of the entire transformer
referred to H.V. side would be
Zr=5+j10+45+,9.0
=9.5+;19 ohm.

The single phase equivalent circuit is shown in Fig. 1.8.

Is=] 243 1 {9 ;5*,5.0?' 19 Ilp
TRANSMISSION TRANSFORMER
LINE
no) Vs Ve L0AD
L ------------------------ - - — -

Fig. 1.8. Single phase equivalent circuit for Fig. 1.7.

Taking V, as the reference, and referring the load data to the H. V. side
of the transmission circuit,

33, .. o
V,= 73 /0° =19.05 kV to neutral / 0°
As the load is 5 MVA at 0.8 p.f. lagging, the load current would be

1 0 s amp. |\ e bme 6
1=875 [36.0° Amp. 36.9° behind thi ;th:;:n;f
=87.5(0.8 - 0.6)
=70-j52.5
Z=115+4+22Q

1Z=(70-j525)(11.5 + 22)
= 1960 + j 936.25
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Therefore, Vi=V,+1Z=19050+,0
+ 1960 + j 936.25 Volt

= 21010 + j 936.25 Volt
=21031 volt / 2.55°
=21.031 kV / 2.55° (per phase)
Line to line voltage at the sending end
Vi(L-L)=36.43kV.
In the phasor diagram of Fig. 1.4 as applied to this example,
6=255°
Sending end power factor angle,
o= +0=369+255 =39.45°.
Sending end power factor,
cos ¢, = cos 39.45°
= 0.772 lagging.
Incidentally, the power at the sending end, which is the power supplied
to the transmission system would be
V3 x 36.43 x 87.5 x 0.772 kW
P, = 4262.2 kW.
Power delivered at the receiving end, viz., to the load
P,=5000x 0.8
= 4000 kW.
Efﬁ.ciency of the transmission system is thus found to be
Power delivered to the load
Power input to the transmission system

P,
P-

Transmission 4000 _
Efficiency } = H2622 * 100%= 93.85%.

1.2.1. Regulation of Transmission Lines

The voltage regulation of a transmission line (or transmission system)
may be defined as the per unit or percentage change in voltage at the receiving
end when full load is thrown off, at the prescribed power factor.

If V, = receiving end voltage at the specified load and power factor,
and V, = receiving end voltage when the load is thrown off, the regulation ¢

may be expressed as follows :
VeV,
€= v p.u.

VrO_ Vr

x 100% (12)
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If V, is held constant at the specified load, and V| adjusted to hold V,
at that level, then V,, = V, (when the load is thrown off). Consequently, the
value of V), can be determined from the phasor diagram of Fig. 1.4, by
resolving V; into two components, one along V,-phasor and the other,
perpendicularly.

V2 = (V, + IR cos ¢, + I x sin ¢,)? + (I x cos ¢, — IR sin ¢,)?

If the sccond part on the right hand side of the above expression fades
into a negligible quantity, an approximate result will be as follows :

Vio=Vs+IRcos ¢, + I xsin ¢, -(1.3)
(¢, is positive for lagging power factor, and negative for leading power factor).

From (1.2) and (1.3), it is seen that the regulation may be

approximately expressed as
IR cos ¢, + I x sin ¢,
V,

r

x 100%

As an example, if the full load resistance and reactance drops are given
as 3% and 5% of the receiving end voltage on full load, the regulation at any
power factor lagging or leading would be (IR cos ¢, + I x sin §,)% if the drops
are represented in percentage values.

Here IR=3

IX=5
cos ¢, =0.8
sin ¢, = 0.6
Regulation at 0.8 p.f. lagging
=(3x0.8+5x%x0.6)% =5.4%.
Regulation at 0.8 p.f. leading
=(3x0.8-5x0.6)% =-0.6%.
Regulation at unity p.f.
=3.0%.

It is seen from the above example that at a leading power factor, there
is a tendency for the pressure to rise on throwing off the load or an improve-
ment in regulation.

It follows that if a capacitor is connected across a load, for the purpose
of improving the overall receiving end power factor, there will be an improve-
ment of regulation due to the reduction in lagging reactive power delivered by
the line. To illustrate the effect of the presence or absence of a capacitor, an
example is given below.

Example 1.2. A single phase 50 Hz generating station supplies an
inductive load of 6000 KW at a power factor of 0.6 by means of an overhead
transmission line 20 km long. The resistance per km of each conductor is 0.015
ohm and the loop inductance is 0.75 mH per km. The voltage at the receiving
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end is maintained constant at 11 kV and a capacitor is connected across the
load to raise the power factor to 0.9 lagging. Calculate.
(a) the capacitance of the capacitor, and
(b) the generating station voltage when the capacitor is (i) in use,
(ii) disconnected.
Solution. Resistance of both conductors for 20 km length
=0.015x2x 20Q
R =0.6 ohm.
Loop reactance X =27 x 50 x 0.75 x 107 x 20
X =4.712 ohm.
Thus total series impedance of the single-phase transmission lines is
Z=0.6+;4.712 ohm.
(a) Let the original power factor be cos ¢; and the improved power
factor cos ¢, when capacitor forms a part of the receiving end load.
In this example,
cos ¢, = 0.6, sin ¢; = 0.8
cos ¢, =0.9, sin ¢, = 0.436.
Fig. 1.9 shows the original and modified KVA, as given by the length.s
OB and OC respectively, the corresponding power factor angles being ¢, and
¢, respectively. The reactive KVA (or KVAR) of the lagging load is given by

0.8
AB—6OOOxO.6-8000.

<«~————6000 kW——

¢

A

¢
¢

3
CAPACITOR KVA
-~ (8C)

8

Fig. 1.9. For Example 1.2.

The modified KVAR of the overall receiver load is indicated by the
length AC, which means that there is a reduction in the reactive power supplied
through the transmission line, by virtue of an improved overall receiver power
factor. The difference in KVAR, as signified by the length BC corresponds to
the contribution of the capacitor installed at the receiving end across the load.
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Thus, BC = capacitor KVAR =AB -AC
0.436
= 8000 - 6000 x 09
= 8000 - 2907 = 5093.
Let C be the capacitance of the capacitor used, in Farad.
Then V, (V,0C) = 5093 x 1000,
neglecting capacitor loss.
Substituting V,=11000 V
o =21 x50
C =133.9 uF say, 134 uF.
(b) (i) To find the Generating Station voltage, V; when the capacitor
is in service.
The combination of the load and capacitor will have a lagging power
factor of 0.9.
Receiving end current

I=

6000
11x 0.6
Taking current as the reference phasor,
I=606+;0
V, = 11000 (0.9 +j 0.436) = 9900 + j 4796 volt.
1Z = 606 (0.6 +j 4.712)
=363.6 + j 2855 volt
Vi=V,+1Z=10263.6 +7651 V
V,=12.80 kV.
(ii) Generating Station voltage when the capacitor is disconnected.

When the capacitor is disconnected, the transmission line current is
exactly the same as the load current, at 0.6 p.f. lagging.
6000
I= 11x06 =909.1 Amp.
The current will therefore increase by about 50%, resulting in an
increase of impedance drop proportionately.
V,=11000 (0.6 +j 0.8)
= 6600 + 8800 V.
I1Z=909.1(0.6 +j4.712)
| =5455+j4283.7V
Vo=V, 412
=71455 +j 13084 V
V,=V7145.52 + 130842 V = 14.91 kV.

= 606 Amp.
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There is thus an increase in voltage required at the sending end, by
about 2.1 kV, consequent to disconnection of the capacitor. :

1.2.2. Parallel operation of short transmission lines

Duplication or operation in multiple of transmission lines (either
overhead or underground) is commonly practised in order to improve the
reliability of service by maintaining continuity of supply especially to an
important industrial area, so that on the event of one of the lines developing
defects or being subjected to faults, the other or others will carry or share the
load until the fault is located and rectified. The lines may or may not follow
the same transmission-route. The lines may be overhead or underground
cables, or both. If all the lines follow the same route and their design features
are identical, then the total transmitted load will be shared equally by them. If,
however, the routes are different, as also their circuit constants, then the
respective share will not be the same and can be computed from the knowledge
of the circuit parameters.

Load-division. Consider two transmission lines, in parallel, whose
impedances per phase are

Zi =R +jX

and Zz =R, +jX;

Fig. 1.10 shows an equivalent single phase circuit for two transmission
lines in parallel. Let I be the total load current and I, I, the currents delivered
by lines 1, 2 respectively.

é
y ~

n o) v r  |Loap

Fig. 1.10. Two transmission lines with impedances Z; and Z,, in parallel.
As the two lines are paralleled at the sending as well as receiving end,
they are represented by the two impedances in parallel.
Let Z be the combined impedance of the two lines in parallel.
YAR4)

Then : = m

(1.4)
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I=h+1 .(1.5)
As Z, and Z, are in parallel, the voltage drops across them shall be
equal. Consequently.

.I‘.Zl =!2Z2 =IZ .(16)
H nef-_%_ 1.7
ence .1-.2—1‘ —Zl—+Z; ( . )
on substitution from (1.4).
. Z,
Similarly, I= Zz‘l + ml ..(1.8)

It should be noted that all the quantities in the above expressions are
phasors, and any difference in the impedance angles should be taken into
consideration. The power factor of the transmitted power along the lines need
not be the same as that of the total receiver load.

The currents may be replaced by complex powers S, S; and S where

Sy is the KVA or MVA supplied through line 1, represented as a polar vector,
the angle associated being the power factor angle. Similarly, S, and S are also
complex powers.

If the load power factor angle is cos ¢, and the power factors of the
transmitted powers through the lines 1 and 2 are cos ¢, and cos ¢, respectively,
the complex powers may be expressed in the polar form as follows :

S=SL¢
5,=5 /¢ (1.9)
525,15,

Replacing the currents in equations (1.7) and (1.8) by the complex
powers,

S22 s
g ;
Zi+2p -(1.10)
=t s
272,42,
If S, S, and S, are expressed in cartesian form,
S1=P +jQ,
S;=P+jQ; (L.11)
S=P+jQ

where P and Q represent the total true power and reactive power respectively.
If the load is given in MV, the true power is in MW and the reactive power,
in MVAR.
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P=Scos¢; Q=Ssin¢
Py =S;cos¢;; Q1 =S8;sing; -(1.12)
Py=Sycosy; Qr=S;sin¢;

The manner in which the parallel lines will share a common load is
illustrated by the following examples.

Example 1.3. Two short three-phase transmission lines operating in
parallel supply a 6 MW, 66 kV, balanced load having a power-factor of 0.8
lagging. The resistance and reactance of one line are 4 ohm and 6 ohm
respectively and those of the other line, 5 ohm each. Determine the current,
power and power factor of the load carried by each line.

Solution. The impedances of the two lines are expressed in cartesian
and polar forms, as follows :

Z,=4+j6=7.21/56.0° ohm
Zy,=5+f5=7.07/45° ohm
Zy.2,=9+j11=14.21/50.7° ohm

6000

V3 x 66 x 0.8
Taking the receiving end voltage as reference,

66
=—/0°kV
v, \[3-/0 kV/phase

Load current [ = =65.61 Amp.

1=65.61/36.9° Amp.

as the p.f. = 0.8 lagging. !l = Z _+ZZ I
7.0745°
—_— Q°
=221 /507 * %>61/365
= 32.64/42.6° Amp.

Power factor of load carried by linc 1
= cos 42 6° = 0.736 lagging.
Load carried by line 1
=V3 x 66 x 32.64 x 0.736 = 2746 KW

P, =2.75 MW, (say)

L=s 2l

7+ 2,
7.21/56.3° _
=421 /50.7° < 8561/369

=33.30/31.3° Amp.
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Power factor of load carried by line 2
= cos 31.3° = 0.854 lagging
P, =V3 x 66 x 33.30 x 0.854
= 3251 KW
P, = 3.25 MW (say).

If only the MW loading of each line is required, it is not necessary to
calculate the current supplled by the line. The expression for S; or S, as in
(1.10) can be directly used to find the complex power, real part of which gives
the true power.

Example 1.4.A 66 kV Generating Station is to supply a load of 15 MW
at 63.8 kV and at a power factor of 0.8 lagging. The transmission line is
designed such that the efficiency of transmission is 97% :

(a) What must be the resistance and reactance of the line ?

(b) If the load carrying capacity of the transmission line has to be
raised to 20 MW by erecting a parallel line, all the other conditions remaining
unaltered, what must be the constants of the second line ?

Solution. (@) Line current

15,000
V3 x63.8x0.8
As the efficiency of transmission is given as 97%, the total line loss

=169.7 Amp.

will be 3% of the power supplied at the sending end, viz., 15,000 x -93—7 KW.

Let R be the resistance of each conductor. Total loss in the three phases
=3R=3x169.7" xR
15000 x 3000
= 97 w
whence R = 5.37 ohm.
Taking current as the reference phasor,
1=169.7+;0
63.8 .
V,= 3 (0.8 +0.6) kV
=(29.47 +j22.1)kV
Impedance drop I Z = 169.7 (5.37 + jX) volts

V, = 29,470 + 22,100 V

Vi=V,+12
66,000
V==V

= 38100 V/Phase
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V, = 29470 + j22100 + 911.3 + j169.7 X
(38,100)° = (30,380)? + (22,100 + 169.7 X)?

Solving, X =5.26 ohm.

Thus, the constants of the line are
R, =5.37 ohm
X, =5.26 ohm

Zy =537+ j5.26 ohm.

(b) A new parallel line will have to carry the extra load, viz., 20 - 15
=5 MW, while the original line will continue to carry its design load of 15
MW, under the same conditions, namely, at the same efficiency and the same
regulation. As the power factor of the total load is the same and also the
receiving end voltage, as in case (a), the current transmitted by the new line
should be 1/3 of that carried by the first line as the MW loading is 1/3 of that
of the first line. As the impedance drops across the two parallel lines should
be equal, the new line impedance Z, should be thrice that of the first line. As
the ratio of line loss to load is the same for both lines, it is also seen that the
resistance of the second line should be thrice that of the original line.

Therefore, Z;=32Z,=3(R, + X))

=3(5.37 +j5.26) = 16.11 + j15.78 ohm.

Example 1.5. Two single-phase transmission lines are connected in
parallel. Their impedances are (2 + j3.5) ohm and (3.5 + j2.5) ohm respec-
tively. The sending end voltage is 11 kV. Deduce and draw a locus diagram
for the receiving end voltage for a total current of 600 Amp at various power
factors. From the diagram, find the voltage regulation for a power factor at
the receiving end of 0.8 lagging. Check the result by calculation. Determine
also the KW load transmitted by each line at that power factor.

Solution. Let Z; and Z, be the impedances of the two lines.
Z;=2+j35=4.03/60.3°Q
Z,=35+j25=430/35.5°Q

Z21+Z,=55+j60=814/47.5°Q
, 4t
. Zl + Zz
_(4.03x4.30)/95.8°
T 8.14/475°

Total current / = 600 / 0° Amp.
is chosen as the reference for drawing the locus diagram.

Construction of locus diagram. [See Fig. 1.11].

Draw the reference line OX, which is the line depicting the orienta-
tion of the current chosen as the reference vector.

=2.13/48.3°



INTRODUCTION TO ELECTRIC POWER SYSTEMS 17

Voltage drop in the line
=1Z=600x2.13/48.3°
= 1278/ 48.3° volts.
The impedance drop phasor makes an angle 48.3° with the reference

axis. Draw OA equal to 1278 volt (to an appropriate scale), making an angle
of 48.3° with the horizontal, as shown in Fig. 1.11. Draw the horizontal AB

’ \\
7 B\
4
& Q
& 7
4
Wb~
” ”
02 =369 REFERENCE
g AXIS
“\ue-s* 1Ky

~8

Fig. 1.11. Locus diagram for receiving end voltage V,.

equal to 11000 V (the sending end voltage). With A as centre and AB as radius,
draw a circle which is the locus of the tip of the V, phasor. The magnitude and
phase of the receiving end voltage V, is readily obtained by drawing a straight
line such as OD making an angle equal to that of load power factor with the
horizontal [Above the horizontal for lagging power factor, and below for
leading power factor].
By measurement, for 0.8 p.f. lagging
OD = 9900 volts
V,=99kV.
Calculation. For a p.f. of 0.8 lagging,
¢, =369°
Consider AOAD ; draw a perpendicular DF to AO produced.
AD?=CA?+0OD? +2.0A x OF
OD?=AD*-0A*-2.0A x OF
= 11000% - 1278% - 2 x 1278 x OD x cos 11.4°
Putting OD = V, and rearranging, we obtain a quadratic equation in V.
V,2+2500V,-122.63 x 105 =0
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Solving, V, =9900 V
= 9.9 kV, discarding the negative value as the root.
This agrees with the above result.

1.3. Medium Transmission Lines

In dealing with the short transmission lines, the line capacitance was
ignored. In fact, the effect of capacitance of transmission lines designed upto
20 kV fades into insignificance but as the length of the line and the operating
voltage increase, the shunting effect of the capacitance becomes pronounced
and will, therefore, have to be given due recognition in determining the
characteristics of the transmission lines. For voltages upto, say, 100 kV, line
calculations may be based on nominal T and & modes of representation of the
transmission circuit. [Vide Figs. (1.2) and (1.3)].

In both nominal T and -methods of approach, the sending end voltage
and current are expressed in terms of receiving end voltage and current in the
following general forms :

Vs=AV, +BI, ..(1.13)
I,=CV,+DI, .(1.14)

The subscripts s and r denote the sending and receiving end parameters
respectively, and A, B, C, D are referred to as generalised transmission line
constants, determinable from the values of series impedance and shunt admit-
tance of the line.

Next, let us proceed to express these constants as referred to T-and
n-networks separately.

1.3.1. Nominal-T' method

Fig. 1.2 shows a T-network in which Z = series impedance per phase
and Y = shunt admittance per phase, which is entirely concentrated at the
middle of the line. It may, therefore, be referred to as Middle-Capacitor
method.

Now we have to express V; and I, each in terms of receiving end
voltage V, and current /,. Let V, = voltage across the shunt admittance Y.

Then Ve=V,+1.@D)
L=VY=(,+31,DY

Hence, LeL+l=lL+(V,+312)Y
L=VY+l,(1+3ZY) -(1.15)
Vo=Vi+3U+1)2

=V(1+3ZV)+LZ(1+32ZY) ..(1.16)
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By comparison of Eq. (1.16) with (1.13), and (1.15) with (1.14), the
generalized constants A, B, C, D, are readily obtained in terms of line
parameters, as follows :

A=1+37Y
- 1
B=2(1+,2Y) (1.17)
c=Y
p:u%gy

It should be noted that Z and Y are phasors and the constants A, B, C,
D are consequently in complex form.
From (1.17), it is seen that
A=D ..(1.18)
This is true in case of symmetrical networks, as is the T-net work with
Z/2 on either side of Y. If the two impedances are not equal, A = D.
If may also be proved that
AD-BC=1 ..{(1.19)
Proof. AD -BC = (1+1ZY)* - YZ(1 +ZY)

=1+ YZ+ 32V} -YZ-1 @2V} =1.

1.3.2. Nominal = method

Fig. 1.3 shows a nt-network in which Z and Y are the same as in the
case of T-network. The essential difference is that in the n-network, the entire
Z is lumped as a series impedance and the admittance Y is divided into equal
halves, each half being localized at the sending as well as the receiving end.
This method of representation of medium lines is also referred to as ‘Split-
Capacitor method’ or ‘localized, capacitor method’.

In Fig. 1.3, I represents the current through the impedance Z. /., and

I, are charging currents at the receiving and sending end respectively, each
corresponding to one-half of the total capacitance of the line.
Thus, I,=3v.Y
L=h+lq=L+3V,Y
Ve=Vi+liZ
= 1
=L+ +3 VN2
Vo= Vi(1+32Y +142) -(1.20)
lo=3 VY
=1 1
=YVl +32ZY) +12)
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Hence L=1+1,
=L+3V,Y+INV(+1ZN+12]
L=V, Y1+3ZV)+1(1+32ZV) .(1.21)

By comparison of Egs. (1.20) and (1.21) with (1.13) and (1.14),
respectively, it is seen that

A=1+32Y=D
B=Z .(1.22)
C=Ya+:ZM)
It may also be proved, as in the case of nominal T-approach, that
AD-BC=1 ..(1.23)

Therelations (1.18) and (1.19) hold good for all symmetrical networks,
while the latter is true for asymmetrical networks as well. This will be proved
later in the case of general transmission networks.

1.3.3. Phasor diagrams for T and x circuits

Phaser diagram for nominal T method. Phasor diagram for voltages
and currents may be drawn by taking either the receiving end voltage or current
as reference phasor. Fig. 1.12 shows the phasor diagram, by taking the

Fig. 1.12. Phasor diagram for voltages and currents :
Nominal T method.

receiving end current /, as reference. The power factors at the receiving end
and sending end are cos ¢, and cos ¢, respectively. The receiving end power
factor is assumed lagging, as is usually the case. V, phasor leads /, by an angle
- V., the voltage across the middle-capacitor (Y = jwCo) is obtained by adding
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victorially the impedance drop vector /, Z/2 to V,. The charging current phasor
I leads V. by 90°, as shown. Adding /_ to /, gives [,. The impedance drop due
to I, added to V,, yields the sending end voltage phasors V,. The phase angle
between V; and /; gives the power factor angle of the power input to the
transmission line (at the sending end).

Phasor diagram for Nominal & method. In the nominal T-method, /,
was taken as the reference. Just for a change, we shall take V, as the reference
and draw the phasor diagram for the n-model network (Vide Fig. 1.13). I, and
I, are the charging currents at the receiving and sending end respectively and

lead the corresponding voltages V, and V respectively by 90°. The line current
I is obtained by vector addition of I, to I, ; and [, is obtained by adding lc2

vectorially to /;. The phase angle between the sending end voltage and current
gives the power factor angle of the power input at the sending end.

4

Fig. 1.13. Phasor diagram for voltages and currents.
Nominal n-method.

Now we are ready to take up some examples on the evaluation of
characteristics of medium lines by nominal T-and & methods of approach. The
problems may be solved either by using the expressions for V; and I, each in
terms of V, and /, together with the ABCD constants, or by proceeding
systematically from the receiving end toward the sending end. The latter
approach is adopted in the following examples.

Example.1.6. A three-phase transmission line has the following con-
stants (line to neutral) : R = 12 ohm, inductive reactance = 20 ohm, capacitive
susceptance = 5 x 107 mho. Using the middle-capacitor (Nominal T) method,
calculate the sending end voltage, current and power factor and also the
cfficiency of transmission when supplying a balanced three-phase load of 12
MW at 66 kV, at a power factor of 0.8 lagging.

Solution. Fig. 1.14 shows the nominal-T circuit of representation of
the transmission network. (equivalent single phase)

6+j10=§;6+j 10
3 ¢ load ; 12,000 KW at 0.8 p.f. lagging

12,000 ,
b= 66 x0g = 1312 Amp-
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Z/2=6+j10=11.66/59°Q

(6+j10)8 (6+410)8
MM~ TIO0—T— WA~ 500

Is i
i
@ Vs oy=jsaoty Vo wao
NEUTRAL

Fig. 1.14. For Example 1.6.
Taking the receiving end current (load) as the reference phasor,
1,=131.2 + jO Amp.
66 .
V.= 73 (0.8 + j0.6) kV/phase

= (30.485 + j22.864) kV/phase
1,Z/2=131.2 (6 + j10)
=787.2 +j 1312 V/phase
Ve=V,+1,212
=31.272 + j24.176 kV/phase
L=V.y
=(31.272 + j24.176) x j5 x 107
=-12.1 +;15.64 Amp.
!: =!r *.lc
=119.1 + j15.64
=120.1/7.5° Amp.
' 1,Z12=(120.1/7.5° (11.66 / 59°)
= 1400 / 66.5° volt.
= 1400 (0.3987 + j0.917)
=558 + j1284.
Vi=Ve+ 22
=40.76 / 38.7° kV/phase
| V| @ -L)=V3 x 40.76

Line voltage at the sending end
=70.6 kV
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Power factor angle at the sending end
=(38.7-75)*=31.2°
Sending end power factor
cos ¢, = 0.855 lagging.
Phasor diagram in Fig. 1.15 depicts the relative positions of voltage
and current phasors at the sending and receiving ends.

Vo> 40- T KV

Fig. 1.15. Phasor diagram for the Nominal.T
circuit of Fig. 1.14.

To find the efficiency of transmission. Power input to the transmis-

sion line at the sending end
= V3 x 70.6 x 120.1 x 0.855 KW
= 12,560 KW

Power delivered at the receiving end

= 12,000 KW
Hence efficiency of transmission
- Er—:zg x 100% = 95.5%.

Alternatively, line loss may be evaluated and added to the power
delivered at the load-end to determine the power at the sending end of the
transmission line.

Total line loss in all the three phases

=3[(131.2)% + (120.1)*) x 6 W = 569 KW
Therefore, F,=12,569 KW
= =;:=:—§.ﬁ:§gu 100% = 95.5%
This closely agrees with the earlier result.

Example. 1.7. Find the characteristics of the load at the sending end
and the efficiency of transmission of a three phase transmission line 160 km
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long, consisting of hard-drawn copper conductors spaced in 3 metre delta
arrangement, when the receiving end delivers 15 MVA load at 110 kV, 50 Hz
and power factor 0.9 lagging. The resistance of the conductors is 0.25 ohm
per km and the effective conductor-diameter is 8.75 mm. Neglect leakance and
use the Nominal n (Split-capacitor) method for your calculations.

Solution. Resistance of each line conductor

160 km long = 0.25 x 160 = 40 ohm
R =40 ohm.

The student will recapitulate from his earlier course on Field Theory
and Transmission Lines and derive the formulae for inductance and
capacitance per phase of a three phase transmission line with the conductors
equilaterally spaced D (metre) apart and with radius r (in metre).

If Ly and Cj are the inductance and capacitance to neutral respectively
per km length, it may be proved that

Lo = 0.050 + 0.4606 log;o ( % J mH/km

__0.0241
0= logw (D/l’) n
Inductance per km length

=0.05 + 0.4606 log; (% ) mH

=1.356 mH/km
Ly=1.356x160x 10> H
=0.217 H/phase
Inductive reactance per phase
X =2nfLy=2n x50 x 0.217 = 68.2 ohm.
Capacitance to neutral
Co= 0.0241

logso ( 4375 )

Capacitive susceptance would be
0Co =27 x 50 x 1.36 x 1078
L 214x 1073 &
7=y =/0214x
Z =40 + j68.2 ohm.

F/km

x 160 uF = 1.36 pF.

The n model of the transmission network per phase is shown in
Fig. 1.16, with the constants marked thereon.

15000
Load current I, = 73 x110- 78.73 A.
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Is (40+j68-2)0 Ir
AA P
> vv'W—z-"UD'O" >
O IL
7162 IC,
Ay . i3 .Y %
N | v TZTI=z jo2uxi0V =5 U LOAD
% 2 Z

Fig. 1.16. n-network for Example 1.7.
Taking /, as the reference phasor,

1,=7873/0° A
v, =129 0.9 4 j0.436) kV/phase
.r“ﬁ . J Y. P

= (57,160 + j 27,690) volts/phase
charging current at the receiving end
I, = j0.214 x 107 (57160 + j27690)
=-593+j1229 A
1,=78/73 +j0
I=1+1, =728+j1229 A
1. Z=(72.8 +j12.29)(40 + j68.2)
= 2074 + j5457
V,=57160 + j27690 V
V=V, 412
=59.234 + j33.147 kV/phase
=67.9/29.2° kV/phase.
Line voltage at the sending end
Vi(L-L)=679V3
=117.6 kV.
Charging current at the sePding end
I, =j0.214 x 107 (59234 + j33147) A
=(~7.09 +12.68) A
1, =72.80+12.29
I;=65.71 +j24.97

Sending end current = 70.3 / 20.8° Amp.

25



26 POWER SYSTEMS

Power factor at the sending end
= cos [29.2 +20.8]° = cos 8.4° = 0.9893 lagging.
Power at the sending end
P;=V3 x 117.6 x 70.3 x 0.9893
= 14166 KW.
Power delivered at the receiving end
P, =15000 x 0.9 = 13500 KW.
Efficiency of transmission
_P, 13,500
TP, 14,166
The student is advised to draw phasor diagram for voltages and currents
as in Example 1.6.

x 100% = 95.3%.

1.3.4. Dr. Steinmetz’ split-capacitor method for medium transmis-
sion lines

The above two methods viz. T and & modes of network-representation
are subject to error as the length increases. A more accurate method has been
suggested by Dr. Steinmetz, in which the line capacitance is assumed to be
divided into three parts, as shown in Fig. 1.17. Out of the total shunt admittance
Y, 2/3 of it is assumed to be concentrated at the centre of the transmission line,
and (1/6)Y is assumed to be localized at either end of the line.

z z
s Wy v g
—_— —_—
I, I,
Ie; Te Te,
v =Y Vm %y I= w koao
NEUTRAL

Fig. 1.17. Steinmetz’ split-capactor method.

The calculations are done by step-by-step approach as for nominal T
and & modes.

An example is taken up for illustration of the method of solving the
characteristics of the transmission lines.

Example 1.8. A three phase, 50 Hz line, 170 km long, has the following
constants per km :

Resistance = 0.08 ohm

Inductive reactance to neutral = 0.50 ohm.
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Capacitive susceptance to neutral = 3.16 x 10° 85
Leakance, negligible.
The full load receiver input is 60 MW at 80% lagging power factor.
The receiving end voltage is maintained at 132 kV. For full-load receiver input,
calculate by Dr. Steinmetz’ split-capacitor method, the following sending end
quantities : (a) voltage (b) current, (c) power factor. What is the percentage
line loss at full-load ? Using the receiver voltage as the reference phasor, draw
a phasor diagram showing the various component voltages and currents that
combine to give the sending end voltage and current.
Solution. Total resistance of the line per phase
R =170x0.08 = 13.6 ohm
R/2 = 6.8 ohm.
Total reactance of the line per phase
X =170 x 0.5 =85 ohm
X/2 = 42.5 ohm.
Total admittance per phase
Y=j3.16x105x170=§537x10* 5

Is 6-8+j42-50 6-8+j42-5% Ir
—— AN~ —T— W ~TT0 P—>
— —
ILz IL,

Vs :L_' joessxig v :Fja-saxto"‘v ——joessxo‘U| |LoaD
Ve

Vi, I I, JV
—--—L-—- ----------- R i Qi p——— ——

Fig. 1.18. Steinmetz’ split-capacitor network for Example 1.8.

The equivalent Steinmetz’ circuit per phase, with all parameters
marked thereon, is shown in Fig. 1.18 :

Y=j0895x10* 0
2y=j3.58x10%%
Load supplied = 60,000 KW

Receiving end voltage V,

132
=7 kV/phase.

Taking V, as reference
132

V, =7 +j0kV = 76212 [ 0° V/phase.
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60,000
V3 x132x08 - 228 Amp.
1,=328 (0.8 - 0.6) = (262.4 - j197) A
I, =V, xj0.895 x 107
= 76,212 x j0.895 x 107 = j6.82 Amp.
I =1, +1 =2624-j1902 A
I, =324 Amp.
V=V, +11,212)
= 76,212 x (262.4 — j190.2)(6.80 + j42.5) volt.
= (86.08 + j9.86) kV
I.=j358x10*xV, =(-3.53+30.8) A
I,=1+1,
=258.9-j159.4 A
I, =304 Amp.
1L, (Z/2) = 8535 + j9919 V.
Vi=Va+1,(2/2)
=94.615 + j19.78 kV/Phase
V;=96.7 /11.8° kV/Phase

Line voltage at the sending end
Vi(L-L)=V3 x96.6 = 167.5 kV

Load current I, =

current at the sending end

.1-‘ =.1L2 +.IC|
I, =j0.895 x 107 (94,615 + 19,780)

=-1.77 + j 8.47 Amp.
1;,=257.13 - j 150.93 Amp = 298 / 30.4° Amp.
Phase angle between V; and /; phasors,
¢;=11.8 +30.4 =42.2°.
Hence, power factor at the sending end
= cos ¢, = 0.74 lagging.
Line loss per phase = (3242 + 304%) 6.8 W = 1342.3 KW.
Line loss for all phases = 1342.3 x 3 = 4027 KW.
Power delivered at the receiving end
= 60,000 KW
_ 4027
~ 60,000
Total line loss = 6.71% of full load.

% Line loss 100
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Taking V, as the reference-phasor, a phasor diagram is drawn in Fig. 1.19
for the above example.

Fig. 1.19. Phasor diagram for voltages and currents, Dr. Steinmetz’
split capacitor method, for example 1.8.

1.4. Long Transmission Lines

In the preceding articles, short and medium transmission lines were
dealt with, approximating their representation through lumped parameters
(impedance and admittance) without seriously affecting the accuracy of results
obtainable for assessing their performance under load conditions. However,
in the case of long transmission lines, an accurate solution can be achieved
only by considering the distributive features of the constants, and approxima-
tions are not justifiable, unlike the short and medium lines. The resistance,
inductive reactance and shunt admittance are all assumed to be uniformly
distributed over the entire length of the line.

The following nomenclature is used :

r = resistance in ohm per km length
x = inductive reactance in ohm per km length

z=r + j x, the series impedance in ohm per km length
g = leakance (leakage conductance in mho per km length
b = capacitive susceptances in mho per km length

Y = & +j b, the shunt admittance in mho per km length.

The distributive nature of the transmission line constants is depicted in
Fig. 1.20.

Now we shall establish relations between the sending end voltage and
current and the receiving end voltage and current. Consider an elemental
length &/ of the line, in Fig. 1.21, depicting a part of the long line (represented

per phase).
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Is ""F
RECEIVING
END

SENDING
END

Vr

DR S LY S EUNOIIN S 1.

NEUTRAL

Fig. 1.20. Distributive feature of long transmission line parameters.

. 6
8l —dl
; 8 Hstd

s
v+ 5l dl

P S — L e

Fig. 1.21. For solution of long line problems.

Let i be the current on the left hand side boundary plane of the element
0l. As the current varies from point to point along the line due to the shunt
parameter, let us assume that the current changes at the rate 8i/0/, with the
result that the change for a length 8/ will be (6i/d/) dl. Hence the current on the
right hand side boundary plane of the element becomes i + (3i/3/) . dl. Let v be the
potential difference between line and neutral on the left hand side boundary
of the element &/, and that on the right hand side | v + %‘; .dl | . The current
required for the shunt admittance of length 8/ can be written as (g + jb) dl.

Hence the change in current may be equated with v(g + jb) dl.

Thus, -% .dl=v(g+b)dl

oi .
Next, considering the impedance drop over a length 8/.

ov . .
Y, dl =i(r+jx)dl
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AD= 14+ Z)Y + 2,27’

BC=(Zi+ )Y+ 22, Y
Clearly, — AD-BC=1 (1.65)
The relation AD — BC =1 holds good, irrespective of whether the

network is symmetrical or not.

If the above procedure is repeated for the unsymmetrical network of
Fig. 1.27 (b), the following relations may be proved. (This may be taken as an
exercise).

Vi=(1+2ZY) V,+ @) ], } .(1.66)
=AV, +BI,
L=+, +ZNY) V,+ (1 +ZY) ], } (1.67)
=CV,+ DI,
For nt network,
A=1+2Y;;B=Z } -(1.68)
C=Y,+Y,+2Y\Y,;D+1=2Y,

Again, the above relations show that A and D are not equal unless

Y, =Y, (symmetrical). However, it can be proved by substitution for A, B, C,
D that
AD-BC=1 -(1.69)

[as in Eq. (1.65)]

The above relation may be proved for the most general network as
shown in Fig. 1.28, as follows,

If, as at (a), receiving end is short-circuited, with V; = E

V=AY, +BI,
E=0+BI, ..(1.70)

Now with the sending end terminal pair short-circuited, the same
voltage is applied at the receiving end, viz. V, = E.

By reciprocity theorem, the ratio of excitation to response involves no
distinction between the terminal pairs, viz. the ratio of applied voltage at one
terminal pair to the current through the short-circuit at the other terminal pair
is the same.

This ratio is E/I, = B [from (1.70)]

With the voltage applied at the receiving end,

0 =A§+B" (1.71)
I,=-5=CE+DI,
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and current, with a view to ultimately express the sending end voltage and
current.
Putting /=0, v=V,and i = I, in the Egs. (1.27) and (1.28), we get

V,=A"+B'
and W B oA } (1.29)
V,.-nl,
whence Al=——
2 ..(1.30)
V.+nl,
and B’ =T

To find V; and [, substitute ! = — L in the Eqs. (1.27) and (1.28),
replacing the constants A’ and B’ by the terms from (1.30).

V,=nl, V,+nl
Then, V,=-—2n—.e‘”‘"+%.e’"“
_ e +nl el —emL
T2 )
Vs =V, coshmlL + nl, sinh mL
mL =VzyL =VzL yL
=vZ.Y
where Z = zL = total series impedance per phase over the whole length of
the line. ‘

and Y =yL = total shunt admittance per phase over the- whole length of the

line.
1 /z 1 /zL 1 /Z
n: - = -_= -
y yL Y

Replacing m and n by expressions containing Z and Y, Eq. (1.31) may
be rewritten as

V.=V, cosh VZY +1, \/ % sinh VZY .(1.32)

Similarly, as for V,
nl,=B e™ -A' e ™

ml -mL emL -mL
e —e +e
=V, 2 +nl, >
et —emm ety e
I;=V/n 2 +1, 2
L=V, V —g sinh VZY + I, cosh VZY ..(1.33)

As expressed in the general form of Eqs. (1.13) and (1.14), the
expressions for V; and /; may be reproduced as
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V,=AV, +BI, .(1.13)

I,=CV,+ DI, ...(1.149)
which, by comparison with the pertinent relations in Egs. (1.32) and (1.33)
yield A, B, C, D constants as follows, in terms of line constants Zand Y :

A =D =cosh VZY
B =VZ/Y sinhVZY (1.34)
C =VY/Z sinh VZY
Clearly, AD = cosh? VZY
BC =sinh® VZY
Thus  AD-BC=1 -(1.35)

as for medium lines.

If a constant y is introduced (same as m) being the square root of the
product of z and y, viz. y = Vzy, it is seen to be a dimensionless quantity. y is
designated as ‘Propagation Constant’ and is a complex quantity expressible in
the form y = a + j where a is referred to as ‘Attenuation constant’ and §, as
‘Phase constant’. The following units are used in practice. Attenuation con-
stant is expressed in Neper per km length and phase constant in radian per km
length. The expression VZ/Y has the dimension of an impedance and is
referred to as characteristic or surge impedance of the line.

Z.=VZ/Y
is the characteristic of natural impedance of the line. Introducing Z. and y into
the expression for sending end voltage and current, Eqgs. (1.32) and (1.33) may
be rewritten as follows :
V.=V, coshyL + I Z_sinh yL ...(1.36)
I;=1I,coshyL +(V,/Z,) sinh YL .(1.37)

Dividing (1.36) by (1.37), we get an expression for the input impedance

of the line of length L.

7 = E _ V,cosh yL + I.Z. sinh yL
ST I, " I,coshyL - (V,/Z,) sinh yL
Z,coshyL +Z_sinh yL
=%cZ coshyL + Z, sinh yL
(asV, =21,
where Z, is the equivalent impedance of load.

.(1.38)

When the line is terminated in its characteristic impedance, i.e., Z, = Z,
the equation (1.38) gets reduced to

Z;=2. .(1.39)

In the case of a very long line, hypothetically of infinite length, the
input impedance, Z; may be found by letting L approach infinity in Eq. (1.38).
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The result is Z;=2, ...(1.40)

It is thus seen that the result in Egs. (1.39) and (1.40) are the same,
leading us to the conclusion that ‘‘a line of finite length terminated in a load
whose equivalent impedance is equal to the characteristic impedance of the
line, appears to the sending end generator as an infinite line’’. In other words,
a finite line terminated in its characteristic impedance and an infinite line are
indistinguishable by measurements at the sending end.

Evaluation of A, B, C, D constants by expansion of the hyperbolic

series functions :
P4 e®
In general, cosh 6 =

neglecting the higher powers

sinh 6 = €=

6> o ¢
=0+ ; + = + 7; + oot
Putting @ = VZY , we obtain the followmg results :
A = cosh VZY
=14 24 + ﬂ + _Zi)f + ..
2 24 72

=VZ/Y sinh VZY

=Z|1+ 24 + Zy + —Z3Y3
- 6 ' 120 5040

=VY/Z sinh VZY
Y( zy 7} 7°v} )

1+?+—-120 +5040+ ......

Alternatively, the following expressions may be used for evaluating
the hyperbolic functions :

cosh VZY = cosh (a + jb)
=cosh a cos b + jsinh asin b
sinh VZY = sinh (a + jb)
=sinhacos b + j coshasin b

The values of hyperbolic functions may be read off from the standard
tables.
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Example 1.9. A long transmission line delivers a load of 60 MVA at
154 kV, 50 Hz, at 0.8 power factor lagging. The line constants (to neutral) are
as follows :

R = 25.3 ohm (total), total inductive reactance X = 66.5 ohm and
admittance due to capacitance, j 0.442 x 107> mho.

(a) Evaluate the constants A, B, C, D.

(b) Find the sending end voltage and current and also the power factor
at the sending end.

(c) Determine the efficiency of transmission at that load.

(d) Estimate the receiving end regulation.

Solution. (a) Z=253+j66.5 ohm

Y =j0.442 x 10 mho

VZY = V(253 + 66.3) j 0.442 x 107>
=0.0327 +j0.174

\/g_ _+/253+j66.5
Y " Vjo0442x107
=393-j72.3
A = cosh VZY = cosh (0.0327 +j 0.174)

=0.9855 + 0.00553
A=0=0986/032°

sinh VZY = sinh (0.0327 +j 0.174)
=0.0315 +0.1728

B=\/§sinwz_¥

= (393 —j 72.3) (0.0315 + 0.1728)
=25+j65.6
B=703/69.2°
sinvZY 0315 +;0.1728
VZ/Y = 393-j723
=0.00813 +j 4.44) 107*
~j4.44 x 107
C=4.44x10"/90°

(b) Load. 60 MVA at 154 kV (L - L)

Load current [, = %)%{ =225 Amp

C=

Taking /, as the reference phasor,
1,=225/0° Amp
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154 o
V,= 3 [36.9° kV/phase
= 88.8/36.9° kV/phase
V.=AV,+Bl,
=(0.986 /0.32°)(88.8/36.9%)
(70.3 /69.2°) x 225
1000

=75.32 +j67.58kV =101.2/41.9°kV

Line to line voltage, at the sending end its
Vi(L-L)=V3 x101.2kV

=1755kV
Sending end current is given by
L=CV,+DI,

= (0.44 x 10/ 90°)(88,800/ 36.9°)

+(0.986 /0.32°)(225 /0%

=219.66 +j4.34=219.7/1.1° Amp.
Power factor angle at the sending end

=419-1.1=40.8°
Power factor = cos ¢, = cos 40.8°

=0.757 lagging
(c) Power input to the transmission line

P;=V3 x 175.5 x 219.7 x 0.757 = 50,600 kW

P, =60,000 x 0.8 = 48,000 kW
Efficiency of transmission
_ 48,000
= 50,600
(d) Voltage regulation at the receiving end is given by the increase in
voltage at the receiving end when the load is thrown off. When there is no load,
I, =0 Hence V; = AV, where V,, is the no load voltage, assuming V; is held
at the value adjusted for rated voltage at the receiving end viz.
V,=154kV(L-L)
Receiving end voltage at no load will therefore be given by
ViL-L) 1755
A 0986

x 100 = 94.8%

=178kV

Vo(L-L)=
Hence voltage regulation
Vo=V, 178-154

v = T1sa - 15.6%.
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Example 1.10. The following data apply to a long, three-phase
transmission line. The resistance per phase is 63.5 ohm, reactance per phase,
167 ohm. Capacitive susceptance to neutral, 1.1 x 107> mho. Determine the

ABCD constants of the line.
Solution. First of all, express the total series impedance Z and shunt

admittance Y in complex from and then use the expressions for A, B, C, D in

terms of ZY ; [vide Eq. (1.41)].
Z=635+)1.67=178.7/69.2° ohm

Y=j1.1x107=1.1x10"/90° mho
ZY=1787x11x107/159.2°
=0.1966 / 159.2°

(ZY)*=0.0387/41.6°
=387x102/41.6°

Z Yy =(1.966)* x 107 / 117.6°
=7.6x107/117.6°
A=D= 1+_+LX)_ ﬁZ_Y)_

24 720
=0.9092 +j 0.0338
=0.9098 /2.13°

A=D=091/213°

In fact, the term % becomes insignificant and so all the terms of

higher powers starting from this are negligible.
- zy @yy @y |
B-Z[1+ 6 * 120 5040 *
=178.7/69.2°[0.970 /0.67°]
B=173.3/69.9°
- zy (v @y
C-Y[1+ 6 * 120 * 5040t
= (1.1 x 107 /90° x (0.974 / 0.67°)
C=1.067 x 102 /90.7°

1.4.1 Phase-Modifier for voltage control of transmission system
It is seen from the examples on performace-evaluation of transmission
lines that the line parameters have a significant impact on the voltage regula-
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tion of the system. One method of keeping down the disparity between sending
and receiving end voltages, as a means of voltage regulation, is to control the
current in transmission line in magnitude and phase, by installing a
synchronous phase Modifier at the receiving end. By controlling its excitation,
the MV AR contribution of the modifier would render the reactive power flow
through the transmission line feasible.

The student may review the theory on ‘Machinery’ and ‘Transmission
Lines’, for better grasp of the problem on hand.

An example is given below to illustrate the method of estimating the
capacity of a phase modifier designed for the above purpose.

Example 1.11. The sending end voltage per phase of a long transmis-
sion line is given by the expression :

V;=(0.986/0.32°) V, +(70.3 | 69.2°) I,
Determine the capacity of a Phase Modifier to be installed at the
receiving end so that, when a Load of 50 MVA is delivered at 132 kV and power
factor 0.707 lagging, the sending and voltage can also be 132 kV.

Solution. Vi=AV,+BI,

where A =0986/032°
A =0.986 + 0.0055
and B=703/69.2°
B=24.96 +j65.72
Load current = \/2_0;—0(1);)2 =218.7 Amp
Taking the receiving end voltage as reference phasor,
132

V, =7 [0° =762/0° kV/phase

Load current I, =218.7/45° Amp.

=1546-j1546 A
The problem is to determine the capacity of a Phase Modifier to be
installed at the receiving end. Assuming that the modifier losses are negligible
and that the current is [, = j I,,, the overall receiving end current would then
be

(as p.f. is 0.707 lagging)

!r, =!r +1,
=(154.6 —j 154.6) +j I,
I'=154.6 - (154.6 - 1,)
The sending end voltage expression would then the
Vi=AV, + B,
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= (0.986 + j 0.0056) 76,200
+(24.96 +j 65.72)(154.6 —j 154.6 +jI,,)
V,=(8915233-65.721,) + j (6738.21 + 24.96 1,,)

Given. V=V, =76,200 V/phase

Hence, (76,200)% = (89152.33 - 67.721,,)* + (6728.21 + 24.96 I,,)*

Simplifying the above results into the following simple quadratic
equation :

[,2-23041,+4426x10°=0
and solving, I, = 2093 or 212 Amp.

Although both values of I, seem to be valid, they are only mathe-
matical results. In practice, the higher value is invalid as it lies outside the
region of stable operation, with the result that the lower value, viz. I, =212 A
is accepted. Hence the phase modifier capacity to meet the specifications
would be

V3 x 132 x 212
1000 MVAR
=48.47 MVAR.

The phase modifier may be rated at 50 MVAR, to enable the sending
end voltage to be adjusted to the same voltage, viz. 132 kV (L — L) when the
load delivered at the receiving end is 50 MVA at 0.707 lagging power factor.

Fig. 1.22 shows a phasor diagram of voltages and currents, to
demonstrate how the sending and receiving end voltages are equalized in
magnitude, but displaced in phase, when a phase modifier is installed at the
receiving end across the load. It will be visualized that without the modifier

Im=212 A
£\
N
\,
N
N
™ oOF1ER
N TH
h AW £R)
. ,‘6“ TH MOD'F’
: 2kv(W!
vs=76 2
!=89-4 KV
(WITHOUT MODIFIER)

Ve =76:2KV

1.=218-7 A(WITHOUT MODIFIER)

Fig. 1.22. Phasor diagram to demonstrate the voltages and currents
at both ends of transmission line with and without
Phase Modifier.
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the transmission line has to carry a current of 218.7 Amp at 0.707 lagging,

whereas the installation of a phase Modifier with appropriate excitation control

results in a reduction of the magnitude of the current to 164.7 A (about 75%

of the original) leading the receiving end voltage by 20.4°. This boosts the

overall receiving end power factor from 0.707 lagging to 0.937 leading, as
I’ =154.6 —j (154.6 - 212)

=164.9 /20.4° Amp.

Had the phase modifier not been used, the sending end voltage should
have been adjusted to

Vi'=AV, + Bl
70.3/69.2° x 218.7 [45°
=0.986 /0.32°)(76.2 /0°) + —1000
=89.4/4.3° kV
about 17% more than the receiving end voltage, and displacement angle
&' =43°

With phase modifier used, the sending and voltage could be made equal
to 76.2 kV.
V,=(89152.33 - 65.72 x 212)
+j(6728.21 + 24.96 x 212) V/Phase
=76.2/9.1° kV/Phase

The corresponding displacement angle is given by
6=9.1°

1.4.2. Equivalent circuits for long lines

It may be recalled that in dealing with problems on Medium lines, an
approximate representation of the transmission lines is resorted to either by
Nominal — T or Nominal — & mode. These two methods will suffice, though
not exact, for lines of moderate length, say upto 200—240 km. These localized
capacitance methods of solving problems are fairly accurate, the percentage
error involved in calculation of sending end voltage from the receiving end
data are well within 1% for medium lines. Nominal T approach overcompen-
sates (giving slightly lower value for V;) whereas Nominal & method results
in under-compensation. This statement may be verified by solving a common
problem by both methods. Of course, the three capacitor method of Dr. Steinmetz
offers a better degree of accuracy.

In fact, the localized or concentrated capacitance methods are chiefly
of class-room interest in so far as long lines are concerned, as an accurate
method of representing the equivalent circuit is possible, taking cognizance of
the distributive nature of the line constants, and without involving too much
of work in calculations.
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The long lines can be represented by equivalent T and equivalent
n-circuits which are exactly the models obtainable from the rigorous solution
of such lines.

Equivalent T-network. The parts (a) and (b) of Fig. 1.23 indicate
Nominal T and Equivalent T-circuits respectively ; while the former is an
approximate circuit, the latter affords an accurate model of the transmission
line. Z and Y are the total series impedance per phase of the long line and the
total shunt admittance of the line, respectively. In the equivalent T-circuit,
appropriate correction has to be applied to obtain the equivalent impedance
Z'[2 on either side of the shunt admittance Y” which is also the corrected value
of Y.

z/2 z/2 Z'/2 zY2

(a) Nominal T-circuit (b) Equivalent T-circuit
Fig. 1.23

Now we have to evaluate Z’' and Y’ in terms of Z and Y. In the case of
Nominal T-circuit, it is seen from Eq. (1.17) that

A=1+32Y
and Cc=Y

Similarly, we may express the constants for the equivalent T-circuit by
replacing Z and Y by Z' and Y’ respectively.

Consequently, A=1 +%Z’Y’ } (1.42)
C=Y
For long lines, as seen from the Eq. (1.34),

A = cosh VZY (134)
C =VY/Z sinhVZY o
By comparison of the above two sets of relations,
zyYy
5 =coshVZ¥ -1 -(1.43)

and Y =VY/Z sinh VZY
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Simplification of the above relations yields the following results,
expressing Z'/2 in terms of Z/2, with a correction factor k, and Y’ in terms of
Y, with a correction factor k,.

Z' _Z tanhVZY/2
272 VZv/2
= (k,) % , { ...(1.44)
where k< tanh VZY /2
2T VZY/2 J
sinh VZY
Y=Yy
= (ky) Y L ..(1.45)
where k= sinh VZY
vZY J

Fig. 1.24 shows the equivalent T-circuit with the series and shunt arms
in terms of Z and Y.

Equivalent n-network. The parts (a) and (b) of Fig. 1.25 indicate
Nominal & and Equivalent n-circuits respectively ; while the former is an
approximate model, the latter depicts an exact equivalent model of the trans-
mission line. Z and Y are the total series impedance per phase and the total
shunt admittance per phase respectively of the long line.

In the exact equivalent n-circuit, the equivalent impedance and admit-
tance are shown as Z" and Y” respectively with Y”/2 concentrated at each end
ot the transmission line.

Z72=£ (tanh ZY/Z) =72

SENDING yLy SithVEY RECEIVING
END T T Ey END
____________________ S

Fig. 1.24. Equivalent T-circuit for a long line.

Z" and Y"/2 are the corrected values of Z and Y/2, and it is now
necessary to evaluate the correction factors k," and k,’ for Z and Y72 to obtain
Z" and Y"/2 respectively. In the case of Nominal — & circuit, it is seen from
Eq. (1.22), that
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A=1+§ZY
B=2Z

(a) Nominal circuit (b) Equivalent circuit
Fig. 1.25

Based on the above, the constants for the equivalent n-circuit may be
expressed by replacing Z and Y by Z” and Y respectively.

Consequently, A=1+ % zy" } (1.46)
B=2"
For long lines, as seen from the Eq. (1.34),

A = cosh VZY } (1.34)
B =VZ/Y sinVZY
By comparison of the above two sets of relations,
zy"
5 = cosh VZY - 1 (147)
and Z" =VZ/Y sinh VZY

These relations are similar to those obtained for equivalent T-circuit,
vide Eq. (1.43).

Simplification and repetition of the process as for equivalent T will
lead to

- sinh VZY
VA -Z.(————-m )
=(k,).Z, ...(1.48)
where k’-M
: =T VZY
and Y _Y (tanhVZY/2
2 2° VZY /2

=(k)). Y12 .(1.49)
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where b = tanh VZY /2
YT OVZY/2

It is interesting to note that the correction factors k,’ of equivalent
and k, of equivalent T circuit are the same ; similarly, the correction factors ,’
of equivalent & and , of equivalent T circuit are the same.

Fig. 1.26 depicts the equivalent x circuit with the series and shunt arms
interms of Z and Y. It should be noted that whereas the nominal 7 and nominal

2"=7. (sinhvZv)[yZy

Fig. 1.26. Equivalent n-circuit for a long transmission line.
1 being each an approximate circuit model are not equivalent to each other,
the equivalent T and n-circuits being exact are equivalent to each other and
may be interchangeably used, without any difference resulting in the calcula-
tions for any given problem.

1.4.3. Charts for transmission lines

We have already seen that the ABCD constants of long lines are
hyperbolic functions of ZY or yl. Consequently, the evaluation of these con-
stants from the line parameters is an uphill task unless ready-made charts are
available for simplification of the computational work. Povejsil and Johnson
have published a set of charts from which the components of the complex
constants ABCD may be read off.

The principle involved in reading off the chart is explained below

=2l =(r+x)l -(1.50)
where [ is the length in km.
Y=yl=(g+jb)l } (1.51)
= (g +J 2nfCo)l

where C = shunt capacitance in farad per km.

In the usual overhead transmission lines during normal operation, there
is no corona discharge, and leakance across insulators may also be negligible.
Consequently, g = 0 and the Eq. (1.51) gets reduced to
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In the construction of transmission line charts, the product LyCy (the
product of inductance in Henry per km and capacitance in farad per km) is
assumed constant.

From the velocity of light
1

=3 x 10° km per second

Y= VLGo
VLyCy = ﬁ , leading to
-10
L()Co = ‘IOT‘ (153)

This may be treated as constant for standard copper or ACSR conductor
transmission lines

VZY =yl =Vzyl = V(r + jx) joCy . |
=V(r + joLg)jwCy . [

.‘/. r \.
= ij0(1+ij0 )/(»Co i

VZY =yl = j2nf . IVLoCy . V1 = jr/x

. 2nfl
= T-jr/ .(1.54
I35100 0 T (1.54)
as VLG, = 1/(3 x 10°)

Thus it is seen that VZY and hyperbolic functions of VZY are functions
of : (i) 1, the product of frequency in Hz and length of line in km ; (i) r/x, the
ratio of resistance to reactance ; (iii) VLoCy , which may be treated as constant,
as indicated earlier.

The ABCD constants in charts are represented in terms of the mag-
nitude of the characteristic impedance of the line, ie. in per unit of the
characteristic impedances, | Z. |.

If .Zc = |ZC | g
A =coshyl=D
B =VZ/Y sinyl ..(1.55)
=Z, (sinhy/) /E ohm
C= sinh yl [E ohm
Z.

Clearly, A and D are dimensionless, and are independent of Z.. When
expressed in per unit,
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A:cosh_yl:[?
B=2I0 M _ (sinh ) 1

C =Z.x (C in mho) = (sinh y/) /€

Substituting from Eq. (1.54) for y/ in Eq. (1.56), and letting
2nf _ 2mx 50
3x10° 3.x10°

=104.8 x 10~ (for f= 50 Hz)
=1.048 x 1073

we obtain the constants in p.u. in the following form

)
A=cosh(j1.048x10'3l‘\/1-j£ ) D
B=sinh(j1.048x10‘31‘\/1—j£- )/_g f
C=sinh(j1.048x 10_31\/1"5 )/E

The angle E associated with the characteristic impedance

function of r/x.
/ \ / + joL
Zc = z = ———r - J9%0
: y JjoCo

tan™! (wLy/r) - 90°
i 2

Thus  &=—(tan”' r/x)

(1.56)

(1.57)

is also a

(1.58)

-(1.59)

.(1.60)

Since the constants are complex functions, the real and quadrature
components are plotted separately in the charts and expressed in per unit in

terms of r/x and /
A=A +jA;
B=B+B,
C=C+jG;

(1.61)

The charts come in very handy as a ready reckoner in preparation for

problems on long transmission lines.
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1.5. Generalized Circuit Constants

1.5.1. General circuit equations

In the preceding articles exclusively devoted to transmission lines,
represented on a single-phase circuit, the generalized circuit constants ABCD
were introduced, in terms of which the sending end voltage and current were
expressed as functions of receiving end voltage and current.

In practice the transmission line may have terminal apparatus, such as
power transformers, both at the sending and receiving ends. If the Power
Transformers are not identical, the transmission network comprising trans-
formers and lines will cease to be symmetrical, and the T or n-networks will
be unsymmetrical circuits such as in Fig. 1.27, in which the network is
portrayed as a four-terminal (or two-terminal-pair) network. The terminals are
marked 1, 1 at one end, and 2, 2’ at the other end.

Proceeding systematically from the terminal pair 2, 2 (receiving end)
to the pair 1, 1’ (sending end), the student will prove the following relations
for the T-network.

| & 22 |1 Ir
2
Ve LOAD
T R, 2!
(a) Unsymmetrical T (b) Unsymmetrical x
Fig. 1.27. General two-terminal-pair network.
Vi=(1+Z\N)V,+ (21 + 2, + Z2\25) I
=AYV, +BI, (1.62)
=YV, +(1+Z,1)} (1.63)
=CV,+ DI,
It is thus seen that
4=1+.ZIY;B=.21+.22+.21.22.Y} .
C=Y:D=1+2Y

Eqns. (1.64) show that
A and D are not necessarily equal, as Z; and Z, may differ. In case of
symmety,
Z1=2,
and A=D
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I;=(C+DY)V, +[CZr+D(1 + Z7YD),  ..(1.120)
=C VL + DIIL
C' =C +DY;
whence A (1.121)
D= CZr+ D01 + 2717

The Eqgs. (1.119) and (1.121) give the expressions for the new constants
A', B, C', D’ which can now be evaluated as all the constants except C are
known. C may be evaluated by using the popular relations AB — BC = 1.
A'=A+BY;
=0.94/1.5° + (150 /67.2°) x (2.5 x 107 /7.5°)
A'=0977/1.1°
B'=AZr+B(1+ 211y
=(0.94/1.5°) x (100/7.0°) + (150 / 67.2°)
x (14100 x 2.5 x 107 70° - 75°)
Simplifying, B’ =247.6/68.7° ohm
Before calculating C’, we have to find the value of C.
As AD-BC=1,
AD -1
c=" .B

_ (094 /1.5%% -1
150/ 67.2°
C=8.7x10*/91.3° mho
C'=C+DY;
=8.7x 10 x/91.3° + (0.94/1.5°
x (2.5 x 10 /7.5°)

C'=642x107/858°
(on simplification of the above)
D' =CZr+D(1+Z:Y7)
= (8.7 x 107 x 100) / 161.3° + (0.94 / 1.5°)
x (1+100 x 2.5 x 107 /70°- 75°)

D' =0.882/3.3°.
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A
As l'=—EE’ we get
E
-5 = CE + D [- (A/B)E]
1 AD
"3 "B
AD\ ~_1
B "B’
whence AD-BC=1.
1 1s Ir 1 Is Ir 2
Ve=E A BCD Vp=0 ¥%=0 ABCD %e=E
r 7 —,
(a) the receiving end (b) the sending end

Fig. 1.28. Two-terminal pair network with a short-circuit.
1.5.2. Transmission line with transformers at both ends

Fig. 1.29 shows an equivalent single phase network corresponding to
a transmission system comprising two transformers, one at each end of a
transmission line. The transformer T at the sending end has an equivalent
series impedance Zr, and negligible shunt admittance. The transmission line

has the general constants A, B, C, D. The transformer T, at the receiving end
has an equivalent series impedance Z7, and negligible shunt admittance.

Z7, Zr; 1
r—is—-{j-—l—ﬁ TRANSMISSION -
) LINES T, 1 LoAD
vs M| AaBcCcoO vr ‘f
L | CONSTANT |

Fig. 1.29. Transmission system network for transmission
line with terminal transformers.
The problem is to evaluate the constants Ay, By, Cg, D, for the-overall
transmission system. As the transformers are portrayed by merely the series
impedances Zr, and Z7,, the supply current /; is the same as the input current

to the transmission line, and similarly, the output current of the line, /, is the
same as the load current. However, the voltage V (input to the sending end
transformer) is different from the input voltage V' to the transmission line.
Similarly the output voltage of the line V,’ is different from the voltage V,
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across the load at the receiving end. The voltage and current relations are as
follows

v, =AV, +BI, (1.72)
where v, =V,+1,2r, ~(1.73)
Hence Vi=A(\, +1,Zr) + BI, ..(1.74)
Vo=V, 4121, (175)
L=cv, +DJ,
= g(}/, +1Z2r)+DI,
=CV, +(CZr,+ D)1, ...(1.76)

Combining (1.74) and (1.75), substituting for /; from (1.76) and rear-
ranging the terms containing V, and /,, we get
Vo=@ +CZr)V, + [B+AZr, + Zr) + CZrZr )]

(1.77)
Eq. (1.77) is of the form
Vi=A0 Ve + Byl
where Ao=A+C1Zr, } (1.78)
and By=B +A(Zr, + Zr) + CZy, Zn,
Eq. (1.76) is of the form
L=CoV, +Dol,
where Co=C
and Do=CZr, +D } (1.79)
=CZy+A
as A = D for transmission line.

1.5.3. Transmission line with series impedance at the receiving end

Fig. 1.30 depicts a transmission line with ABCD constants, at the
receiving end of which is connected a series impedance Z, between the line
and load.

Is %r Ir
f TRANSMISSION LINE | | :5:5:2155 i
v ABCD V¢ IMPEDANCE % LOAD

|

Fig. 1.30. Transmission line with series impedance Z,.
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It is required to find the Ay, By, Co, Dg of the overall transmission
system.

Letting the transmission line output voltage be V,’ and the load voltage
V., we can write

Y': = Yr+!r 'Zr ...(1.80)
Vo=Av, +B1,

={‘(yr +.l'.Z’) . .B.I’

=4Y,+(4.Zr+?)!r ..(1.81)
L=V, +D,

= Cy,'f'p + CZr)!r (1.82)

For the transmission system as a whole

Ve=AdV, + Bol,
I,=CoV,+ Dyl, }

By comparison of the above with Egs. (1.81) and (1.82), we obtain
40=A

By=AZ,+B
Co=C

Dy=D+CZ,

..(1.83)

.(1.84)

1.5.4. Transmission line with series impedance at the sending end

Fig. 1.31 shows a transmission line with ABCD constants, at the
sending end of which is connected a series impedance Z between the supply
and the line.

15 Zs Ir
| l , | TRANSMISSION LINE l

Fig. 1.31. Transmission line with series impedance Z;.

Proceeding as in the preceding example with Z, in series with the line,
the student will prove the following relations, as an exercise :

Av=4+CZ,
By=B+DZ,=B+AZ,
Co=C
Dy=D

..(1.85)
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1.5.5. Generalized constants of combined networks

(a) Two networks in tandem (series). Two transmission networks, 1
and 2, are connected in series, such that the output of the network 1 is the input
to the network 2. The input to network 1 and output of network 2 are the overall
input and output, respectively of the combined system.

Fig. 1.32 shows the two networks connected in tandem.

1
I | =z, 2 I
? 1
A, B, C, D' vy Ag 52 Cz 02 Ve LOAD
l ]

Fig. 1.32. Series-connection of two transmission networks.
The voltage and current relations for the network 1 are (in matrix form)

[V.] [A B 1[ V:]
o P e | B -(1.86)
L] |G Dif|k
Similarly, for the network 2, we have
V.1 TA B, 1[V.]
o S e (1.87)
L] ¢ D[l
For the combined networks,
(V.] [A4 B[V
L] ¢ DL

where ABCD are the constants for the overall system, combining the two
networks. From Egs. (1.86), (1.87) and (1.88), we get the ABCD constants by
matrix multiplication, as follows :

[’2, g]=[’é‘l glllx[’é; 222] ~(1.89)
The expressions for A, B, C, D are readily obtained from Eq. (1.89)
A=hM+BiC;
B=A1B,+B\D;
C=CiA+D, G
D=C\B,+ DD,
(b) Two networks in parallel. If the two networks 1 and 2 are

connected in parallel, at both ends, voltages at the sending and receiving ends
will be common for them.

.(1.90)
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Fig. 1.33 shows the parallel-connected networks with constants A; B,

C, D, and A, B, C; D, respectively.
TRANSMISSION
NETWORK
1

4860 Ir

Ir

Is
Ve L0AD

NET;/ORK In

Az 87 Cg

b

Fig. 1.33. Transmission networks in parallel.
The total current at the sending end /; is divided into /5 and I,
similarly, at the receiving end, the currents are /, and /,, when the total load

current is /,.
.IS =.151 +.[$2
.1 r= .1 nt .l’z
It the combined system has the constants A, B, C, D, then
Vo=alrt Bl } (191)

L=CV,+DI,
where A, B, C, D have to be evaluated in terms of the constants of the parallel

connected networks.

For network 1,
.(1.92)

Vi=A1 V,+Bi 1y,
.151 -C.:l Y’+pl.l’1

VemAz V4 Byl 45%)

Is,= GV, + Doy,

and for 2,
Equating the expressions for V; in Egs. (1.92) and (1.93),

A Vet Bl =A V, + By, ~(1.94)
As Ir 2 =I-1 1
I, may be eliminated from Eq. (1.94),

Byl,-V, (A -Ay)
I, = B,+5,

whence



54 POWER SYSTEMS

substituting which in the expression for V; in Eq. (1.92), we get

L (MBraB) (BB ) os
V= B, +5, V, + B,+5, f ...(1.95)

Adding, [; and I, from Eqs. (1.92) and (1.93) and replacing /,, by the
expression for I,

.’-‘ =.l-‘1 +.152

D3B, +B.D;
,Bl + .Bz
..{(1.96)

Comparison of relations in Egs. (1.95) and (1.96) with (1.91) yields
the constants A B C D, as follows :
A1 By + A2y
T Bi+B,
BB,
*TBi+B,

DB +BD,

TTEE |

’
r

Ci+ G+ B, +B,

(A, -A)(D; - Dy) ]

. ...(1.97)

Example 1.12. Determine the series impedances and shunt admittan-
ces of the unsymmetrical n-and T-networks in terms of the ABCD constants.

Solution. Fig. 1.34 shows the two networks in parts (a) and (b)
respectively.

z
I e
L

(«) ®)

Fig. 1.34. Unsymmetrical x- and T-networks for Example 1.12.
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For unsymmetrical n-circuit,
A-1+2y,
B=Z
¢ - -?,s +Y,+ZV,Y, ... From Eq. (1.68)
D-1+2Y,
Substituting for Z in the expression for A,
A=1+BY,

whence Y=rF— =" ..{(1.98)

For unsymmetrical T-circuit, it is seen from Eq. (1.64), that
A=1+2Y

B=2.42,+22Y
c=y
D=1+2Y

Solving the above, as for xnt-circuit,

A-1 D-1

ZS= C ’ .Zf_ C
y=c

(1.99)

1.6. Interpretation of ABCD Constants for Power System Studies

We have seen that the sending and receiving end data are mutually
expressible in terms of ABCD constants

V,=AV,+B],
. Ys ’4 Yr
from which = T
V., A

1= '; ":E v, ..(1.100)
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Thus the receiving end current is expressed as a function of V; and V,.
The first part may be interpreted as the receiving end current due to voltage
applied at the sending end, with receiving end short-circuited viz., V, = 0.

Vs ithV,. =0
"_DWI r=

V.
!,:-7’, where Z, = B
t

Z, is referred to as the transfer impedance of the system.

Z,=B -(1.101)
The sending end voltage and current may be expressed in matrix
form
r V: 9 -A B - V'
L= L c D [[r ] .(1.102)

whence, V, and I, may be expressed in terms of V; and /; by matrix inversion
V.1 14 BT v,
I

L |7|c D

AsAD - BC = 1, we obtain

"V" r D “B Vx
y|7[-¢ A][I, (1.103)

V,=DV,-BI, } .(1.103 a)

L=-CVo+ Al
With a voltage V, applied at the receiving end, and sending end
terminal-pair short-circuited, V; = 0.
v. B
L ===z Z'
-1, A"

Z, may be referred to as the driving point impedance at the receiving

end.
Eq. (1.100) may be written as

V. V,
1,-Z—Z .(1.104)

Receiving end driving point impedance is given by
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BB
AL’

Z,=—E/§—a -(1.105)

Using the relation in Eq. (1.103 a),
V,=DV,-Bl,

If V; is applied at the sending end, with receiving end short-circuited,
viz. V, = 0, we get

expressed in polar form,

Vs B
Zy=-—=—
- I, D
B/ B
“ila~ple=A
This impedance is the sending end driving point impedance
Z;= % p-A .(1.106)
As V,=DV;-BI,
bv. v,
5 .B - B
Vi V.
Ii= 7Z.°Z .(1.107)

The Egs. (1.104) and (1.107) give the receiving end current and
sending current respectively, each in terms of the transfer impedance and the
respective driving point impedance.

Further analysis on the use of the above impedance will be taken up in
developing expressions for power under ‘Power Flow’ in Chapter 4.

The impedances Z, and Z; are driving point impedances, with sending
and receiving ends, respectively, short-circuited. With the receiving end open
circuited, if measurement of impedance were done at the sending end, the
measured impedance would be

Vi ]
Z,= T
s lu,=0)

Similarly the measured impedance at the receiving end, with sending

end open circuited, would be
V4 V]
ro= [’

lu,=0)
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Recalling, Vi=AV,+BI,;V,=DV,-BI;
L=CV,+ Dl == CV,+ Al

, v,] A Ala
0= ==y
Is (1, =0) ¢ ch ....(1.108)
-é/a-
_C-_l
Zet 2
.m=_ ==
.1’ (I,=0) C
DA b 1.109
_C/_x_C/A-x ..(1.109)
D B Ap-BC 1
Z,,,—_Z,=E—Z=T=E ..(1.110)
A
-Z"’=:E ..(1.111)
From Egs. (1.110) and (1.111),
Zs
= = (A)?
Z,-z, ¢4 7@
Zs
Therefore A= Z,-Z, -.(1.112)

As Zso=%,

1
1 / 1
C: m ‘ (1113)

As Z,=2,

p = C_Zro = .Zro/"zso sz - Zr) (1114)
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It is seen from Egs. (1.112) and (1.114), that A and D are generally not
equal. However, if Z,, = Z, by virtue of symmetry, then A = D, viz., for
symmetrical networks.

2.5
."4
Hence B=AZ,
B=Z ca 115
B=Z, Z.-Z, -(1.115)

The Eqgs. (1.112) to (1.115) give the values of the ABCD constants each
in terms of complex impedances.

A few typical examples are given below, followed by those under
Exercises to afford practice to the student in Power System problems on
generalized circuit constants as well as transmission line performance.

Example 1.13. A three phase transmission line has the generalised

circuit constants given by
A=D=098/15°;
B=755/80°;
C =0.0004/91°.

If an impedance 2.64 + j 42.3 ohm is connected in series with the line
at the sending end, determine the modified values of the above constants for
the entire transmissions system. (Madurai University, Nov. 1969)

Solution. Referring to Article 1.5.4, we find that, in Fig. 1.31, the

transmission system constants would be as given by Eq. (1.85) reproduced
below

Av=A+CZ,
Bo=B+DZ,
Co=C
Do=D
In this example, Z, = 2.64 + j 42.3 ohm
=42.4/86.4° ohm
Hence Ap=0.98/1.5° =(0.0004 /91°) x (42.4 / 86.4°)

Simplifying, we get
Ap=0.963/1.53°
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By=B+DZ
=75.5/80° + (0.98/1.5°)(42.4/ 86.4°)

Simplifying,

By=116.8/82.8°

Co=C=0.0004 /91°
Do=D=098/15°

The constants Cy and Dy are not affected by the introduction of a series
impedance at the sending end. One should not conclude that the current given
by the expression I, = CV, + DI, is not affected by Z. It should be noted that
if the load impedance is constant, I, is constant for a given value of V,, in which
case [; does not change. However, for a given V,, the values of V, and I, will
be affected by the presence of Z; for a given equivalent load impedance. If V,
is restricted, then V; will be affected, and has to be regulated.

Example 1.14. (a) A three phase transmission line delivers 20 MW at
a power factor of 0.8 lagging at 32 kV. The transmission line constants for the
line, considered as a n-network are as follows :
A=D=1
B=(1 +j3) ohm
C=j2x1 0~ mho

Determine the sending end current and voltage of the line and
approximate value for the reactive KVA taken by the line.

(b) Describe the operation of apparatus that could be installed at the
receiving end of the line in order to maintain the receiving end voltage constant
for a given variation in load. (Madurai University Nov. 1979)

Solution. (a) The problem is to evaluate the sending end voltage and
current for the specified receiving end conditions and also the reactive power
absorbed by the line.

Taking the receiving end voltage as the reference phasor,

32, .
V,= 7% /0° = 18.5/0° kV/Phase

20,000
I, = B x32x08" 451.1 Amp.
1,=451.1/36.9° Amp. = 451.1 (0.8 - 0.6)
Vi=AV,+Bl,

=1x 18500 + (1 + 3) 451.1(0.8 —j 0.6) volt
=19.7/2.4° kV/Phase
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Hence line to line voltage at the sending end,
Vi(L-L)=V3 x19.7
=34.1 kV
L=CV,+D],
=j2x 107 x 18,500 + 1 x 451.1 (0.8 —j 0.6)
=361-267.3

I, =450 /36.5° Amp.
Fig 1.35 depicts the phase relations of voltages and currents.

Vs=19-7KV
Y.=18-5Kv

Is=450A
Ir=451-14

Fig. 1.35. Phasor diagram for Example 1.14.
Reactive power at the sending end of transmission line
=3V, x sin ¢
=3x19.7 x 450 x 0.627 KVAR
=16.7 MVAR (lagging).
Reactive pawer absorbed by the load at the receiving end
- 6.2% x 0.6 = 15 MVAR (lagging)
Hence the reactive power taken by the line
=16.7-15=17MVAR.
Example 1.15. A transmission line consists of two circuits 1 and 2
connected in series, circuit 1 being at the serding end of the line. The circuits
have the following auxiliary constants :

Circuit 1 Circuit 2
A;=0982/12° A;=0808/2.0°
B,=773/80.0° B,=30.0/45.0°
C;=0.000452/91.0° C,=0.001/92.0°
D;=0982/1.2° D,=0.808/2.0°

Develop expressions for the constants A, B, C, D of the entire line and
calculate the numerical value of the constant A.
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Solution. The student will refer to the Article, 1.5.5, part (a), for the
complete derivation of the expressions for the ABCD constants. It is seen that
A=d142+ 5, G
Substituting for the constants
A],Az, Bl and Cz,
A =(0.982/1.2°) x (0.808 / 2.0°)

+(77.3 /80.0°) x (0.001 /92.0°)
Simplifying A =0.7151 + 0.0550 = 0.717 / 4.4°

Numerical value of A would be
A =0.717.

Example 1.16. Determine the driving point and transfer impedances
of a 350 km long, 132 kV transmission line which has the network constants
as follows :

A=D=0.943/1.3°

B=140.1/69.8

C=0.865x107/90°.
Solution. For theoretical background, refer to Article 1.6.
The transfer impedance is given by the constant B itself.

Z,=140.1/69.8° ohm
The driving point impedances are

B
Z= B (at the sending end)

and Z= g (at the receiving end)

[vide Eqs. (1.106) and (1.105) respectively.]

As A = D, for the symmetrical network (from the data), clearly, the
sending and receiving end driving point impedances are equal.

z 140.1/69.8°
Zs=2, = 0.943/1.3°
= 148.6 / 68.5° ohm.

Example 1.17. The sending and receiving end voltages and currents
of a long transmission line are given by the expressions

V,=AV, + BI,
and I,=CV, + DI,
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The line has generalized constants given by A = D = 0.94 [ 1.5° and

B =150 [ 67.2° ohm and has at the load end a transformer equivalent to a

shunt admittance of Yy = 2.5 x 1 07 [75° mho across the receiving end of the
line and a series impedance of Zy = 100 [ 70° ohm in series with the load. The
load voltage and current are V; and I, respectively. Obtain expressions for V
and I in the form V, = A’V + B'l; and I; = C'V} + D'l; and evaluate these
complex constants.

Solution. An equivalent circuit is drawn in Fig. 1.36 showing the
transmission line circuit and the transformer equivalent parameters.

TRANSFORMER
I Ip '
| TRANSMISSION LINE

Vs A B8 COD

L]

I

LOAD

]
]
1
!
|
]
|
1
1
1

Fig. 1.36. Equivalent single-phase-circuit for Example 1.17.
For transmission line,
V=4V, +BI,
L=CV,+D],
Now we are called upon to replace the V, — I, terms by V, — [, terms,

and find the new constants, viz. A’ B’ C' D'.
Inspection of the equivalent circuit in Fig. 1.36 shows that

V,=V, +1
T ,iLL+ vLyZ, T } (1.116)
whence L= +Y(V +1.Z7)
=(Y)VL+ (1 +ZI, (1.117)
V.=V, +1,Z;
et
=A(VL + 11Z7) + BY{V, + (1 + Z1Y7) 1]
Simplifying V,=(4 +BYaV, + WZr+BA+Z Y0 g
=A'V, + B,
A'=A+BY; }
B =AZy+ B(1 + Z;Yy)
._l, : CV, ) .Ql, £t
=C(VL +11Z7) + DV, Y1 + [[(1 + Z7Y7)]

whence ..(1.119)
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A
As l'=—EE’ we get
E
-5 = CE + D [- (A/B)E]
1 AD
"3 "B
AD\ ~_1
B "B’
whence AD-BC=1.
1 1s Ir 1 Is Ir 2
Ve=E A BCD Vp=0 ¥%=0 ABCD %e=E
r 7 —,
(a) the receiving end (b) the sending end

Fig. 1.28. Two-terminal pair network with a short-circuit.
1.5.2. Transmission line with transformers at both ends

Fig. 1.29 shows an equivalent single phase network corresponding to
a transmission system comprising two transformers, one at each end of a
transmission line. The transformer T at the sending end has an equivalent
series impedance Zr, and negligible shunt admittance. The transmission line

has the general constants A, B, C, D. The transformer T, at the receiving end
has an equivalent series impedance Z7, and negligible shunt admittance.

Z7, Zr; 1
r—is—-{j-—l—ﬁ TRANSMISSION -
) LINES T, 1 LoAD
vs M| AaBcCcoO vr ‘f
L | CONSTANT |

Fig. 1.29. Transmission system network for transmission
line with terminal transformers.
The problem is to evaluate the constants Ay, By, Cg, D, for the-overall
transmission system. As the transformers are portrayed by merely the series
impedances Zr, and Z7,, the supply current /; is the same as the input current

to the transmission line, and similarly, the output current of the line, /, is the
same as the load current. However, the voltage V (input to the sending end
transformer) is different from the input voltage V' to the transmission line.
Similarly the output voltage of the line V,’ is different from the voltage V,
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1.7. Ferranti Effect

Let us suppose that the sending end voltage V; of a transmission line
is maintained constant as desired under the prescribed load conditions and also
when the load is thrown off. For convenience in analysis, if we assume that
the resistance and leakance of the line are ignored, we have only the distributed
series inductance and shunt capacitance in the line representation. When the
load is thrown off, it does not result in cessation of current in the line. as the
charging current will flow due to the presence of line capacitance. This current
will flow through the series inductance and result in pressure rise at the
receiving end of the line. Such a phenomenon is referred to as Ferranti effect.
named after Ferranti who was the first to observe the phenomenon on Deptford
Mains.

Fig. 1.37 depicts a long transmission line with length / km. consisting
of distributed series inductances and shunt capacitances.

I {

- = 1

Fig. 1.37. Long transmission line represented by the distributed
series inductance and shunt capacitances.

Let us consider a small length ‘dx’ of the line at a distance x from the
sending end and (! — x) from the receiving end. Let L, = inductance in Henry
per km length and

Cy = capacitance in Farad per km length of the line.

The elemental length ‘dx’ has an inductance of Ly dx and carries a
current equal to the sum of the charging currents over a length (I —x). Let it be
I.

Taking the average value of transmission voltage as V; (ignoring the
change in voltage from point to point, for the purpose of evaluating the current
and the eventual pressure change at the receiving end) we have

L=jViwCy(l-x)
Voltage drop in the elemental length ‘dx’
= Ix (] w Lo dx)
=jViwCo(l-x)jwLodx
==V, w?LyCo(l-x) dx
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The negative sign signifies that the drop in voltage is negative, mean-
ing a rise in potential as we proceed from the sending to the receiving end.
Total drop from the sending end to the receiving end is obtained by integrating
the above fromx=0tox =/

Total drop V==V, LyC, f (I -x)dx
v=-2 V.0l LyCy I (1.122)
The above negative drop indicates that there will be a pressure rise
equal in magnitude to % V, w* Ly Cy I?
where V is the sending end voltage per phase. If V is in kV, the pressure rise
is also in kV. If V; is the line kV, the pressure rise corresponds to increase in
line pressure. (line-to-line voltage rise).
Thus the pressure rise is given by
ve—v =1V, 0Ly G 1P .(1.123)
Total inductance per phase, L =L/
and total capacitance to neutral, C = Cy /
Hence the equation (1.123) can be rewritten as
v=1V,0’LC ..(1.124)

Let us now consider a moderately long line represented by a nominal-x
circuit, as shown in Fig. 1.38.

Lol=L

- — T f
o N\ | |
T T

N \

|
|

Fig. 1.38. Nominal-x circuit : Ferranti effect.
With no load at the receiving end and the voltage at the sending end,
V, held constant,
charging current flowing through the line is
1

. 2
]{(DLol-'wCOI}

As the reactance due to capacitance is considerably larger than the
series inductive reactance of the line, the effect of inductance on the value of
" current may be justifiably ignored. Accordingly, we may write

.=V,
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A(DC”[
le=Vilj——
=%Vsij(,1=j%V,wCol

This leading current flow through the inductive reactance w L / and
causes a voltage drop given by

Vi=lc(wlyl)
=(j% VijCGo)(jwlyl)
=—-;‘ VS (.02 L() C() 12 .(]125)
As in the general case, voltage drop being negative, there is a pressure
rise given by
v=—V =% VSZO)L0C012
where is the same as equation (1.123)
Consequently, the receiving end pressure on open circuit will be given
by
Vo=Vi4v=V,+1 V. w?LyCy I?
Vo= Vo(1 43V, 0’ Ly Co P) .(1.126)
Now let us consider a long line approximated by a nominal-T circuit
as shown in Fig. 1.39.

Lol
L/zz_g-a L/2

] d'L1
[T, |
VS Tcal =C Vro

Fig. 1.39. Nominal T circuit : Ferranti effect.

Lo
L= 5 = L,
In this case a charging current /. flow through an inductance L, //2.
I.=jVioCyl

The charging current flows through L/2 and C whose equivalent series

. M M ! ]
impedance is given by j ( wlyl/2 - wCyl ) )
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It should be noted that the total series impedance that controls the
charging currant is merely the capacitive reactance as the inductive reactance
becomes insignificant, whereas the line drop is essentially due to the inductive
reactance, as the resistance is negligible in effect.

The voltage drop taking place in the line due to the charging current,
as in the previous case is, therefore,

Vz(lVioCy)(jolyl2)= "% Vs o’ Ly Cy P

From the negative pressure drop above, it is seen that the pressure rise
at the receiving end will be given by
v=—v'=% V(DL()C()IZ

which is the same as for nominal-x circuit.
Again, the pressure at the receiving end on open circuit is
1 2 2
Vm= Vs"'i V,(D LoCOI

=V, (1+3 V.0’ Co P)

which is the same as equation (1.126).

It should be remembered that the above results are only approximate
and would serve the purpose of estimating the pressure rise at the receiving
end of a transmission line on open circuit. Of course in case of short lines,
wherein the capacitance is insignificant, the receiving end voltage is equal to
the sending end voltage itself.

In the general equation for long lines, length /, we have

Vs=AV,+BI,

where A =cosh VZY
Z=jwLyl and Y=jwCyl
(again neglecting the effects of resistance and leakance)
Substituting for Z and Y and expanding,

A =coshVZY =1 +% Z Y (approximately)

=1+3(oLjoCl)
=1 -% ? Ly Cyl? (1.127)
At nc load, I.=0
and V,=V,
V=AY,
Hence, receiving end voltage at no load,
Vs Vs 1,2 2
VM=Z=W=VS(I +'2'(1) L(]C()l)
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This expression is exactly the same as equation (1.126). Of course, this
is only approximate and is quite adequate for estimating approximately the
pressure rise due to the effect of no load charging current flowing through the
line inductance.

It is seen from the expression in eqn. (1.123) that the rise in pressure
at the receiving end on no load is proportional to square of the distance from
the sending end. It may be noted that the product LyCy is a constant as shown
below.

Ly = inductance in Henry per km length

= ( 0.4606 log,o % ) 107

Co= 0.0241 107 = capacitance in Farad per km

logo 7

LoCo = 0.4606 x 0.0241 x 10~°
=111x 10"
Hence, rise in pressure at the receiving end per phase is given by
v=i Vo Px111x10™

=0.555 x 107" V, w? / kV/phase
if Vis in kV per phase

If V is the line to line pressure in kV, the expression gives the increase
in voltage at the receiving end between lines. It should be noted that the
expression gives only approximately the excess in potential that appears at the
receiving end of transmission line on no load, on the tacit assumption that the
sending end voltage is maintained constant at the stipulated value.

As an example, consider a transmission line whose sending end
voltage is constant at 220 kV, length of the line = 250 km and f = 50 Hz,
=314 rad/sec.

Line voltage rise at the receiving end due to Ferranti effect

=0.555 x 107" x 220 x 314% x 250% = 7.53 kV.

Hence V,o = 227.53kV

If the receiving end voltage was 200 kV on load, there would be a
pressure rise of 227.52 — 200 kV = 27.52 kV between lines, if the load were
thrown off. Thus the % rise in pressure at the receiving end

= 2—270%2 x 100 = 13.76.  (from the given load to no load).

In fact, a small load may eliminate the Ferranti effect, and when there
are transformers in the circuit at the receiving end, the magnetizing current
will act in such a manner as to restrain the above effect.
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Fig. 1.40 shows a phasor diagram to demonstrate how the pressure at
the receiving end of a transmission line may rise on no load to a level beyond
that at the sending end. The resistance and leakance are neglected for
convenience.

Ie
l % v’
——--
v /
o —>Vro=Vs-V

V= Vs=v' =V, 4v
v=1V,0’LC

Fig. 1.40. Phasor diagram to demonstrate Ferranti effect :
Resistance and leakance ignored.

1.8. Losses in Transmission Line on Open Circuit

As seen above, a long line draws a charging current even when open
circuited at the receiving end, on account of the pronounced effect of
capacitance. The magnitude of the charging current depends on the length and
capacitance of the line. As a result of the current flowing through the line
resistance possessed by the line, there will be inevitable transmission losses
taking place.

Let I, be the total charging current over the entire length /.

Approximately, | I.]= V0 Cyl .(1.128)
Charging current per unit length of the line
=i=V;0C .(1.129)

Fig. 1.41 shows one phase of a three phase transmission circuit with
an impressed voltage V (at the sending end). At a distance x from the sending
end, the line charging current is

I=i(l-x)
=V, 0 Cy(I-x)

I-—- X —.1 r_dx
v,/L Iy — Iox

b= {

Ix= i(l’X)

Fig. 1.41. Transmission circuit : Losses on open circuit.
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Loss in the elemental length ‘dx’ is 12 (rdx)
where r is the resistance per unit length.

Total resistance =R =rl
Total power loss in transmission per phase is then

1
PL=f 12 rdx

x=0

=fl V. Co(l-x)] r d
0

!
=V,2w? Cy? rf (I-x)dx
0

_ sz (.02 C()z r13
N 3
= % V:2 w? Co2 12 (r0)
P =3I’R ..(1.130)

1.9. Tuned Power Transmission Lines

We have seen in the earlier articles that the voltage regulation of a
transmission line depends on the line parameters which again are based upon
the length and design of the line consistent with the operating voltage chosen.
Voltage regulation and stability of the power system can be significantly
improved by reducing the effect of line inductance and charging currents by
taking steps for adequate compensation for the inductive voltage drops and
capacitive currents. A line is said to be ‘““TUNED”’ if the line design takes care
to see that the receiving end voltage and current are equal in magnitude to the
sending end values.

For a long line, the ABCD parameters are given by the equations (1.34)
reproduced below :

A =D = cosh VZY

B =VZ7Y sinhVZY .(1.34)
C =VY/Z sinh VZY

The relations for the sending end voltage and current, V; and [, each
interms of the receiving end voltage and current V, and /, are given in equations
(1.32) and (1.33) which describe the behaviour of a transmission line. They
are reproduced below :

VB=A V,.+B[,- (1 132)
=V, coshVZY +1,VZ/¥ sinhvZV |
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l;=CV,+DI, } (133
= V,VY/Z sinh VZ/Y + 1, coshVZ/Y
If the effects of resistance and leakance are ignored, we obtain
Y=jwCyl and Z=jwlyl

where Ly and Cj are per unit length and /, the length of the transmission line.
Hence the characteristic impedance is given by

2,=VZ/Y =VL/C
and VZY = jw IVL,C,
cosh VZY = cosh (j o I VL,C,) = cos w | VL,C,
sinh VZY =sinh (j o /VL,C,)
=jsin (0 I VL,C,)
Substituting the above in equations (1.32) and (1.33), we get
Vi=V,cos (wIVL,C, +jZ.1,sin (0 IVL,C,)

.(1.131)
I,=j (V2 sin (0 IVL,C,) + 1, cos (0 I VL,C,)
(1.132)

At no load, /, = 0 and then the charging current is given by /; as
follows :

I =j(V,/Z))sin (0 !VL,C,) .{(1.133)
The sending end voltage when I, = 0 becomes
V=V, cos (wIVL,C,) ...(1.134)

It is clearly seen from equations (1.133) and (1.134) that
V, and J; are in quadrature.
If wlVL,C,=mor2m, ...(1.135)
I; = 0, meaning that there will be no charging current on no load.
If the expressijon is equal to x,
coswlVL,C,=-1
and then, for load counditions, equations (1.131) and (1.132) become
Vi=-V,and [ =-1,.
If the expression becomes 2x, then we have
Vi=V,and I, =1,.
In both cases, the voltage and current at the receiving end are equal in
magnitude to the voltage and current at the sending end respectively. There-

fore, there is no loss of voltage or current on load. Such a line is said to be a
Tuned Power Line, as indicated earlier.
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We have already seen that the velocity of propagation of an electromag-
netic wave in space along a lossless line is

v = —L— = velocity of light
VLG, T e
=3 x 10° km ps.

If the power frequency is 50 Hz, it is necessary that for tuning, the
length of the line be equal to

I= nor2n
" wVL,C,
_Tmor2n 5
= o x 50(3 10°) km
=(50r1)6000km
= 3000 or 6000 km

However, if the length of the transmission line is fixed, tuning may be
accomplished by appropriate choice of frequency. For example, if / = 800 km,
_mor2m__ mor2m

= IVL.C, = 800/(3 x 105 V%€
f=Cor )3801)0 Hz = 187.5 or 373 Hz

However, it is not a good proposition to fix the frequency to suit the
length of the line, as the length may vary.

If the line length and frequency are fixed, the line may be tuned by
providing capacitance at regular intervals between the line and neutral as
shown in Fig. 1.42.

Sendin
end d

Al

n

L Load

|
Y|
/

Al

2727277727777 7777 AR A add

~J0 LI
Sending
end Load

Fig. 1.42. Tuning by shunt capacitors and series inductors.
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Provision of capacitors between line and neutral has the beneficial
effect of increasing capacitance of the system to the desired value. As an
alternative, inductive coils may be introduced in the series circuit of the line
for the purposes of increasing the inductance in the transmission circuit to the
required value, as shown in Fig. 1.42. This particular method is adopted in
telephony, but not favoured in practice in power transmission network.

Another approach for line-tuning is depicted in Fig. 1.43 and is
prevalent in some power systems. C" are capacitors in series with the line for
’

’
f Transmission line
1y

Sending T
end I %

Fig. 1.43. Compensating sections used for tuning power transmission lines.

Receiving
end

dh—
-~ O

neutralizing the voltage drop due to line inductance and L' the inductors across
the line for neutralizing the charging current due to the line capacitance. This
mode of tuning is referred to as the ‘‘Method of tuning by application of
compensating sections’’. Thus the total series connected capacitance is in

effect equal to %C' used for neutralizing the equivalent impedance Z" of the

equivalent n-circuit, which is given by the fqllowing expression. (Vide equa-
tion (1.47) See Fig. 1.26.

Z" =VZ/Y sinh VZY

Neglecting the resistance and leakance of the line for simplicity and
convenience, we have

Z=jwLandY=jwC

where L and C are the total inductance and capacitance per phase of the entire
line. Accordingly, the impedance may be expressed as follows :

Z" =jVL/C (sinw VLC) ...(1.136)
Hence by full compensation, the total series impedance becomes zero.
v, 2
Z" + joC = 0
2
JVL/C sinwVLC —-j—= =0
wC
whence C'= 2 (1.137)
~ wVL/C sin (0w VLC) A

gives the capacitance at each end for compensation.
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In a similar way, shunt inductance L' at cach end of the transmission
line must neutralize the shunt admittance Y"/2 of the equivalent-n circuit of
Fig. 1.26. From equation (1.49),

% =VY/Z tanh (3 VZY)
=VC7/L jtan (3 w VLC)

Again, wc have, for compensation

—(—n'%-fj\/C/L tan (S 0 VIC) =0

from which, we obtain
L= L
o VC/L tan (g wVLC)

For compensating sections for long lines, the above expressions may
be used, by making use of the equivalent circuit.

For moderately long lines, nominal circuit will suffice, in which case,
the equivalent series capacitance C' of Fig. 1.43 is used for compensation of

the total inductance L. As the total series capacitance is %C ', we have

.(1.138)

.2 .
-] oC’ +jol=0
WL (GC)=1
whence the compensating capacitance is given by
2
C'=—
w’L
Similarly the compensating inductance L' for the localized capacitance
C/2 is related by the equation

.(1.140)

-4 ijwcr=0
®
from which we get L= % ...(1.141)
wC

It will be seen in Chapter on stability (under concluding remarks) that
the lines should have appropriately low value of reactance so as to raise the
maximum transmissible power. It has been suggested that the power lines may
be tuned with compensating sections viz., series capacitors and shunt reactors
at strategic points in power systems.

EXERCISES

1.18.  (a) Show, with the aid of a Phasor diagram, how the voltage at the receiving
end of a transmission line can be maintained constant by using a
synchronous phase modifier.
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1.19.

1.20.

1.21.

1.22.
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(b) A three-phase overhead transmission line supplies a load of 50 MW at
0.707 lagging power factor at 66 kV. If the receiving end pressure is held
constant and a synchronous motor is installed to improve the overall
receiving end power factor to 0.866 lagging, while maintaining the line
current constant in magnitude, determine the KVA rating and power factor
of the synchronous motor.

A single phase 50 Hz generating station supplies a load of 8.0 MW at a lagging

power factor 0.707 by means of a transmission line 20 km long. The resistance

per km of each conductor is 0.015 ohm and the loop inductance is 0.75 mH/km.

The receiving end pressure is held constant at 11 kV, and a capacitor is

connected across the load in order to raise the overall receiver power factor to

0.9 lagging.

Calculate : (a) the capacitance and KVA rating of the capacitor. (b) the

generating station voltage (i) when the capacitor is switched in (if) when the

capacitor is switched out. (c) the approximate pressure rise at the receiving end
when the load is thrown off, if the station voltage is held at a value as in part

(b) (i), and with the capacitor in the circuit.

(a) Explain the object of duplicating three-phase transmission lines and of
erecting two such lines over different routes. Establish pertinent general
expressions for determining the loads (both KVA and p.f.) shared by the
parallel lines. Draw relevant phasor diagrams to portray the manner in
which a given total load is divided between the two lines (in respect of KW
and KVAR loadings).

(b) A total load of 12.5 MW at 33 kV and p.f. 0.9 lagging is delivered to a
sub-station by two three-phase lines connected in parallel. One of the lines
is an underground cable with a resistance of 1.5 ohm for each conductor
and a reactance to neutral of 1.8 ohm, and delivers 6 MW at 0.8 p.f. lagging.
What should be the resistance and reactance of the second line ?

Develop an expression for evaluating the voltage regulation of a short trans-
mission line (a) by exact method ; (b) by approximate method, and deduce
therefrom the receiver p.f. (approximately) at which the regulation is an
extremum, for a given load KVA with fixed p.d.
Explain how full-load regulation diagrams can be drawn for a short transmis-
sion line for (i) V; fixed, V, varied ; and (if) V, fixed, V; varied.
The constants per km of a 250 km long three-phase line are given as follows :
resistance = 0.15 ohm, inductance 1.2 mH, capacitance to neutral 0.009 uF. A
balanced three-phase load of 40 MVA at 0.8 p.f. lagging is connected to the
receiving end and a synchronous capacitor operating at zero p.f. is connected
to the mid-point of the line. The frequency is 50 Hz. If the voltage across the
load is 120 kV (line to line), determine the KVA rating of the synchronous
capacitor in order that the voltage at the sending end may be equal in magnitude
to that at the middle of the line. Use nominal T-circuit for the calculations.

Hint. Taking V, or /, as reference, find the voltage at the middle of the line,
say V,,, which is also the voltage across the synchronous capacitor connected
at the middle of the line. [As the sending end voltage is to be numerically equal
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1.23.

1.24.

1.25.

1.26.

1.27.

to V,,, obtain a relation for sending end voltage in terms of the unknown value

of the modifier (synchronous capacitor) current /,,, and solve the quadratic

equation for /,,].

A three phase 50 Hz long transmission line has a total series impedance of

(25.3 +j66.5) ohm per phase and a shunt admittance of 4.42 x 107 mho/phase.

It delivers aload of SO MW at 220 kV at 0.8 p.f. lagging. Determine the sending

end voltage

(a) by short line approximation.

(b) by nominal & approach.

(c) by rigorous solution for long lines.

(d) Calculate the displacement angle, viz. angle between Vs and V,, in each
case.

Explain why the voltage at the receiving end of a long overhead unloaded

transmission line may exceed that at the sending end. Draw a phasor diagram

illustrating this condition. Stating the assumptions made, derive a formula from

which the pressure rise can be computed assuming one-half of the line

capacitance to be concentrated at the receiving end.

The potential difference at the sending end of a three-phase 50 Hz line 250 km

long is 110 kV. Calculate the voltage at the receiving end on open circuit.

[Note. The product of C in farad per km and inductance in Henry per km may

be taken as 1.15 x 10'“].

(a) Explain the physical significance of ABCD constants of two-pair-terminal
networks and state how these constants may be determined experimentally
on a medium length transmission line. (Madurai University, Nov., 1970)

(b) The ABCD constants of a symmetrical &t network are

A=095/0°;B=50/90°ohm

C =0.0025/ 90° mho

Determine the sending end voltage and the torque angle (displacement angle)

for a receiving end power of 100 MW at 200 kV and 0.8 p.f. lagging.

(a) Draw and explain the phasor diagram for a transmission line assuming that
half the line capacitance is localized at either end of the line.

(b) The constants of a three phase 100 km long transmission line are resistance,
0.1 ohm per km per conductor ; inductive reactance, 0.3 ohm per km, line
to neutral ; capacitive susceptance, 0.4 x 105 mho per km, line to neutral ;
leakance negligible . (/) Find the sending end voltage, current and power
factor and also the efficiency of transmission when the line delivers 24
MW at 0.8 p.f. lagging at 66 k V. (ii) Estimate for this load the approximate
rating of the Phase Modifier apparatus installed at the receiving end to
enable the sending end voltage to be maintained at 70 kV.

Use split-capacitor (Nominal s}—circuit for calculations.

A three-phase transmission line has an impedance per phase of (1.5 +j 3.5)

ohm. It supplies a load at a constant pressure of 11.5 kV. A synchronous phase

modifier is connected in parallel with the load and its excitation so adjusted
that with a load of 2500 KW at 0.8 p.f. lagging, the voltage at the sending end
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1.29.

1.30.
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1.32.
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is also 11.5 kV. Determine the KVA rating of the modifier if its losses are

130 kW.

A three-phase transmission lfne, 600 km long, is to be operated on a constant

voltage system, both sending and receiving end pressures being maintained

constant at 150 kV. Find the rated capacity of a synchronous phase modifier
when aload of 60 MVA is to be delivered at a p.f. of 0.9 lagging. The modifier
is also utilized to supply an additional load of 10 MW.

Data. V, = (0.87 +0.035) V, + (47.9 + j 180.8) I,

where V, V, and I, are the sending end voltage, receiving end voltage and

receiving end current respectively.

Two four-terminal networks a and b with geueral circuit constants A, B,, C,,

D, and Ay, By, Cp, Dy, respectively are, connected in parallel. Determine the

equivalent n-circuit parameters Y, Z and Y, for the above parallel combination

in terms of the general circuit constants.

(a) Show that in a linear bilateral two terminal pair network, the generalized
circuit constants A, B, C, D satisfy the relationship AD—BC = 1.

(b) Two feeders having generalized constants A, By, C1, D1 and A2, B2, C2,
D> are paralleled at both ends. Obtain the sending end impedance of the
resulting network, with the receiving end open.

(Madurai University, Nov. 1980)

A single-phase line has a total resistance of 2 ohm and reactance of 3 ohm.
Voltage at the sending end is held at 2.2 kV. (a) Estimate the maximum
theoretical value of power that can be delivered to a receiver circuit of power
factor 80% lagging. (b) Determine also the equivalent load constants (resis-
tance and reactance), load current and receiver voltage. (¢) What is the
efficiency of transmission ? (d) If the receiver power factor be unrestricted,
what would be the maximum power delivered ? What would then be the
revised. Values for (b) and (¢) ?

A three phase transmission line with resistance and reactance per phase of 5

and 12 ohm respectively and with negligible shunt admittance delivers a load

of 1600 KW at 0.8 lagging power factor. Voltage at the sending end is 13.2kV,
at 50 Hz. Estimate the power factor at the sending end and voltage at the
receiving end.

Example 1.33. A three-phase load of 1 MW at power factor 0.8 lagging

is supplied over a line of impedance 25 + j 12 ohm per phase. Calculate the
supply voltage whern the load voltage is (a) 30 kV ; (b) 10 kV obtained by using
a 30/10 kV (star-star connected) transformer. The equivalent resistance and
reactance of the transformer referred to 10 kV side are 0.8 and 2.5 ohm per
phase respectively.

Solution. (a) Equivalent single phase circuit for the three phase system

is shown in Fig. 1.44 (a).

Taking the receiving end voltage as reference,

30
V, = j 0 kV
V=3 %/ 0 kV to neutral
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25N Ji2n
L —I———ww»——fm—,—
V=? v,=j3..§kV/phase

w1

Fig. 1.44. (a) For Example 1.33 (a).

Line (phase) current = -\/3——)(]280—)(% =24.06 A

Voltage drop in the transmission line
=12, =24.06(0.8-,0.6)(25+,12)
=654.53-j130V

Voltage at the sending end of the transmission line,
Vi=V,+1Z;,=17321+ 65453130V

| V,| = V17975.532 + 130% V = 17.976 kV

Line voltage at the sending end = 17.976 V3 = 31.13 kV.
(b) Ratio of transformation of the transformer, k = 30/10 = 3
Transformer equivalent impedance referred to 30 kV side
Z/= kZZcq referred to Lower voltage side (10 kV)
=32(0.8+j2.5)
=7.2 +j22.5 ohm per phase
The equivalent circuit of the transmission system referred to 30kV side
is depicted in Fig. 1.44 (b).

25 + jI12 Z{=7.2 +j225
| ine ransformer ., ' 30 ,~,°
Ve'=? vi= 2 10" kv

Fig. 1.44. (b) For Example 1.33 (b).

Total series impedance per phase, referred to H.V. side
z=7,+2
=322 +j34.5 ohm
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Sending end voltage,
Vi =17321 +(19.25 - 14.44) 32.2 + 34.5)
=18439.03 +199.16 V
| Vi'|=18440 V
Line voltage at the sending end
=18.44 V3 =31.9kV

It is seen from the results of (a) and () that a higher voltage is required
to be maintained at the sending end in case () than in case (a) on account of
the additional series impedance due to the impedance of the transformer, if the
load voltage is to be the same at the receiving end : that is, 30 kV as referred
to the H.V. side.

Example 1.34. A three phase transmission line of impedance (16 + j 24)
ohm per phase is fed through a 1 : 3 transformer whose equivalent impedance
referred to secondary side is 2 + j 8 ohm. The load current is 100 A at power
factor 0.8 lagging ; while the line voltage at the mid-point of the line is 33 kV.
Find (a) the supply voltage on the low voltage side ; (b) the equivalent
resistance and reactance of each phase of the load.

Solution. The transmission system is shown by a single line diagram
in Fig. 1.45.

Lv WV Trans Line
——éé_— ’6+J24ﬂ Load
1:3 . M pf=08
Transformer Mid-point 100 A
Star-Star 33 kV Line Load current
connection

assumed

Fig. 1.45. Single line diagram for the transmission system : Example 1.34.

The equivalent single phase diagram of the three phase system
(referred to H.V. side) is depicted in Fig. 1.46.

Z,=2+j8 8 + jI12 M 8 +Jjl2 L

Fig. 1.46. Equivalent single phase circuit for Example 1.34.



INTRODUCTION TO ELECTRIC POWER SYSTEMS 81

As a 1 : 3 ratio step up transformer is used at the sending end of the
transmission line, we have
Vi=3V,
where V; is the sending end voltage on the LV side
and V{' is the sending end voltage referred to HV side.
Vi=V,+1(2+j8+16+)24)

Taking V, as reference, let V, = V, / 0°
I1=100(0.8-0.6)=80-j60A

Impedance drop from the middle of the line to the load (from M to L
in Fig. 1.46)
=(80-j60) (8 +j12)
=1360 +;480V
Hence the voltage at M is V), = V, + 1360 + j 480
The magnitude of V), is given as 33 kV (line) ; hence it is 333
kv/phase i.e., 19053 V/phase
Thus (V, + 1360)? + 480% = V,? = 190532
Solving, we get V, = 17.693 kV/phase
The equivalent load impedance is given by the ratio of the terminal
voltage to the load current. Let Z,,, be the load equivalent impedance.
7 = 17693
-4 100/-36.9°
[as the load p.f. angle is cos™ (0.8) = 36.9°]
=176.93 (0.8 + 0.6)
= 141.5 +j 106.2 ohm per phase
To find the supply voltage :
Vi=V,+I2+j8+16+j24)
=17693 + (80— 60) (18 +j 32)
= 21053 + j 1480 V/phase
| Vi’ | = 21.10 kV/phase
Supply voltage (line) on the LV side of the transformer

V'
V_,=—-:—;-\/§

21.10
="/ =12.18 kV.

Example 1.35. The voltages of a switching station, transmission line
and sub-station have nominal ratios corresponding to line values of 66, 132
and 22 kV. The sub-station load is 20 MVA at 20.5 kV (line) and power factor
0.85 lagging. The transformer at each end of the transmission line have
equivalent impedance of 9 + j 36 ohm per phase, referred to the high voltage
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side. The line to neutral impedance of the line is 21 + j 60 ohm. Find the voltage
at the switching station and the overall efficiency of transmission.
Solution. Fig. 1.47 depicts the single line diagram of the power system.

66kV 66/132 132/22 kv
Switching | Trans. .’_"’9 ss
stgtion 21 +j6on
Zeq z eq Load
*——Transformers ————~ 20 MVA
9+j36N 20.-5kV
0-85 lag

Fig. 1.47. Single line diagram for Example 1.35.

The corresponding single phase equivalent circuit is shown in
Fig. 1.48.

T TL T2

9 +j36 21+j60
| W

Vs Total Z=39+j132 0 Vr | |Load

Fig. 1.48. Single phase equivalent circuit for the
power system of Example 1.35.

Referred to 132 kV side, voltage at the sub-station (L — L) is

132
2 x20.5 =123 kV
Voltage per phase, V, = 12373 = 71.02/0° kV

(taken as reference phasor)

Equivalent load current referred to HV side)

20000
=Ax13 =93.88 Amp

1=93.88 (0.85-0.52)

=79.80-49.47 A
Total impedance drop in the transmission line and transformers
=1Z =(79.80 - 49.47) (39 + 132)
=9642.24 + j 8604.27 V
V=V, +12

= 71020 + 9642.24 + j 8604.27 V
= 80.662 + j 8.604 kV

V,=
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V, = 81.12 kV per phase, referred to 132 kV
side (transformer)

Hence, the switching station voltage per phase
66
=81.12 x 132° 40.56 kV
Line voltage at the switching station
=V3 x 40.56 = 70.25 kW
Efficiency of transmission
Total loss in power transfer (including line and transformers)
=3 PP R,, (total)
=3x93.882x39W
=1031.17 KW
Power supplied to load
=20 x 0.85 MW = 17000 KW
Hence efficiency of transmission
_ 17000
" 17000 + 1031.17

Example 1.36. A 10 MW load, power factor 0.8 lagging, is received
in a sub-station at 30 kV through two three-phase overhead transmission lines
operating in parallel. Current supplied by line A is 100 A and the power
delivered by line B is 5.5 MW. If each of the B-lines has resistance and
reactance of 8.0 and 12.0 Ohm respectively, what are the corresponding
parameters (R and X) of line A ?

Solution. Fig. 1.49 shows a single line diagram of the parallel operat-
ing lines A and B feeding a sub-station.

=0.943 = 94.30%.

z?
A WA e Total P=10MW
100A
— ss
ZB= 8 +J’2n

L MWWA_Y— _=
B Fg=55Mw

Fig. 1.49. Single line diagram for Example 1.36.
Power delivered by line A = 10 — Pp (delivered by line B)
=10-55=45MW
= 4500 KW.
I A= 100 A.
Power factor of the load delivered by line A
4500

= A x30x100° 0.866 lagging.
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Taking V, as reference phasor, let V, =V, 10°
V,=30N3 kV
1,=100(0.866 - 0.5)
=86.6—-j50 A
I = 10000
""V3x30x08
1,=240.57 (0.8 - 0.6)
=192.46-j 14434 A
The current in line B is
Ig=1,-1,=10586-94.34 A
As the two lines are in parallel, their impedance drops are equal.
InZx=1s2s
P I5Zs  (105.86 - j94.34)(8 + 12)
AT 86.6 - j 50
Simplifying, Z,=14.56 +j 14.36 ohm
=Ry +jXy
Hence the transmission line A has resistance of Ry = 14.56 ohm and
reactance of X4= 14.36 ohm.

Total load current =240.57 A

Example 1.37. The total power supply delivered to a three phase
overhead line in parallel with a three phase underground cable is 250 A at
3.3 kV, power factor 0.8 lagging. Calculate the current distribution between
the line and the cable and the overall power factor of the total load supplied
by the combination. The impedances of the line and the cable per phase are
4 + j6 and 3 + j 2 ohm respectively.

Solution. A single, line diagram depicting the overhead line and
underground cable sharing the transmission system and a common load is
indicated in Fig. 1.50.

= 4 + Jj6
VY, N——
oH.Line ~h
Supply Load
V=33 °kV‘
513 L9 Zg=3+j2 g
I.= ’
s g U.G. Cable

Fig. 1.50. For Example 1.37.

It should be carefully noted that the power factor of 0.8 lagging refers
to the power input to the transmission system.
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Let The sending end voltage V be the reference phasor.
33,
V= Ny [0° kV/phase

=1905.3 +j 0 V/phase.
Input current, [, =250(0.8-,0.6) =200-,150 A
The currents in lines A and B, viz., I, and Iz may be expressed in terms
of the total current /; as follows :
Zp Zy
Zi+2, 2= l7.57,
where Zy =4 +j6 ohm ; Zg =3 +j 2 ohm
Zy+Zp=7+j8=10.63/48.81° ohm
Z,=1.21/56.31° ohm ; Zp = 3.61 / 33.69° ohm
) o° 3.61/33.69°
Ja= @30 =369 53 g st
=84.90/~-52.02°A
Power factor at the input of line A = cos ¢, = cos 52.02° = 0.615 lagging
36.9° 7.21/56.31°
Tp= (30236 153 74z 81°
=169.57/-294°A

Power factor at the input of line B = cos ¢ = cos 29.4° = 0.87 lagging.

To find the overall power factor of the total power delivered by the
overhead line and underground cable :

Receiving end voltage is calculable from the voltage at the sending end
and voltage drop in one of the lines.

Accordingly, V,=V,-I,Z,

=1905.3 +j 0 (84.90 / = 52.02°) (7.21/ 56.31°)
=1294.9 - j 45.80 = 1295 / - 2.03°

This indicates that the receiving end voltage lags behind the sending
end voltage by 2.03°. A phasor diagram shown in Fig. 1.51 depicts the phase
relations of V, V, and I,.

=1

-V,

Fig. 1.51. For Example 1.37 (Phasor diagram).
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It is seen that the load current lags on the voltage at the receiving end
by 36.9 — 2.03 = 34.87° which is the overall power factor angle.
Overall power factor of load at the receiving end
= cos 34.87°
= 0.82 lagging.
Example 1.38. Two 11 kV three phase sub-stations are connected by
a feeder of impedance 0.2 + j 0.6 ohm per phase in parallel with a 33 kV feeder
of impedance 1 + j 5 ohm per phase. At each end of the 33 kV feeder is a
transformer rated 15 MVA, 33/11 kV with 10% reactance. If a load of 20 MW
at 0.8 lagging power factor is supplied to one sub-station, what will be the
output at the other sub-station and the current in each feeder ?

Solution. Fig. 1.52 shows the sub-stations SS; and SS; linked by the
two feeders in parallel.

02 + jo6n

11 kV Feeder
$$ ss
11/33 kV 33/nkv [, 2

/ / 33kV Feeder r
v.x=dl /o° § § 1+j50 ; §
s 2 15 MVA 1SMVA
kV/Ph. - Xs= 10% -

Fig. 1.52. Sub-stations linked by parallel feeder for Example 1.38.
Taking 15 MVA base, base impedance on 11 kV side becomes
11?15 = 8.067 ohm
Referred to the 11 kV side, the impedance of the 33 kV feeder

= % (1+j5)=0.111 +j 0.556 ohm

Each transformer has 10% reactance and the ohmic value as referred
to 11 kV side is equal to 0.1 x 8.067 = 0.807 ohm.

Hence the total series impedance of the 33 kV feeder and transformers
would be j 0.807 + (0.111 +j 0.556) + j 0.807 = 0.111 + j 2.17 ohm.

The impedance values of both the feeder circuits are indicated in
Fig. 1.53.

R-z + "0-60
ly —e

1
ss, Sss;

Fig. 1.53. For Example 1.38.
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We shall assume that power is transmitted from the SS, via. the parallel
feeder to the SS,.
Taking the voltage at the sending end as reference phasor,

y,:%ﬂ'ow

Total power input to the parallel feeder is P; = 20 MW. We have to
find the power output at the other end, say P,.

20000
Vix11x08 "~ 1312.20 A

We are also called upon to find the current distribution in the two
feeders. Let them be /; and .
Let Z, and Z;, be the impedances of the two feeders.

Z,=02+j0.6=0.632/71.57° ohm
Z,=0.111+2.17 =2.173 / 87.07° ohm

Z,+2,=0311+2.77=2.787 / 83.59° ohm
The equivalent impedance of the parallel combination of feeders
ZiZ
“&+2)
_0.632x2.173
- 2.787
=0.493 / 75.05° ohm
Equivalent resistance
R.; =0.493 cos 75.05° = 0.127 ohm
Total loss of power in transmission is given by
3x PR,
=~1000 KwW
_3x1312.22x0.127
- 1000
=655.83 KW
Power at SS, = 20000 - 655.83 KW
=19344 KW.
Thus P, = Output at SS; = 19.34 MW
To find the currents I; and I,
z, 2.173/87.07°

157+ g,’ =2.787/83.59°
=1023 / - 33.42° Amp
= current in the 11 kV feeder

Total current I =

[71.57° + 87.07° — 83.59°

Kw

1 x 1312.20 /- 36.9°
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Current in the second (33 kV) feeder, referred to 11 kV side,
I Z, 0.632/71.57°
2TZ+Z,  2.787/83.59°

Actual current in the 33 kV feeder would be % of the above value.

x 1312.20 /- 36.9°

Z
1~ =99 - 48.92°
Hence the current would be 3 Zi+ 7, 1=99.20 / - 48.92° Amp

To find the power factor of the SS; load

Yr=Ys_!lZI
11000 . o o
== /3 +j0-(1023 = 33.42°)(0.632 [ 7L5T")
=5842.8 - 399.60

Phase angle of the voltage at sub-station 2 is
tan™! (- 399.60/5842.8) = - 3.912°
V, lags on V, by an angle of 3.912°
The phase relations of V, V, and I (total current) are shown in Fig. 1.54.

3-91°
/ Vs  Ref

36-9° v
#,=32.99

1

Fig. 1.54. Phasor diagram, for Example 1.38.

Power factor of the sub-station 2 = Cosine of the angle between V,
and ] = cos (36.9° — 3.912°) = cos 32.99° = 0.84 lagging.

Example 1.39. (a) Draw and explain the vector diagram for a trans-
mission line assuming that half the line capacitance is concentrated at each
end of the line.

(b) A 50 Hz three-phase transmission line delivers a load of 40 MVA
at 110 kV and a lagging power factor of 0.7. The line constants (line to neutral)
areR = 11 ohm ; X = 38 ohm ; B = 3 x 107~ mho ; leakage negligible. Find
the sending end voltage, current ; power factor and power input to the
transmission line by nominal-x method.

Solution. (@) Refer to Article 1.3.2 for nominal—zn method
and to Article 1.3.3 for the phasor diagram.

(b) Fig. 1.55 shows the nominal-x circuit on single phase basis for the
three-phase transmission line.
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1+ Jj380 Ir

-— ; MWW—T 1
— L
I Ici[ IC’J_ / d
Vo L-jrsxro™a ¥ T r]tee
T Neutral :

Fig. 1.55. Nominal-x circuit for Example 1.39.

Taking the receiving end voltage (per phase) as reference, we have
110 .
V,= 73 +j0kV.
= 63510 + j O V/phase
Receiving end current (load current)
40000
L= eitp20A

1,=210/-4557°A; (cos ¢ =0.7,sin ¢ = 0.714)
I,=210(0.7-;0.714) = 147 -j 149.94 A
Charging current at the receiving end,
I,=V,Y2=63510(j 1.5 x 107
=j9.527 A
Line current, Iy =1, +1;,
=147-j140.41 A
[7.]=203.28 A
Line impedance drop, I; Z = (147 —j 140.41)(11 + 38)
Simplifying, I Z=6952.58 +j4041.49 V
Sending end voltage,
V=V, +1,Z
=63510 + 6952.58 + j4041.49 V

=70.463 +j 4.041 kV
=70.58 / 3.28° kV/phase.

Line voltage at the sending end
=V3 x 70.58 kV = 122.24 kV
Charging current at the sending end,
I =V, Y/2 = (70.58 /3.28°) (1.5 x 107/ 90°) 10°
=10.59/93.28° A
=-0.635+10.57 A



90 POWER SYSTEMS

Current at the sending end of the transmission line,
.[s =_1L +.[c2
=147 - j 140.41 - 0.635 +j 10.57
=146.37-j129.84 A
=195.66 / — 41.58° A.

As the sending end voltage leads the reference by 3.28° and the current
lags on the reference by 41.58°, the phase angle between V; and /; is equal to
¢s = 3.28 + 41.58 = 44.86° (current lagging).

Power factor at the sending end is cos ¢, = cos 44.86° = 0.709 lagging

Power input to the transmission line is equal to the power delivered at
the receiving end Plus the transmission losses.

Power input = 40000 x 0.7 + 3 I,;*R

= 28000 + 3 x 203.28% x 11/1000 KW
=29364 KW

Fig. 1.56 shows the phasor diagram for voltages and current.

Fig. 1.56. For Example 1.39.

Example 1.40. Find the regulation and efficiency of an 80 km three
phase 50 Hz transmission line delivering 24 MVA at a power factor of 0.8
lagging and 66 kV to a balance load. The conductors are of copper, each
having a resistance of 0.12 ohm per km, 1.5 cm outside diameter, spaced
equilaterally 2.5 m between centres. Neglect leakance and use Nominal-n
method.

Solution. To find regulation and efficiency of the transmission line,
first of all we shall evaluate the line constants, i.e., inductance and capacitance,
as the resistance is already given.

Resistance per phase, R = 0.12 x 80 = 9.6 ohm.

250

Spacing to radius ratio = D/r = 075" 333.33

logo 13— =2523
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Inductance per phase = | 0.05 + 0.4606 Iogwg mH per km

Total inductance/phase,
L =(0.05 + 0.4606 x 2.523) x 80 x 107> H
=96.97x 10° H
Inductive reactance per phase,
X=2nfL=314x96.97x 10>
=30.46 ohm

Total capacitance per phase,
0.0241

C=—"—1x80x 1078 Farad
logio
=0.764 x 10 Farad
Shunt admittance, Y=jw C=314.3 x 0.764 x 107
=j 2.40 x 10 mho
Series impedance, Z=R+j X =9.6 +j30.46 ohm per phase.

The nominal-x circuit of the transmission line is shown in Fig. 1.57.

9.6 +j30460
s .
] — T
1 Ie,
€2 ! Load

—~ . -4 = 6_‘
-~ .21,__‘,,.2,10 U:_%’_ Vr ﬁkv
Nevtral

Fig. 1.57. Nominal-x circuit for Example 1.40.

Load current, I, = }T@ =210A

1,=210(0.8 -, 0.6)
=168-j126 A
Charging current at the receiving end,
I,=V,Y2=38100(12x 10%) =j4.572 A
Linecurrent, [y =1, +1,=168-;12143 A
|7 |=207.30A
Transmission line loss

2
____31L2R=3x20lz).30x9.6Kw

P, =1237.63 KW
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Efficiency of transmission,
Pr
n= P.+ P,
24000 x 0.8
~ 24000 x 0.8 + 1237.63
=93.9%
To find regulation : The general relation is given by
Vi=AV,+BI,
When the load is thrown off, I, = 0. Let V, = V,,, (on no load)
Ys =AV,
Yro =Y A
Regulation =(V,, - VIV,
For nominal-x circuit,
A=1+432Y

x 100%

[Vide equation (1.22)]
In this example, A =1 + % (9.6 +30.46) j 2.4 x 1075~ 0.9963 / 0°

The numerical value of A = 0.9963
We shall assume that the voltage at the sending end is maintained
constant.
Vi=AV,+BI, whereB=Z=9.6+;3046

=0.9963 x 38100 + (9.6 + 30.46) (168 —j 126)
Simplifying, the magnitude of V; = 43.59 kV
V,o = 43.59/0.9963 = 43.75 kV

Voltage regulation € = (V,,— V,)/V, = 137358—% =14.8%.

Example 1.41. A single phase transmission line delivers 1 MVA at
power factor of 0.71 lagging, 22 kV, 50 Hz. The loop resistance is 15 ohm, the
loop inductance 0.2 H and the capacitance, 0.5 micro-farad. Find (a) the
voltage, (b) the current and (c) the power factor at the sending end. Use the
nominal-n method. (d) If the sending end voltage be maintained constant, to
what value would the receiving end voltage rise on no load ?

Solution. Fig. 1.58 indicates the nominal-x circuit for the single phase
transmission line.

Loopreactance =X=2xnfL =314 x0.2=62.8 ohm

Shunt admittance Y =jw C =314 x 0.5 x 1076
=j 157 x 10 mho

Localized admittance at each end
=Y/2=7.85x 107> mho
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Series impedance Z = 15 +j 62.80 ohm

Is R=I50 X-6280 Ir
l ) . IMVA
Vs == Y=j785x00°U =Y Vr222kV | 1071 lag
l 2 2 T 50Hz

Fig. 1.58. Nominal-x circuit for the single-phase line : Example 1.41.
Referring to equations (1.22), we have, for nominal- x circuit,
V,=AV,+Bl,whereA=1+1ZYandB=Z

and I;=CV,+DI,where C=Y(1 +;ZY)and
D=A=1+1ZY
For the given load, V, =22000/0° V  (chosen as reference phasor)
1000
I = = 4545 A
1,=45.45/-44.77° (as cos ¢, = 0.71)
¢, =—44.77°
B=7=6457/76.57°
A=1+izY
=1+ (64.57/76.57°)(7.85 x 107° / 90°)
=0.995/0° (approx.)
(a) Sending end voltage :
Vi=AV.+B,
=0.995 x 22000 + 64.57 x 45.45/ 76.57 — 44.77°
=24384.5 +j2092.44 V

V, = 24.47/4.9° kV.

(b) Sending end current :
L=CY,+Dl,

C=Y1+4ZN
=j 157 x 107 [1 + 1 (64.57) x 157 x 107/ 166.57°]

= 156.6 x 107 (approx.)
D=A=0995/0°
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Substituting, /[, = 156.6 x 107 x 22000
+0.995 x 45.45 | - 44.77°

=32.10-;28.40

=42.86/-41.5° Amp
(c) Power factor at the sending end :
Phase angle between V; and I = ¢, = (4.90 + 41.50) = 46.40°
Power factor = cos ¢ = cos 46.40° = 0.70 lagging
(d) Voltage at the receiving end on no load,

V.o = VJ/A =24.47/0.995
=24.59 kV.

Example 1.42. (@) Show that AD — BC = 1 for any transmission line,
where A, B, C, D are generalized network constants.

(b) A 40 MVA generating station is connected to a three-phase
line having series impedance Z = 250 | 60° ohm and shunt admittance
Y = 20 x 107 / 90° mho. The power at the generating station is 40 MVA at
unity power factor, at 120 kV. There is a load of 8 MW at unity power factor
at the mid-point of the line. Calculate the voltage and load at the far end of
the line. Use nominal-T model for the line.

Solution. (b) Fig. 1.59 depicts the nominal-T circuit for the three phase
line.

6250 j10825  Jjl0825 455,
——AW—TI , T —WWA———’

Z/2

LOAD

Neutral

Fig. 1.59. Nominal-T circuit for Example 1.42.
As the sending end voltage is given and we have to find the voltage at
the receiving end, we shall take V; as the reference phasor.
V= 172_39 /0° kV/phase
=69284/0°V
As the power at the sending end is 40 MVA at unity power factor, we
have
I 40000
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side)

Voltage drop at the sending end (half the line impedance)
=1,Z/2
=192.46 (62.5 + j 108.25)
=12028.75 + j 20833.80
Voltage at the middle (M) of the line
V=V LZI2
= 69284 — 12028.75 — j 20833.80 V
=57.28 — j 20.83 kV/phase
=60.93 / - 20° kV/phase
(Middle) Capacitor current,
I.=j20x 107 (57.28-j20.83) 10° A
=41.67+j11451 A
Mid-point load current,
8000 o
In=3 6093 =2 A
(As the power factor of load is unity, I, is in phase with V,,)
In=43.77/-20° A
Receiving end current,
Ir=ls=In-1
I;,=19246+j0A
In,=41.13-j1497 A
Substituting and simplifying,
1,=109.66-j99.54 A
=148.10/-42.23° A ()}

Voltage drop in the second half of the transmission line (receiving end

=1,22
=(109.66 —j 99.54) (62.5 +j 108.25)
=17628.96 + j 5649.45V
Receiving end voltage, V. =V, —1,Z/2
Substituting and simplifying,
V,=39.63 - j 26.48 kV/phase
=47.66 [ - 33.75° kV (1))
Phasor diagram for V,, V, and [, is shown in Fig. 1.60.

It is seen from (i) and (if) and from the phasor diagram that the phase

angle between the voltages and current, V, and [, is

¢, =42.23 -33.75 = 8.48° (Current lagging)
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Fig. 1.60. Phasor diagram, Example 1.42.-
Power factor of the load is, therefore,
cos ¢, = cos 8.48° = 0.989 lagging

Voltage at the receiving end (Line)

=V3 x 47.66 = 82.55 kV
Load delivered at the receiving end,

P, (three phase) = 3 x 47.66 xlg(l}t;.lo x 0.989 MW
=20.942 MW

That is, 21.175 MVA at 0.989 lagging power factor.

Example 1.43. A long three-phase transmission line is supplied from
a transformer at the sending end and a similar transformer is connected to the
line at the receiving end. Each transformer has a reactance drop and resis-
tance drop of 5% and 0.7% respectively of the normal voltage of 60000 V on
full load current of 80 A. The load at the receiving and sending ends of the line
is respectively 58000 /26° V, 80 [0° A and 62000 [ 19° V, 77 | 16° A.
Calculate the overall percentage voltage drop of the combined line and
transformers as a % of the sending voltage. Neglect the magnetizing current
and capacitance.

Solution. Fig. 1.61 shows a single line diagram depicting the transmis-
sion line, at each end of which is connected a transformer.

T T,

2
_g EZ}?/—L’"A_ TL so0a3 g
62 oo 1 38

J= [197kv J%_Q-QG%V

Fig. 1.61. Transmission line and transformers forming the
power system for Example 1.43.
Given that the transformers have each an impedance of 0.7 + j 5.0%
on the basis of normal voltage of 60 kV and current of 80 A, the ohmic
impedance of each transformer can be evaluated as follows :
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V3 x 60 x 80
Base MVA = 1000 =8.314
Base impedance = 60° =433 ohm
P “8314

The equivalent impedance of each transformer, referred to transmis-
sion line would, therefore, be equal to
- 0.7+j35.0
Zoy =433 x 100
=3.031 + 21.65 ohm
=21.861/82.03°
It is required to find the overall voltage drop of the sending end
transformer, line and the receiving end transformer.
Voltage drop in the transformer 7} :
v =(77./16°) (21.861 / 82.03°)
=1683.30/98.03° V

=-235.16 +j 1666.80 V (1)
Voltage drop in transformer T,
v, =(80/0°) (21.861 /82.03°%)
=1748.88/82.03° V
=24250+j1731.99 V «(2)
Voltage drop in transmission line, 7L :
v3 = Difference between the voltages at the sending
and receiving ends
= 35800 (0.946 + j 0.326) — 33487 (0.899 + j 0.438)
= 3762 -j 2996 -(3)
Adding (1), (2) and (3), we obtain the overall voltage drop :
Vi+Vva+v3=3769-j403V
Magnitude of the overall voltage drop
=V3769% + 4032 V
= 3.79 kV/phase.
Sending end voltage/phase
= 62/V3 =35.8kV.
Hence the percentage voltage drop

3.79
=3580 % 100 = 10.60.
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