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Measurement Systems and

Their Characteristics
1.1. Introduction

The development of science and technology is very much
dependent upon a parallel development of measuremenet
techniques. Knowledge largely depends on measurement, and the
technology of measurement, called instrumentation, serves not
only science but all branches of engineeering, medicine and almost
every spheres of human life. Measuring instruments are used in
monitoring and control of processes and operations. Most
specialized instruments are used in experimental scientific and
engineering work.

Measurement methods may be classified into direct and
indirect methods. In direct methods of measurement the quantity
to be measured is compared directly against a standard of same
knind of quantity. The magnitude of the quantity being measured is
expressed in terms of a chosen unit for the standard and a
numerical multiplier. A length can be measured in tems of metre
and a numerical constant. Thus, a 10 metre length meas a length
ten times greater than a metre.

Direct methods of measurement are though simple, it is not
always possible, feasible and practicable to use them. The
involvement of a man in these methods makes them inaccurate and
less sensitive. For these reasons, engineering applications use
measuremenet systems which are indirect methods of
measurement. A currentis measured by an ammeter which gives a
deflection of a pointer on a scale corresponding to the current.
Thus, the current is not compared with a standard current, rather it
is converted into a force which causes the pointer to deflect.

An electrical signal is a versatile quantity because of the fact
that it can be easily amplified; attenuated, measured, rectified,
modified, modulated, transmitted, and controlled. This fact created
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the interest to use electrical methods to measure non-electrical
quantities. For this purpose a device known as transducer is used to
convert the non-electrical quantities into electrical quantities. Then
the quantities are indirectly manipulated with speed and versatility
found in electrical measurement systems. Further, higher speed
and versatility found in electronic instruments make them more
popular. The electronic instruments, now-a-days, are computing,
manipulating, and processing information in much the same way as
the mind. for these reasons, the importance of studying electronic
instruments is increased.

Increase in availability and types of computer facilities, and
decrease in the cast of various modulus required for digital systems
are accelrating the development of digital instrumentation for the
measurement. The digital form of measurement is also used to
display the measured quantity in readable numbers instead of a
deflection of a pointer on a scale which completely eliminates a
number of human errors.

1.2. Preliminaries of Measurements
Though today we have very sophisticated measurement

systems, we can not think of a measurement without error. The
error can be reduced by selecting a proper method of measurement
and by taking some necessary precautions at the time of
measurement. Recording the measured data also plays an
important role.

Choice of Measurement Method. It is an important work
to select a suitable method of measurement before starting it. At
the time of selection, the following points should be kept in mind :

1. Apparatus available 2. Accuracy desired

3. Time required 4. Difficulties in measurement

5. Necessary conditions of measurement.

A method must be selected that makes use of available
apparatus to obtain the desired result without sacrifying the desired
accuracy. During the time of selection it should be kept in mind that
the difficulties faced during measurement canbe easily overcome.
At the same time necessary conditions must be fulfilled. It is not
wise to choose a method giving higher accuracy than desired one at
the cost of time and money. The method should be as simple as
possible and consistent with requirements of the task. It is always
beneficial to study carefully different apparatus before starting the
actual measurement. Before starting measurement with a
particular method, it is advisable to look whether there is a better
and simpler method. Wide experiences in the field of measurement
are very helpful in selecting a method.
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After selection of the method and the apparatus, it is
important that they be intelligently used. For this each piece of
apparatus and its method of operation should be thoroughly
understood. The line diagram of electrical circuits should be drawn
in the beginning. It saves time and minimizes the possibilities of
wrong connections of apparatus. Before energising it is necessary to
check measuring instruments, other apparatus and electrical
circuits. Taking necessary precautions gives better result.

Record Preparation. Record preparation of any experiment
is not less important. Therefore, the data necessary for preparation
of record must be written carefully. These data are recorded mostly
in a bound note-book. Sometimes data may be written on loose
sheets and after arranging them properly they can be permanently
bound together. The habit of memorizing the data or writing them
in short is not good because there is every possibility of forgetting
some of the data which may cause great inconvenience. Without the
line diagram of electrical circuits and specifications of all apparatus,
a report can never be said to be complete. Report should be such
that the experiment can be repeated with the same method and
apparatus at any time. Thus error in the result due to unusual
functioning of the instrument or due to any other reason can be
removed. Any unusual behaviour of apparatus should be noted on
the data sheet, and, if recorded data are rejected or discarded, the
reasons for the action should be recorded. In short, the report must
be such that any other person can get every information about the
experiment just by going through the record or even can repeat the
experiment at any time.

Precautions in Measurement. Certain precautions are
essential which must be taken to ensure the safe and efficient use of
instruments and also to get better result. There are some
precautions that should be taken in general regardless of the
instruments and the type of measurement undertaken. In making
electrical connections, it should be seen that contact surfaces are
clean, nuts are firmly tightened, wires and cables have sufficient
cross-section for the expected current, and insulation is appropriate
for the voltage in use. Sliding contacts should be cleaned
occasionally. For the measurement of a large alternating current or
voltage, a low range instrument with an instrument transformer
should be preferred to a large range instrument. Before energising
a circuit all components should be checked to ensure the proper
connections, and appropriate range of apparatus. Protective
resistors should always be inserted where necessary. At the time of
opening a circuit the first break should be made at the terminal
nearest the power source. The reversed procedure should be
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adopted at the time of making the connection, i.e. the connection at
the power terminal should be made at the last. The operator should
be careful where there is a chance of electric shocks.

Other precautions are applicable directly to instruments
rather than to the general circuit. The position of the range switch
of a multi range instrument should be checked before closing the
circuit. If the initial current is much higher than the steady-state
current, the current coils of instruments should be protected
against the initial high current by a short-circuiting switch. When
delicate instruments, such as micro-ammeter or pivoted
galvanometers, are moved, they should be protected against
mechanical damage by shorting the terminals to provide heavy
overdamping. Where a coil clamp is provided it should always be set
when the instrument is moved. Handling of instruments should be
careful giving special attentionto laboratory standards.Pivoted
instruments should never be placed where they may expose to
vibration.

1.3. Characteristics of Instruments
We have discussed that the selection of an instrument which

is most suitable for a proposed measurement is very important. To
make intelligent choice, there must be some quantitative bases for
comparing one instrument with the possible alternatives. The
performance characteristics of instruments are generally divided
into static characteristics and dynamic characteristics. The static
characteristics involve the measurement of constant or only quite
slowly varying quantities. Under these conditions a set of
performance criteria are defined. These criteria give a meaningful
description of the quality of measurement withoiut involving
dynamic descriptions. Many other quantities vary rapidly wih time.
Under these conditions, the dynamic relations between the
instrument input and output must be examined by the use of some
mathematical description, generally differential equations. These
performance criteria are called the dynamic characteristics. The
static characteristics are discussed in this section, while the
dynamic characteristics will be discussed in succeeding sections.

State Characteristics. The static charactersitics are
concerned with the measurement of quantities that are constant or
vary only quite slowly. To get the constant output the instruments
are calibrated by comparison with some standards of known
accuracy. This process, in one form or another, is called static
calibration and all the static performance characteristics are
obtained by this. We shall, therefore, devote sometimes to clear the
concept of this term.
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Static Calibration. There may be one or more inputs
influencing the output(s) of an instrument. Static calibration refers
generally to a situation where all inputs except one are kept at
some constant values. The concerned input is changed over some
range of constant values, causing the output(s) to vary over some
range of constant values. This input-output relation comprises a
static calibration valid under the conditions that all the other inputs
are constant. The procedure may be repeated, in turn for each
input, to develop a family of static input-output relations. The
overall instrument static behaviour may be obtained by some
suitable form of superposition of individual effects or in some cases
by variation of several inputs simultaneously. In practice there may
be many modifying and/or interfering inputs each of which might
have quite small effects and which would be impractical to control.
Thus, situations stated above is ideal one and can only be
approached, but never reached, in practice.

It is important to exercise considerable care in choosing the
standard instrument when calibrating the response of an
instrument to its desired input by comparing with the standard one.
It is not possible to calibrate the instrument with an accuracy
greater than that of the standard. As a rule it can be followed that
the standard instrument should be at least about 10 times as
accurate as the instrument being calibrated. The standard may be
the primary standard or the secondary standard (which itself has
been calibrated against a primary standard). Thus, the accuracy of
measurement can ultimately be traced to the relevant primary
standard. This ability to trace the accuracy of measurement to the
primary standard is called traceability.

Now, we discuss about general static characteristics which
are of general interest of every instrument. Some of them are : (i)
Accuracy and precision (ii) Error (iii) Sensitivity (iv) Drift (v)
Resolution and threshold (vi) Hysteresis and dead zone (vii)
Linearity (viii) Repeatability.

Accuracy and Precision. Accuracy plays an important role
in the measurement of any quantity. So, it is necessary to discuss
about it. The measurement of a quantity is based on some
international fundamental standards. These fundamental standards
are perfectly accurate, while others are derived from these. These
derived standards are not perfectly accurate in spite of all
precautions. In general, measurement of any quantity is done by
comparing with derived standards which themselves are not
perfectly accurate. So, the error in measurement is not only due to
error in methods but also due to standards (derived) not being
perfectly accurate. Thus measurement with 100% accuracy is not
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possible with any method. So, a measurement without error is
impossible. Now, it is the duty of the person performing the
experiment to keep the error within limit.

The final value of any quantity obtained by any method of
measurements is being influenced by so many factors. For example,
the value of resistance measured is influenced by temperature,
current density along the wire, tension in the wire and other
factors. Sometimes it is possible that due to some factors the error
may be positive while due to some other factor it may be negative.
This may result in accurate measurements as positive and negative
errors would cancel each other. An average value of large number
of readings, may give result free from error. But these are not
always possible. In general error in a method or in an instrument
remains constant at any time and so the average value may not be
accurate.

When an ammeter with an error of ± 1% indicates exactly
10A, the true value of current is somewhere between 9.9A and
10.1A. Thus, the measurement accuracy is 1% which defines the
closeness of the measured value to the true value.

The word �precision� is often used in place of accuracy as if
they are interchangeable. But this is not true. However, they are
related. So, they should be distinguished. Accuracy of measurement
is defined as the deviation of the measured value from true value.
On the other hand, precision of measurement is defined as the
maximum deviation of different readings from true value. Thus it is
a measure of consistency in measurement. An example will clarify
the point. A thermometer does not give 100% accurate value of
temperature, but, whenever the same temperature is measured, it
gives the same reading. The thermometer is said to be a precision
thermometer though it is not perfectly accurate.

Let us consider an ammeter with digital display and reads up
to three decimal points. Say, it reads 8.135 A (see Fig. 1.1). If
current increases or decreases by 1 mA, the reading becomes
8.136A or 8.134A. Thus, the current is measured with the precision
of 1 mA. When the current is between 8.135A an 8.136A, the
displayed value would always be 8.135A.

Fig. 1.1. Digital ammeter display.
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Significant Figures. The number of significant figures gives
an indication of the precision of the measurement. Significant
figures in which the result is expressed give information regarding
the magnitude and the measurement precision of the measured
quantity. The more significant figures indicate the greater precision
of measurement.

A significant figures may be any one of the digits 1, 2, ....., 7, 8,
9. Zero is a significant figure except when used to fix the decimal
point or to fill the places of unknown or discarded digits. Thus the
significant figures in number 0.0052 (the length of a rod in Km) are
5 and 2, while in 2056 these are 2, 0, 5 and 6. For a number 390 000
(the population of a city), the zeros may or may not be the members
of the significant figures. To avoid the uncertainty caused by zeros
to the left of the decimal point, one should write this as 3.9 × 105 if
two significant figures are intended, 3.90 × 105 if three, 3.900 × 105 if
four and so forth. The significant figures are dependent on the unit
in which the precision of measurement is intended. To clear the
statement consider an example. If a capacitor is specified as having
a capacitance of 25 µF, its significant figures are two. Here it
indicates that the precision of measurement is of the range of 1 µF.
If the value of the capacitor is given as 25.0 µF, then the capacitance
is closer to 25.0 µF, than it is to 24.9 µF or 25.1 µF. Thus, the
sigificant figure is three. In this case, the precision of measurement
is upto one tenth of µF.

Errors in Measurement. By now it has become clear that a
quantity can never be measured with perfect accuracy in practice.
So it is necessary to know the limit of maximum possible error in
any measurement. Measurements without this have no meaning. It
has no meaning in saying that the resistance of a resistor is 100
ohm. But, if it is said that the resistance of a resistor is 100 ± 2.5
ohm, then it means that the resistor can be used wherever a
resistance of value varying from 97.5 ohm to 102.5 ohm can be
tolerated. Some definitions are being given below.

Absolute-error. �Absolute-error� is also called as �maximum
possible error�. Error in measurement,

δR = Am � A ...(1.3-1)

where        Am = measured value

          A = accurate value

Absolute error (∈0) is the limit of error in measurement. In
other words δR must never be higher than ∈0. So,

     |∈0| = max. |Am � A| ...(1.3-2)

Relative error. Absolute-error does not give any information
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about accuracy. For example, �1 volt error in measurement of 1100
volt is negligible, but �1 volt error in measurement of 10 volt is
never acceptable. Relative-error is the ratio of absolute error with
the accurate value. So, relative error,

               ∈r = 0
A

∈
...(1.3-3)

If ∈0 is negligibly small as compared to Am, then Eq. (1.3-3) can
be written as

               ∈r = 0

mA
∈

...(1.3-4)

Generally, relative error is given in per cent of measured value,
i.e. per cent error = 100 ∈r ...(1.3-5)

Correction. Correction is negative of error. So correction,
               δC = � δR ...(1.3-6)

Also             A = Am + δC ...(1.3-7)
So, addition of correctionin in the measured value gives

accurate value.
Detail study about the different types of errors and their

statistical analysis are given in Chapter 2.
Static Sensitivity. In general, sensitivity is defined as the

ratio of the incremental output to the incremental input. When an
input-output calibration curve is a straight line as that of Fig. 1.2
(a), the static sensitivity of the instrument is the slope of the
calibration curve. If the calibration curve is not a straight line,
which is normally the case, the sensitivity is not constants, it will
vary with the input as shown in Fig. 1.2 (b). For a meaningful
definition of sensitivity the output quantity must be taken as the
actual physical output observed, not the meaning attached to the
scale numbers. For an example, the actual physical output of a
voltmeter is the angular deflection of the pointed and the unit of
sensitivity, therefore, will be radian/volt.

Drift. We discussed about the sensitivity of an instrument to
the desired input. The instrument is also sensitive to interfering
and/or modyfing inputs. Due to these undesired inputs the output of
the instrument drift from the accurate value. So, it may be of
interest to know the sensitivity of the instrument to these
undesired inputs. This will help in allowing correction of the
readings. As an example, consider a dynamometer type instrument.
Temperature can cause a change in the resistance of the coils that
will result in a change in output reading even though the voltage
has not changed. In this sense the temperature is an interfering
input. Also, the temperature can change the constant of the
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controlling spring, in turn giving a change in the voltage sensitivity.
In this sense, the temperature is a modifying input. The first effect
is often called a zero drift while the second effect is called a
sensitivity drift or scale-factor drift.

(a)

(b)

Fig. 1.2. (a) Linear response (b) non linear response.

Resolution and Threshold. If the input to an instrument is
increased slowly from some arbitrary non-zero value, it will be
observed that the output of the instrument does not change at all
until there is a certain minimum increment in the input. This
minimum increment in input is called resolution of the instrument.
Thus, the resolution is defined as the minimum input increment
that gives definite numerical change in the output.

If the input to an instrument is increased very slowly from
zero value there will be some minimum value of input below which
no output can be detected. This minimum value of input is defined
as the threshold of the instrument. Thus, the resolution defines the
minimum measurable input change while the threshold defines the
minimum measurable input. Both resolution and threshold may be
given either in absolute value or as a percentage of full scale
reading.

Hysteresis and Dead Zone. If the voltage to a moving iron
voltmeter, for an example, is slowly and smoothly varies from zero
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to full scale value and then back to zero, the input-output cue may
appear as in Fig. 1.3 (a). The different loading and unloading curves
are due to the magnetic hysteresis of the iron. This is hysteresis
effect. For an instsrument with central zero the response will be as
in Fig. 1.3(b).

(a) (b)

Fig. 1.3 Hysteresis loop.

The terms dead zone, dead band, and dead space are
sometimes used in place of the hysteresis. However, they may be
defined as the total range of possible values of input for a given
output. They may, thus, be numerically equal to twice the
hysteresis defined in Fig. 1.3 (b).

Linearity. Though an instrument with non-linear calibration
curve may be highly acurate, there are many applications were
linear behaviour of the instrument is most desirable. In case of
linear behaviour of the instrumenet its sensitivity remains constant
and it is convenient to find the measured value of the quantity from
the scale reading just by multiplyhing it with a constant. When the
behaviour of the instrument is non linear, the sensitivity varies
with the quantity and for obtaining the measured value of the
quantity, we need a calibration curve or equation giving relation
between the input and output of the instrument. Because of above
advantages of the linear behaviour, we prefer to sacrify some
accuracy and fit an approximate linear calibration curve for a non-
linear calibration curve.

The linearity is defined as the maximum deviation of any
calibration point from a reference straight line. The reference
straight linemay be the least squares fit of the calibration points.
The least squares fittings of the straight line means that the sum of
squares of the vertical deviation of the data points from the fitted
line is minimum. The linearity is generally expressed as a
percentage of full scale reading.
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Repeatability. Repeatability is defined as the closeness of a
number of measured values of the same quantity under the same
conditions (such as the same observer, the same method, the same
apparatus, and the same environment). This is affected by internal
noise and drift. The repeatibility is expressed in percentage of the
true value.

1.4. Dynamic Characteristics
In contrast to the static characteristics, the dynamic

characteristics are concerned with the measurement of quantities
that vary with time. To study the characeristics of such quantities
the first step is to have a mathematicl model of the measurement
quantities or the measurement systems. Generally a dynamic
system is represented by a differential equation. Other forms of
mathematical models of a dynamic system may be the transfer
function model and the state space model. There are two methods of
analysis of a dynamic response : time domain analysis and frequency
domain analysis. We consider the measurement systems which are
approximated as a linear time invariant system. Most of the
measurement system can be represented by a first order or second
order model.

Mathematical Model. A measurement system, in general,
can be represented by an-nth order differential equation.

( ) ( ) ( ) ( )
1

1 11+ + ... + +
n n
o o o

n o on n
d q t d q t dq t

a a a q t
dtd t d t

−

− −

= 
( ) ( ) ( ) ( )

1

1 1 01+ + ... + +
m m

i i i
m m im m
d q t d q t dq t

b b b b q t
d td t d t

−

− −

...(1.4-1)
where      qo(t)= output quantity

     qi(t) = input quantity

           t = time

a�s and b�s = constant co-efficient depending on the parameters
of the system

          n > m

( )r

r
d q t
d t

= rth derivative of q(t) w.r.t.time

Transfer function. In case the initial conditions in Eq. (1.4-
1) are zero, the simple way of solving the differential Eq. (1.4-1) is to
utilize the Laplace transform technique. Taking Laplace transform
on both sides of Eq. (1.4-1), it can be written as
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( ) ( ) ( ) ( )1
1 1 0+ + ... + +n n

o n o o os Q s a s Q s a sQ s a Q s−
−

= ( ) ( ) ( )1 0+ ... + +m
m i i ib s Q s b sQ s b Q s

or  ( )
( )

1
1 1 0

1
1 1 0

+ + ... + +
=

+ + ... + +

m m
m mo
n n

i n

b s b s b s bQ s
Q s s a s b s a

−
−

−
−

...(1.4-2)

where    Qo(s) = Laplace transform of the output quantity qo(t)

    Qi(s) = Laplace transform of the input quantity qi(t).

Define,        G(s) = 
1

1 1 0
1

1 1 0

+ + ... + +
+ + ... + +

m m
m m
n n

n

b s b s b s b
s a s b s a

−
−

−
−

 ...(1.4-3)

G(s) is called the transfer
function of the system. The block
diagram representation of the
system is shown in Fig. 1.4.

To get the solution of the
differential equation we can write,

    Qo(s) = G(s) Qi(s) ...(1.4-4)

The time response qo(t) can be obtained by taking inverse
Laplace transform of the right hand side of Eq. (1.4-4). The time
repose qo(t) has two components. One component decays with time
to zero and is independent of the type of input. It only depends on
the dynamics of the system. This component is called the transient
response of the system. Second component is the response which
exists after the transient response is died out. This component is
called the steady state response of the system.

The modern technique to solve an nth order differential
equation, even with non-zero initial conditions, is the state space
technique.

State space representation. For many applications, it
becomes more convenient to express the system behaviour in terms
of n first order differential equations. The matrix form of these n
first order differential equations is known as the state equation. A
simple procedure to convert the nth order transfer function G(s)
given by Eq. (1.4-3), hence the differential equation given by Eq.
(1.4-1), to a state equation (not unique) is given as follows :

The block diagram of Fig. 1.4 can be broken into two blocks as
in Fig. 1.5.

Fig. 1.5. Block diagram.

Fig. 1.4 Transfer function
representation.
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where      G1(s) = 
1

1 1 0

1
+ + ...... + +n n

ns a s a s a−
−

     G2(s) = 1
1 1 0+ + ...... + +m m

m mb s b s b s b−
−

       qo(t) = defined as auxiliary output.

Then, the dynamics of the auxiliary output is given by

( ) ( ) ( ) ( ) ( )
1

1 1 01+ + ...... + + =
n n
a a o

n a in n
d q t d q t dq t

a a a q t q t
dtd t d t

−

− −

...(1.4-5)

Now, we obtain a set of n first order differential equation of
Eq. (1.4-5). Let

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

1

1 2

2 3

1

1

=
= =
= =

.  . .
 .        .       .
 .   .        .   

= =

a

a

a

n

n n a

x t q t
x t x t q t
x t x t q t

x t x t q t
−

−

 
 

Hence ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 1= ...... + = n
n n n i ax t a x t a x t a x t q t q t−− − −

The variables x1, x2 ...... xn are called state variables. Dot (.)

indicates derivatives w.r.t. time, ( )n
aq t indicating nth derivative of

qa(t) w.r.t. time.

In matrix form :

( ) ( ) ( )x = x + it A t Bq t  ...(1.4-6)

      qa(t) = Cax (t) ...(1.4-7)

where             A =  
2

1 1
2tan−

 − δ φ =
 −δ 

         x(t) = 

( )
( )

( )

1
2
:
:
:

n

x t
x t

x t
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          Ca = [1, 0  0......0] ...(1.4-8)

The actual output is given by

       q0(t) = ( ) ( ) ( )0 1+ + ...... + m
a a m ab q t b q t b q t

= ( ) ( ) ( )0 1 1 2 + 1+ + ...... + m mb x t b x t b x t
In matrix form :

       q0(t) = Cx(t)
where             C = [b0 b1......bm 0......0] ...(1.4-9)

In most cases constants b1, b2, ... bm are zero and b0 = 1 and
the actual output is same as the auxiliary output. The output matrix
C = Ca. Eq. (1.4-6) and Eq. (1.4-9) together are called state space
model of the dynamic system given by Eq. (1.4-1).

1.5. Time Domain Analysis
In time domain analysis, the time is taken as independent

variable and the time response (variation of output with time) is
evaluated. A measurement system can be actuated by any kind of
input functions. But, for analysis of the system we take only known
inputs, called standard inputs. The response of a dynamic system
generally consists of two components : (a) the transient response
and (b) steady state response. If qo(t) is a time response, then in
general,

qo(t) = qt(t) + qss(t)

where qt(t) and qss(t) denote the transient and steady state parts of
the response respectively.

We shall analyse the time responses of first order and second
order systems. Order of a system is the highest order of derivatives
of the differential equation representing the system. Thus a zero
order system, in reality is represented by an algebraic equation and
have static characteristics only. An example of a first order system
is a RL circuit shown in Fig. 1.6. A step input of E volt is applied to
the circuit. The loop equation is

Fig. 1.6. RL circuit.

( ) ( ) ( ) ( )1 2+ + = i
d i tL R R i t E u t
d t

...(1.5-1)
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Also,        e0(t) = R2i(t) ...(1.5-2)

Replacing i(t), we have
( ) ( ) ( )0 1 2

0
2 2

++ = i
de tL R R e t E u t

R dt R ...(1.5-3)

If
1 2

1 0
2 2

+    and       L R Ra a
R R= =∆ ∆

Then,
( ) ( ) ( )0

1 0 0+ = i
de ta a e t E u t
dt

...(1.5-4)

which is a first order differential equations.

A series RLC circuit, shown in Fig. 1.7, can represent a
second order system. A unit step input of Ei volt is applied to the
circuit.

Fig. 1.7. RLC circuit.

From the loop equation,

( ) ( ) ( )1+ + = i
d i tL Ri t id t E u t
d t C ∫ ...(1.5-5)

and        e0(t) = 
1 id t
C ∫

Hence          i(t) = ( )0de t
C

dt
Eq. (1.5-5) can be written as,

( ) ( ) ( ) ( )
2

0 0
02 + + = i

d e t de t
LC RC e t E u t

d t d t

or
( ) ( ) ( ) ( )

2
0 0

02
1+ + = id e t de tR Ee t u t

dt L d t LC LC
       ...(1.5-6)

If 1 0 0,
1= ,  = and =iR Ea a b

L LC LC

Then 
( ) ( ) ( ) ( )

2
0 0

1 0 0 02 + + =
d e t de t

a a e t b u t
d t d t

...(1.5-7)

represents a second order system.
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Standard inputs. In the time domain analysis, the following
test signals are often used :

1. Step input     2. Ramp input 3. Impulse input.

Step input. In this case there is an instantaneous change in
the input variable. Its mathematical representation is

       qi(t) = K t > 0

       qi(t) = 0 t < 0 ...(1.5-8)

Where K is a constant. Alternatively,

       qi(t) = K u(t) ...(1.5-9)

Where u(t) is the unit step function. The function qi(t) is not

defined at initial time (t = 0). Its Laplace transform Qi(s) = .K
s

The

step function is shown in Fig. 1.8(a).

Ramp (or velocity) input. Mathematically a ramp function is
represented by

qi(t) = K·t t > 0

qi(t) = 0 t < 0 ...(1.5-10)

Alternatively,

        qi(t) = Kt u(t) ...(1.5-11)

The Laplace transform is,

      Qi(s) = 2
R
s

...(1.5-12)

This function is also called velocity function. It is shown in
Fig. 1.8(b).

              (a)              (b)     (c)

Fig. 1.8(a) Step input (b) ramp input (c) impulse input.

Impulse function.It is shown in Fig. 1.7(c) and is represented
mathematically by

       qi(t) = Kδ(t) ...(1.5-13)
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Where δ(t) is the unit impulse function and its Laplace
transform is unity. Hence,

Qi(s) = K ...(1.5-14)
Response of a first order system. We shall study, now, the

response of a first order system when standard input signals are
applied. A first order system is generally representd by a first order
differential equations,

( ) ( ) ( )0
1 0 0 0+ = i
dq ta a q t b q t
d t

...(1.5-15)

Taking Laplace transform,

( ) ( ) ( ) ( )1 1 0 00 + =o o o ia s Q s a q a Q s b Q s−

Where qo(0) is the initial value of the output. Let time
constant and static gain be,

1 0

0 0
=       =a bT m
a a

Without loss of generality the gain m may be taken as unity.
Hence;

( ) ( ) ( )0= +
1 + 1 +
i o

o
Q s TqQ s
Ts T s ...(1.5-16)

Under the zero initial condition, i.e. qo(0) = 0, the Eq. (1.5-16)
reduces to

( )
( )

( ) 1= =
1 +

o

i

Q s
G s

Q s Ts ...(1.5-17)

where G(s) is the transfer function of the first order system.

Response to step input. From Eq. (1.5-17)

     Qo(s) = 
( )

1 +
iQ s
T s

Since       Qi(s) = 
K
s

     Qo(s) = 
( )

1=
1 + 1 +
K TK

s Ts s T s
 − 
 

Taking inverse Laplace transform,

       qo(t) = 1
t
TK e

− 
−  

 
...(1.5-18)

This response is plotted in Fig. 1.9. From Eq. (1.5-18), the
magnitude of the output for t = T is
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Fig. 1.9. Step response of first order system.

       qo(t) = 0.632 K
Thus the time constant of the system is defined as the time to

reach the response to 63.2% of its final value. The steady state value
of the ouptut is given by

( )0= lim  = lim  1 =
t
Tss

t t
q q t K e K

−

→∞ →∞

 
−  

 
This shows that the steady state error is zero. The dynamic

error is given by

           ed = K � K 1 =
t t
T Te Ke

− − 
−  

 
and the per unit error

= e
t

d Te
K

−
...(1.5-19)

The plot of the error with time is shown in Fig. 1.10.

Fig. 1.10. Error in step response.

In case initial condition is not zero the response canbe
obtained from
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( ) ( )= 1 + 0
t t
T To oq t K e q e

− − 
−  

 
...(1.5-20)

Response to ramp input. From Eq. (1.5-12) the Laplace
transform of a ramp function, r(t) = Kt u(t), is

      Qi(s) = 2
K
s

So, from Eq. (1.5-17),

     Qo(s) = 
( )

2

2 2= +
1 + 1 +
K K KT KT

s Ts s s Ts
−

Taking the inverse Laplace transform,

( ) = 1
t
Toq t K t T e

−   − −      
...(1.5-21)

The response is plotted in Fig. 1.11. The dynamic error is as
given below,

           ed = input � output

= 1
t
TKt K t T e

−   − − −      
...(1.5-22)

or          = 1
t

d Te T e
K

− 
−  

 
...(1.5-23)

The steady state error

          ess = lim 1 =
t
T

t
T e T

−

→∞

 
−  

 
...(1.5-24)

Thus, the steady state
error is not zero, and the
response will never track the
input. It is equal to time
constant in magnitude.

Response to impulse
input. Let the impulse function
be of strength K. Hence, its
Laplace transform, Eq. (1.5-14),
is

Qi(s) = K

From Eq. (1.5-17),

 Qo(s) = 
1 +
K
Ts

Fig. 1.11. Response with ramp
input of a first order system.
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Taking inverse Laplace transform,

      qo(t) = 
t
TK e

T
−

...(1.5-25)

Response of second-order system. Now, the responses of
a second order system for standard signals are analysed. The second
order system, in general, is represented by a differential equation.

( ) ( ) ( ) ( )
2

0 0
2 1 0 0 02 + + = i
d q t dq ta a a q t b q t
d t dt

...(1.5-26)

The transfer function representation is

( )
( )

2
0

22
=

+ 2 +
n

i n n

Q s m
Q s s s

ω

δω ω ...(1.5-27)

where m = 0

0

b
a

 = static gain (or sensitivity)

0

2
=n

a
a

ω  = undamped natural frequency (rad/s)

1

0 2
=

2
a
a a

δ  = damping ratio

The transient response of the system represented by Eq. (1.5-
27) is determined by the roots of the characteristic equation,

22 + 2 + = 0n ns sδω ω ...(1.5-28)

The roots of Eq. (1.5-28) are

2
1 2,  s = � ± 1n ns δω ω δ − ...(1.5-29)

There are four cases depending on the value of δ.

Case I. When δ > 1. (overdamped case). The roots are real and
unequal and are given by Eq. (1.5-29). In this case there is no
oscillation and the response approaches the final value in finite
time.

Case II. When δ = 1 (critically damped case). The roots are
real and equal. The response has no oscillation and it approaches
the final value asymmtotically.

Case III. When δ = 0 (undamped case). The roots are
imaginary and equal in magnitude. The response is oscillatory and
will never reach to the final value.

Case IV. When δ < 1 (underdamped case). Here the
oscillations decays with time. The oscillation is dependent on the
value of δ (0 < δ < 1).
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Response to unit step input. The second order system is
represented (for m = 1) by the following equation,

( )
( )

( )
2

22
= =

+ 2 +
o n

i n n

Q s G s
Q s s s

ω

δω ω ...(1.5-30)

In case m is not unity, the response is just to be multiplied by
m. For the unit step input,

( ) ( )
2

22
=

+ 2 +
n

o
n n

Q s
s s s

ω

δω ω ...(1.5-31)

For the step input of amplitude K, the unit step response is
mulitplied by K. The time response q0(t) is obtained by taking
inverse Laplace transform of Eq. (1.5-31). The response is given by
the following equation,

( ) ( )2
0 = 1 +  sin  1 +

1

nt
n

eq t t
− δω

ω − δ φ
− δ ...(1.5-32)

where 
2

1 1= tan −
 − δ

φ  
 δ

The variation of the
output response of the
system for various values of
damping δ against the
normalized time ωnt is
plotted in Fig. 1.12. It is
clear that the response
becomes more oscillatory
as δ decreases in value (0 < δ
< 1). When δ ≥ 1 there is no
oscillation in the response ;
the output never exceeds
the reference input.

The response is usually characterised by some specifications.
Now, we shall defined those specifications, see Fig. 1.13.

1. Overshoot. The overshoot is defined as the maximum
deviation of the output from the input during the transient state. It
is often represented as a percentage of the final value, that is,

Per cent overshoot = 
Maximum overshoot × 100
F ina l desired va lue

     ...(1.5-33)

This is also recognised as a measure of the relative stability of
the system. More overshoot means poor stability.

Fig. 1.12. Step responses of
second order system.
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Fig. 1.13. System specification.

2. Time delay. The time delay (or delay time) Td is defined
normally as the time required for the response to reach 50% of the
final desired value.

3. Rise time. The rise time Tr is equal to the time required for
the response to rise from 10% to 90% of the desired final value.

4. Settling time. The settling time Ts is the time required for
the response to reach first time within 5% of the final value. It is
often taken as 3 times the time constant of the system.

We have already seen the dependence of the response on the
damping ratio and natural frequency of the system.

Now, we shall derive a relation between the overshoot and
the damping ratio of the system. Differentiate the time response
q0(t), Eq. (1.5-32), with time and equate it to zero to obtain the time
corresponding to maximum overshoot of the response from the final
value. Hence, from Eq. (1.5-32),

( ) ( ) ( )0 2
2 2

= �  sin + + 1 cos +
1 1

n nt t
n

n
dq t e et t
dt

−δω − δωδω
ω φ ω − δ ω φ

− δ − δ
...(1.5-34)

= 0  (t ≥ 0)

Take  ω = 21nω − δ

           φ = 
2

1 1ta n − − δ
− δ

= ( )1 2 1sin 1 = cos− −− δ − δ ...(1.5-35)

From Eqs. (1.5-34) and (1.5-35),

2
2

sin 1 = 0       ( 0)
1

ntn
n

e t t
− δωω

ω − δ ≥
− δ
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which gives two solutions :
t = ∞

and      21  =n t nω − δ π [n = 0, 1, 2, ...]

Since the first peak of the output response occurs at n = 1,
hence

       tmax = 
21n

π

ω − δ
...(1.5-36)

For this value of time, the maximum value of response
obtained from Eq. (1.5-32) is

( ) 21
0 = 1 +maxq t e

− πδ

− δ

Hence, maximum overshoot

= ( ) 21
0 1 =maxq t e

− πδ

− δ−

and the percentage overshoot = 100 
21e

− πδ

− δ ...(1.5-37)

It is clear from Eq. (1.5-37)
that the overshoot of step
response of a second order
system depends onthe system
damping ratio. Fig. 1.14
shows the relation between
percentage overshoot and
damping ratio.

From Eq. (1.5-32), the
steady state error,

( ){ }0= lim  1 = 0ss
t

e q t
→∞

− ...(1.5-38)

Response to unit ramp in-
put. For a unit ramp input, qi(t) =
tu(t), applied to the second order system, Eq. (1.5-30), the output
response becomes.

( ) ( )
2

1
0 22 2

=
+ + 2 +

n

n n
q t L

s s s
−

 ω 
 δω ω 

or    ( ) ( )2
0

2

2= + sin 1
1

nt
n

n n

eq t t t
−δωδ

− ω − δ − φ
ω ω − δ

  ...(1.5-39)

Fig. 1.14. Over shoot Vs.
damping ratio.
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where φ = 
2

1 12 t an −
 − δ
 

− δ 
This shows that transient response is similar to that for step

input. But the response does not agree at steady state.
The steady state error,

( ) ( ){ } 2= lim =ss o i
t n

e q t q t
→∞

δ
− −

ω ...(1.5-40)

The response against the normalized time wnt is plotted in
Fig. 1.15.

Response to impulse input. For a unit impulse input q(t) = δ(t),
the response becomes

Fig. 1.15. Response to ramp input.         Fig. 1.16. Response to impulse input.

( )
2

1
0 22

=
+ 2 +

n

n n
q t L

s s
−  ω

 
δω ω 

or         ( ) { }2
0

2
= sin 1  

1

nt
n n

eq t t
−δω

ω ω − δ
− δ

...(1.5-41)

The impulse response against normalized time ωnt is plotted
in Fig. 1.16.

1.6. Frequency Domain Analysis
In Section 1.5, we have considered the output response of a

system in time domain. The frequency domain analysis is popular
because of the amount of computation involved in obtaining the
time response. The frequency response is often obtained by means
of graphical method.

In frequency domain analysis, a sinusoidal signal with varying
frequency is used as the test signal. For linear systems the output
response is also sinusoidal. To obtain the frequency response, the
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operator, in the transfer function is replaced by jω ; ω (= 2π
frequency) being the angular frequency. This is often called
sinuosidal transfer function. If the amplitude of the sinusoidal
signal is unity, i.e. qi(t) = sin ωt, the output is given by

       Qo(jω) = G (jω) ...(1.6-1)

Thus, the response is a complex quantity and is represented
by its magnitude and phase angle, i.e.

      M = ( ) ( )=oQ j G jω ω ...(1.6-2)

                    φ = ( ) ( )/ = /oQ j G jω ω

The frequency response is therefore, represented generally
by its magnitude and phase angle plots against frequency (0 ≤ ω < ∞).

Logarithmic plotting of frequency response. Logarithmic
plots of both magnitude and frequency are known as Bode Plots.
The two Bode plots of a frequency response are :

(a) Plot of the magnitude in decibel (db) versus log10 ω.

(b) Plot of the phase angle versus log10 ω.

The advantage of Bode plots is that the product factors in the
expression of G(jw) become additive terms. Also, it is very easy to
plot the curves withoiut knowing their actual values at a number of
frequencies. The transfer function of measurement systems may be
written as

( ) ( ) ( )
( ) ( ) ( )

1 2
2

3 4

1 + 1 +=
1 +  1 +  1 + +

K T s T sG s
s T s T s bs as

...(1.6-3)

It is clear from above expression that G(s) contains, in
general, the following factors :

1. Constant gain, K.

2. Pole at the origin which represents an integrator. There
may be multiple poles at the origin.

3. Zero at the origin which represents a differentiator. It is
not given in Eq. (1.6-3).

4. Real poles and zeros.

5. Complex conjugate poles and zeros in pair. Complex zeros
are not given in Eq. (1.6-3).

The magnitude of the response of Eq. (1.6-3) in db is given by



ELECTRICAL MEASUREMENT26

( )10 10 10 120 log  = 20 log + 20 log 1 +  G j K j Tω ω

10 2 10+ 20 log 1 +  20 logj T jω − ω

10 2 10 420 log 1 +  20 log 1 +j T j T− ω − ω
2

1020  log 1 + jb a− ω − ω
Similarly, the phase angle may be written as,

aa rr gg  G (jω) = arg K + arg (1 + jω T1) + arg (1 + jωT2)
� arg(90°) � arg (1 + jωT3)
� arg (1 + jω T4) � arg (1 + jbω � aω2)

Thus, it is possible to plot curves for individual terms
separately and to get the complete plot, it is just to add them
together. We shall, therefore, first discuss the method of plotting
individual terms.

Constant gain K
|K|db = 20 log10 |K| = constant

∠K = 0°    or   180° ...(1.6-4)

The magnitude in db and phase angle plots against ω on log10
scale are shown in Fig. 1.17.

          (a)             (b)

Fig. 1.17. Bode plots of gain K.

Poles or zones at origin (jw)±n. In general poles at origin
are represented by (jω)�n and zeros by (jω)n, where n is the
mutliplicity of poles or zeros.

M = ( ) ( )10= 20 logn n
db

j j± ±ω ω

= 1020  log  n± ω ...(1.6-5)

The slope of the curve, which is a straight line when ω is
taken on log10 scale, is given by

  Slope = ( )
( )

10

10

20  log
= 20  db decade

log
d n nd

± ω
±

ω
...(1.6-6)
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The phase angle φ= ( ) =
2

n nj ± π
∠ ω ± ...(1.6-7)

The curves (n = 1) are plotted in Fig. 1.18.

                       (a)              (b)

Fig. 1.18. Bode plots of poles and zeros at origin.

Real zero, (1 + jωω T). The magnitude in db,

M = 2 2
101 + = 20 log ( 1 + )dbj T Tω ω ...(1.6-8)

and the phase angle

           φ = ( ) ( )1/ 1 + = ta nj T T−ω ω ...(1.6-9)

To get asymptotic plots, let, for small frequencies, ωT  1. Then

101 + = 20 log (1) = 0dbj Tω ...(1.6-10)

At high frequencies ωT  1,

101 + = 20 logdbj T Tω ω
= 20 log10 ω + 20 log10 T   ...(1.6-12)

This is a equation of a straight line with a slope of 20 db/
decade. For the intersection point of low and high frequencies
asymptotic lines, equate Eq. (1.6-11) to zero. The frequency obtained
in this way is called the corner frequency ωc. Hence

     20 log10 ωcT = 0

or         ωc = 
1
T ...(1.6-12)

From Eq. (1.6-9) the phase angle for ωT  1 is zero while that
for ωT  1 is 90°. At corner frequency φ = 45°.

Real pole, (1 + jωT)�1

The magnitude in decibel,

        M = ( ) 11 +
db

j T −ω
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= 2 2
1020 log 1 + T− ω ...(1.6-13)

and the phase angle,   φ = 
( ) 1 1/ 1 + = tanj T T− −ω − ω

...(1.6-14)

Similar to the real zero, the decibel magnitude, Eq. (1.6-13), is
taken as zero for low values of ω (i.e. ωT ≤ 1). But for high frequencies
the slope of the asymptotic line is � 20 db/decade. Again the corner
frequency

           ωc = 
1
T

From Eq. (1.6-14),
     φ = 0° for ωT  1
     φ = � 90° for ωT  1

φ = � 45° for ωT = ωe.

The magnitude and phase angles of a real zero and a real pole
are plotted in Fig. 1.19.

(a)

(b)

Fig. 1.19. Bode plots of real poles and zeros.

Complex pair of poles, (1 + jbωω � aωω2)�1

The decibel magnitude,

        M = ( )2 11 +
db

jb a −ω − ω
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= ( ) ( )2 22
1020 log 1 � +a b − ω ω      ...(1.6-15)

and the phase angle,  φ = 
( )2 1 1 + jb a −ω − ω

= 
( )

1
2ta n

1
b
a

− ω
−

− ω
...(1.6-16)

For very low frequencies 1,aω  both M and φ are zero. For

every high frequencies 1,aω 

       M = � 20 log10 (aω2)

= � 40 log10 ( )a ω ...(1.6-17)

and              φ = 1tan = � 180°b
a

−  − − ω 
...(1.6-18)

At frequenc      ω = 
1
a

        M = 1020 log a
b

 
 
 

             φ = � 90°

For maximum value of decibel magnitude :

= 0dM
dω

Hence          ω = ωr  = 
21 1 2
b
aa

− ...(1.6-19)

This frequency is known as resonance frequency ωr.
Substituting ω = ωr in Eq. (1.6-15), the maximum decibel magnitude
is given by

     Mmax = 10
2

220 log
4
a

b a b−
...(1.6-20)

The decibel magnitude and phase angle plots against ω (on log10
scale) are shown in Fig. 1.20. The maximum value depends on b and a.
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(a)

(b)

Fig. 1.20. Bode plots of complex poles.

Frequency response of first order instruments. The
sinusoidal transfer function of a first order instrument may be
obtained, for s = jω, from Eq. (1.5-17). Hence the output is given by

     Q0(jω) = 
1

1 + j Tω ...(1.6-21)

The decibel magnitude and phase angle can be obtained from
Eqs. (1.6-13) and (1.6-14), i.e.

M = ( ) ( )2 2
10= 20 log 1 +o dbQ j Tω − ω ...(1.6-22)

φ = ( ) 1/ = ta noQ j T−ω − ω ...(1.6-23)

The asymptotic plots of magnitude and phase angle against ω
(on a log10 scale) are shown in Fig. 1.19.

A first order instrumenet approaches perfection if Qo(jω)
approaches 1 ∠ 0°, i.e. the decibel magnitude and phase angle are
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zero. This means that a first order instrument tends to be a zero
order instrument. This is possible when the product ωT is sufficiently
small. For a particular value of T there will be some input frequency
ω below that the measurement is accurate. Alternatively, if an input
of high frequency is to be measured, the instrument time constant
T must be sufficiently small.

Frequeny response of second order system. The sinusoidal
transfer function may be obtained from Eq. (1.5-27) for s = jω. So, the
output is given by

Qo (jω) = 
2

1
21 +
n n

j δω ω −  ω ω 

...(1.6-24)

Hence, by substituting b = 
2
n

δ
ω

 and a = 2
1

nω
 in Eqs. (1.6-15) and

(1.6-16), the decibel magnitude and phase angle are given by

M = ( )
22 2

10
2= 20 log 1 +o db n n

Q j
 ω δω   ω − −    ω ω     

   ...(1.6-25)

φ = 
( ) 1

2
2 / = tan

1

n
o

n

Q j − δω ω
ω −

 ω −  ω  

...(1.6-26)

The resonance frequency and the maximum magnitude are
given, from Eq. (1.6-19) and (1.6-20), by

2= 1 2r nω ω − δ ...(1.6-27)

Mmax = 10
2

120 log
2 1δ − δ

= ( ) ( ) ( )2
10 10 1020  log 2 20 log 10 log 1− − δ − − δ

...(1.6-28)

For real value of ωr, the value of δ ≤ 0.707. So, the peak in the
magnitude will occur only when δ < 0.707. The maximum magnitude
and resonance frequencies for various values of δ (0 ≤ 0.707) are
given in Table 1.1. The Bode plots for various d are shown in fig.
1.21.
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Table 1.1. Mmax and ωr/ωn for various d

δ                                      Mmax ωr/ωn

0                                        ∞ 1

0.1 22.922 0.99

0.5 1.584 0.707

0.707 0 0

(a)

(b)

Fig. 1.21. Bode plots (or frequency response) of second order system.

Bandwidth. The bandwidth is defined as the frequency at
which the magnitude |Qo(jω)|has dropped to 70.7% of its zero
frequency magnitude, or 3 db down from zero frequency level.
Generally, the bandwidth indicates the noise filtering characteristics
of the instrument. It also gives a measure of the transient response
properties. A large bandwidth usually indicates that signals of high
frequency (noises usually are of high frequency) will be passed on to
the outputs. Thus, the transient response may have a faster rise
time with a larger overshoot. Conversely, for small bandwidth only
low frequency signals are passed (noises are filtered being of high
frequencies) accompanied by slow and sluggish time response.
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1.7. Illustrative Examples
Example 1. Give the number of significant figures in each of

the following :

(a) 341 (b)  0.57 (c) 25.27

(d) 0.000 05 (e)  5.10 × 105 (f)  20 000.

Solution. (a) Significant figures are three (3, 4, 1) as it is
closer to 341 than to 340 or 342.

(b) Significant figures are two (5, 7).

(c) Significant figures are four (2, 5, 2, 7).

(d) Significant figures are five (0, 0, 0, 0, 5) as it is closer to
0.000 05 than to 0.000 04 or 0.000 06. Significant figures will be one
(5) if it can be written as 0.5 × 10�4.

(e) Significant figures are three (5, 1, 0) as it is closer to 5.10 ×
105 than to 5.09 × 105 or 5.11 × 105.

(f) If value is closer to 20 000 than to 19 999 or 20 001, the
significant figures are five (2, 0, 0, 0). If it is closer to 20 × 103 than to
19 × 103 or 21 × 103, the significant figures are two (2, 0).

Example 2. Two resistors R1 and R2 are connected in series.
R1 = 28.5 Ω and R2 = 35.62 Ω with an uncertainty of one unit in the
last digit of each number. Calculate the total series resistance.

Solution. The two resistors are connected in series, hence
the total series resistance is equal to the sum of resistance of R1 and
R2.

For addition, round off * the more accurate numbers to one
more decimal digit than is contained in the least accurate number.
Hence the total series resistance.

        Rs = R1 + R2 = 28.5 + 35.62 = 64.12 Ω

Now, round off the result to the same decimal places as the
least accurate number. Then

        Rs = 64.1 ΩΩ.
Example 3. Find the total resistance if the resistors R1 and R2

in Example 2 are connected in parallel.

Solution. The total resistance

          *For rounding off a number to n significant figures, discard all digits to
the right of the nth places. If the first discarded digits is less than
one-half a unit in nth place, leave the nth digit unchanged. If the first
discarded digit is greater than one-half, increase the nth digit by 1. In
case the first discarded digit is exactly one-half, leave the nth digit
unchanged if it is an even digit and add 1 to it if is odd.
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        Rp = ( )1 2

1 2
= say+

R R X
R R Y

From example �2, Y = 64.1 Ω

To multiply R1 and R2 first round off R2 to two decimal points

         X = R1 R2 = 28.5 × 35.62 = 1015.17

Now, round off this value to the same number of decimal places
as the least accurate numbers (i.e. R1). So, X = 1015.2.

Therefore,      Rp = 
1015.2 = 15.83...64.1

After rounding off,

        Rp= 15.8 ΩΩ.
Example 4. One inductor with reactance of 125.135 Ω is

connected in series with a capacitor of reactance of 98.92 Ω. Calculate
the total series reactance.

Solution. The total reactance is given by
        Xi = Xi � Xc

So, to get total reactance the capacitive reactance is subtracted
from the inductive reactance. For subtraction round off the more
accurate number to the same number of decimal places as the less
accurate number. Hence

        Xi = 125.14 � 98.92 = 26.22 ΩΩ.
Example 5. A voltmeter is tested by comparing it with a

voltmeter for which the static correction given in the correction curve
for 100 V is 0.05 V. The two voltmeters read 102 V and 100 V
respectively. Find the absolute and relative error in the voltmeter
under test. What is the static correction to be made.

Solution. The true voltage

     Vtrue = reading of second voltmeter + correction

= 100 + 0.05 = 100.05 V

Hence the error δR = Vm � Vtrue

= 102 � 100.05 = 1.95 V

Absolute error  0 = = 1.95 VR∈ δ

Relative error 0 1.95= = 100.05r
trueV
∈

∈

= 0.0195 = 1.95%
Static correction δc = � δR = � 1.95 V
Example 6. In a permanent magnet moving coil ammeter the

pointer moves through an angle of 35° when current to be measured
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is changed by 50 mA. The ammeter is spring controlled. Find the
sensitivity of the instrument.

Solution. The relation between the deflection and current is
linear. Hence, sensitivity is given by

        Si = 
( )
( )

0 35= = 0.7°/mA
50i

q t
q t

∆
∆

.

Example 7. A 0�50 V voltmeter has 100 scale division that

can be read to 1
2  division. Determine the resolution of the meter in

volt. What will be its value in percentage of full scale ?

Solution. 1 scale division

= 
50 = 0.5 V100

          Resolution = 
1 1division  =  × 0.5 =
2 2

0.25 V

      % Resolution = 
1
2 × 100 = .

100
0.5%

Example 8. An instrument is represented by a first order
transfer function

     G(s) = 
1

1 + Ts
If response to a unit step input reaches 63.2% of its final value in 3.5
second, find the time constant T of the instrument.

Solution. At t = 3.5 second, qo(t) = 0.632

From Eq. (1.5-18) for K = 1, we know that

     q0(t) = 0.632      (t = T)

Hence          T = 3.5 second.
Example 9. Find steady state error in a first order instrument

when excited by a unit ramp input, if the dynamic error is 1.264 for
t = time constant T of the instrument.

Solution. From Eq. (1.5-23), the dynamic error

         ed = ( )1
t
TT e−

−

where T is the time constant of the instrument and K in Eq. (1.5-23)
is unity in this case.

∴    1.264 = ( )1
T
TT e−

−

or    1.264 = 0.632 T
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         T = 
1.264 = 2 second
0.632

Now, from Eq. (1.5-24), the steady state error is

        ess = T = 2.

Example 10. An instrument is represented by a transfer
function

     G(s) = 2
1

+ + 1s s

Find the percentage overshoot if the instrument is excited by a unit
step input. Find, also, the steady state error in unit ramp response.

Solution. From the given transfer function,

= 1nω         and       1= = 0.52 n
δ

ω
From Eq. (1.5-36),

Percentage overshoot = 21100 e
πδ

−
− δ

= 
0.5
0.75100
x

e− = 13.5%

From Eq. (1.5-39), the steady state error,

       ess = 
2 2 × 0.5= = .1n

δ
− − −

ω
1

Example 11. Find the state space representation of a second
order instrument represented by a differential equation,

( ) ( )
( ) ( )

2
0 0
2 + 2 + 3 = .o i

d q t dq t q t q tdtdt
Solution.
Let      qo(t) = x1(t)

( )
( )

1 2= =odq tx t xd t


( )
( )

( )
( )

( )
2

2 2= = 3 2 +o o
o i

d q t dq tx t q t q td td t
− −

= ( ) ( ) ( )1 23 2 + ix t x t q t− −

In matrix form (or state space form)

( )1 1
2 2

0 1 0= +3 2 1 i
x x q tx x

       
       − −       
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        qo(t) = [1    0] 1
2

x
x

 
   .

Example 12. Overshoot in a step response of a second order
instrument is 25%. Find the peak (maximum) magnitude (in db) of
its requency response.

Solution. Percentage overshoot = 21100 e
πδ−
− δ

∴     0.25 = 
21e

πδ
−

− δ

or      
21

πδ
−

− δ
 = � 1.382

or             δ2 = 0.162

or          δ = 0.402

The peak magnitude in db is given from Eq. (1.6-28) as

    Mmax = 10 2

120 log
2 1δ − δ

= 20 log10 
1

2 × 0.402 1 0.162−

= 20 log10 1.36 = 2.67 db.

OBJECTIVE QUESTIONS

1. Select the correct statement from the four statements given below.

(a) Static characteristics are concerned with the measurement of
consant or slowly varying quantities.

(b) In case of measurement of slowly varying quantities, the dynamic
relation between the instrument input and output is considered.

(c) Differential equation of the instrument is considered while
analyzing static.

(d) None of these.

2. What are the significant figures in 5.10 × 105.

(a) Two (5, 1) (b) Three (5, 1, 0) (c)  Two (1, 0) (d) One (1).

3. Two resistors R1 = 28.5 ohm and R2 = 35.62 are connected in series.
With an uncertainty  of one unit in the last digit of each number. Find
the total series resistance.

(a) 64.1 (b) 64.12 (c) 64.0 (d) 64

4. A voltmeter is tested by comparing it with a voltmeter for which the
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static correction is 0.05 V. The two voltmeters read 102 V and 100 V
respectively. The static correction in the voltmeter under test is

(a) 1.95 v (b) 2.0 V (c) � 1.95 V (d) � 2.0 V

5. In a permanent magnet moving coil ammeter the pointer moves through
an angle of 25° when the current to be measured is changed by 50 mA.
The instrument is spring controlled. The sensitivity of the meter is
given by

(a) 0.7 degree/mA (b) 0.5 mA/degree
(c) 0.7 mA/degree (d) 0.5 degree/mA.

6. A 0-50 V voltmeter has 100 scale divisions that canbe read to half of
a division. The resolution of the meter in percent is
(a) 0.5% (b) 1.0% (c) 0.25% (d) 2%

7. An instrument�s transfer function is

G(s) = 
1

1 + Ts
If the response to a unit step input reaches 63.2% of its final value in
3.5 second, then the time consant T is given by

(a) 0.632 second (b) 3.5 second

(c) 5.54 second (d) none of these

8. An instrument�s transfer function is

G(s) = 
2

1
+ + 1s s

Then the damping ratio is given by

(a) 0.707 (b) 0.5 (c) 0.635 (d) 0.25

9. An instrument�s transfer function is

G(s) = 2
1

+ + 1s s
Then the natural frequency is given by

(a) 0.707 (b) 0.5 (c) 1.0 (d) 0.25

10. An instrument�s transfer function is

G(s) = 2
1

+ + 1s s
Then the percentage overshoot is given by

(a) 11.707% (b) 12.55% (c) 14.635% (d) 13.5%

11. An instrument�s transfer function is

G(s) = 2
1

+ + 1s s
Then the steady state error in unit ramp response is givenby

(a) 0.707 (b) 1.0 (c) �1.0 (d) 1.25
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Answers
1. (a) 2. (b) 3. (a) 4. (c)

5. (d) 6. (a) 7. (b) 8. (b)

9. (c) 10.(d) 11.(c)

REVIEW QUESTIONS

1. What are the points to be considered while choosing a measurement
method ? What are important points to be considered while preparing
the measurement records ? Mention general precautions to be taken
in measurement.

2. What do you understand by static characteristics of an instrument ?
Write short notes on the following terms related to static
characteristics.

(a) Static calibration (b) Accuracy and precision

(c) Significant figures (d) Linearity and repeatedity

3. What differences are there between :

(a) Static sensitivity and drift (b) Resolution and threshold

(c) Hysteresis and dead zone

4. What are different types of methods for dynamic modelling of
instruments ? Briefly discuss each of them.

5. What are different Standard inputs used in time domain analysis of
an instrument ? Discuss them.

6. Obtain time response of a first order instrument when unit step input
is applied. Is there any overshoot in the response ? How do you define
the time constant ? Derive expression for steady state and dynamic
errors.

7. Derive expression for time response of a second order instrument for
unit step input.

8. Define the following terms with reference to step response of a second
order instrument :

(a) Overshoot (b) Settling time (c) Time dalay (d) Rise time.

9. What is the standard input used for frequency response analysis ?
How do you obtain the frequency response ? Why is logarithmic plotting
of frequency response preferred ?

10. Discuss Bode plots method of frequency response.

11. Derive expressions for resonance frequency and maximum magnitude
in frequency response of a second order instrument.

EXERCISES
1. Mention the number of significant figures in each of the

following :
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(i) 3.32. (ii) 0.125 (iii) 241 (iv) 0.0025

(v) 2.10 × 106 (vi) 200 000.

2. Two capacitors C1 = 25.1 µF and C2 = 60.15 µF are connected in parallel.
Calculate the total parallel capacitance. Give the number of significant
figures.

3. When a 100 V is measured by a voltmeter it indicates 99.5 V. Find the
relative error and static correction for the voltmenter.

4. A potentiometer has 100 turns, find the resolution in volt and in
percentage of full range when 70 volt is applied to the potentiometer.

5. An instrument�s transfer function is given by

G(s) = 2
4

+ 3 + 4s s
Find the damping ratio δ and natural frequency ωn of the instrument.
Also calculate the percentage overshoot in the step response.

6. Obtain the state space equations for the second order instrument of
problem 5.

7. For the instrument of problem 5. Calculate the resonance frequency
and maximum magnitude of the frequency response.


