Vector Analysis

In the study of electromagnetic field theory a great saving in
complexity of notation may be accomplished by the use of notation of
vector analysis. Vector analysis is divided into two general categories-
vector algebra and vector calculus. Vector algebra concerns algebraic
operations on vectors, such as addition, subtraction, and manipula-
tion whereas vector calculus concerns differential and integral opera-
tions involving vector functions. In providing this valuable shorthand,
vector analysis also brings to the forefront the physical ideas involved
in equations.

The present chapter is intended to give a brief but self-contained
exposition of basic vector analysis. In order to facilitate our numerical
calculations, this chapter will also introduce certain coordinate sys-
tems particularly orthogonal coordinate systems in which the three
surfaces used to define the coordinate system are orthogonal to each
other. We will concentrate on the most important and commonly used
orthogonal coordinate systems-rectangular (cartesian), cylindrical,
spherical.

Following are the reasons for beginning our study of electromag-
netic fields with the analysis of vectors :

1. The electromagnetic field quantities are conveniently described
in terms of vectors.

2. The fundamental laws governing these basic vectors field quan-
tities can be precisely stated using the concepts of vector calculus.

3. To have a qualitative understanding of these laws and their
implications.

4. The study of vector analysis also has numerous other applica-
tions in mechanics, fluid flow, heat flow, etc.
1.1 SCALARS AND VECTORS

In the study of elementary physics several kinds of quantities
have been encountered. These quantities can be arranged in two
groups, scalars and vectors. The term scalar refers to a quantity
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whose value may be represented by a (positive and negative) real
number and is defined as

A scalar is a quantity that is completely characterized by its
magnitude and algebraic sign.

Examples of some physical quantities that are scalars are mass,
time, work, potential, current, etc. A simple extension of the idea of
scalar is a scalar field, i.e., a function of position that is completely
specified by its magnitude at all points in space. Since scalars are
real number hence they are represented as A, B, C, q, b, ¢, etc.

On the other hand, some physical quantities, for their specifica-
tion, need magnitude as well as direction. Such quantities are called
vectors. That is,

A vector is a quantity that is completely characterized by its
magnitude and direction.

As examples of vectors we cite position from a fixed origin,
velocity, acceleration, force, etc. The generalization to a vector field
gives a function of position that is completely specified by its mag-
nitude and direction at all points in space.

In order to explain the above terms, let us consider that a particle
is displaced from position P to position @, then the displacement,
PQ, has a magnitude given by the length of PQ and also a direction
given by the direction of PQ, that is, from P to . This is shown in
Fig. 1.1. It should be noted that the displacement is a vector quantity
while the length is a scalar. Some other examples include electric field
and a potential gradient.

A vector is represented on a diagram by an arrow line whose
length is proportional to the magnitude and the

o arrow indicating the direction of the vector. There
are two types of vectors, namely, localized and
free vectors. For the complete specification of a
localized vectors, the point at which the vector
acts should also be specified whereas there is no
such restriction for free vectors. Force is an ex-
ample of localized vector and couple that of a free

Fig. 1.1. vector.

|

P

To distinguish vectors from scalars, bold-face remain type letterse.g.
A, B, a may be used for vectors. The magnitude of a vector A is denoted
by |A| or by A. The other suitable and usually used notations are

_)
AAAA

In electromagnetics, we usually come across scalar and vector
fields. A field (scalar or vector) may be defined mathematically as
some function of the vector connecting an arbitrary origin to a general
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point in space. In other words, if at each point in a region any physical
function has some value, then the region is called a field. Usually it
is possible to assign some physical effect responsible for the field, such
as the force on a compass needle in the earth’s magnetic field, or the
movement of smoke particle in the field defined by the vector velocity
of air in some region of space.

In general, there are two types of fields, namely, scalar and
vector. If the value of the physical function at each point is a scalar
quantity, then the field is a scalar field. Examples are :

(a) the temperature of atmosphere,

(b) the temperature throughout the bowl of soup,

(¢) the height of the surface of the earth above sea level,

(d) the density at any point in the earth or in a similar non-

homogeneous body

This is so because a scalar quantity has some specific value which
may vary with position and time at a point in the given region.

When the value of the function at any point is a vector quantity,
the field is called a vector field. Examples are :
(a) the wind velocity of the atmosphere.
(b) the force of gravity on a mass in space.
(c) the force on a charged body placed in an electric field,
(d) magnetic field of earth,
(e) the voltage gradient in a cable, and
(f) the temperature gradient in a soldering-iron tip.
1.2. VECTOR ALGEBRA

With the definitions of vectors and vector fields, let us formulate
the rules of vector arithmetic, vector algebra, and of vector calculus.

1.2A. Addition of Vectors

-
If a vector A is represented by a line PQ, and a vector B by the
——)
line QR, then the sum of the vectors A and B, represented by the line
_)

PR shown in Fig. 1.2a, is given by
A+B=C (say)

@)
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It A be a vector and m a real positive number, then mA is defined
to be a vector having the same direction as A and magnitudes m times
that of A. However, if m be a negative, equal to (- n) say, then - nA
1s a vector in a direction opposite to A and magnitude n times that of
A. In particular, (— A) is a vector equal and opposite to A.

The vector difference (A -B) of two vectors A and B can be
expressed as the sum A + (- B). The vector (A - B) is shown as vector

-
OR 1n Fig. 1.2b.

From Fig. 1.2¢c, it is apparent that the vector addition obeys the
commutative law i.e.

A+B=B+A.

In case, there are more than two vectors, say, A, B and C, they
obey the Associative law i.e.

A+B)+C=A+B+C)
The same is evident from Fig. 1.2d.

Unit Vector. A vector A may also be expressed as A=A a, where
A is the magnitude of A and a is a vector of unit magnitude and
direction that of A. The vector a is known as an unit vector. Two
different unit vectors differ only in direction. A unit vector is indicated
by a, u, 1. Sometimes they are also expressed with suffices (such as
a,, a,, a,) which shows the direction of unit vector. Thus, vector a, is
a unit vector along the positive x-direction ; the unit vector a, along
the positive y-direction ; and the unit vector a, along the positive
z-direction in the cartesian coordinate system.

Null Vector. A vector of zero magnitude is called a null-vector
or zero vector. We denote it by O, evidently

A+O=A and A-A=0

Furthermore, it is easier to prove that the multiplication of sum

of two vectors A and B by a scalar m, equals the sum of vectors mA
and mB, t.e.

m(A+B)=mA+mB.

Two vectors are said to be equal if they are equal in magnitude,
having the same direction and same unit.

Example 1.1. Show by vector methods that the line joining a
vertex of a parallelogram with the middle point of an opposite side,
cuts a diagonal at a point of trisection.

Solution. Let ABCD be the parallelogram, E the middle point of
CD, and F the point of intersection of AE and diagonal BD. Let
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-5 -
D £ [ AB=P,AD=@Q
_ By vector addition,
Q e
AD +DB =AB
. DB=AB-AD=P-Q
A 3 B " =AB-AD=P-Q
i Let DF be m times DB, then
ig. 1.3
— —
DF =mDB
From A ADF, the vector addition gives
e
AD + DF = AF
- o —
AF=Q +mDB
Y > -
=Q+m(P-Q) D)

Since E is the middle pcint of the side CD, hence
— — - -
DE=%DC=%AB=%P

From AADE, the vector addition gives

- o o I T
AD + DE =AE .. AE=Q+%P
Assuming AF to be a submultiple of AE, so that
- — - =
AF=nAE=n (Q+3P) i)

Comparing equations (i) and (i),
- > o - 2
Q+mP-Q) =n@+1P)

- - n
QMl-m-n]+P [m—-i]:O

- -
Since P and @ have different directions, the above equation will

be satisfied only if

1-m-n=0and m—%:O
Therefore, m = % and n = %
Hence DF = % DB, and F becomes a point of tri-section.

1.2B. Resolution of a Vector

If the sum of two vectors A and B equals a third vector C, then

A and B are said to be the components of C. In other words, vector
C may be resolved into its component vectors, A and B. Further, it
may be evident that a given vector can be resolved into components
in a variety of ways.
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If two directions are specified by unit vectors a and b, then any
vector C in their plane can be resolved uniquely into components
parallel to a and b ; and thus Fig. 1.4a gives

e
C=0C=0A+AC
— -
=|OA|la+ |AC| b
=ma+nb (1)

where m and n are suitable scalars. In general if C is any vector in
space, we can choose three vectors a, b and c. The vectors a, b, ¢ are
sometimes called the base vectors.

For convenience, the base vectors are often chosen as three
mutually perpendicular unit vectors in the directions of x, y and z of
cartesian co-ordinate system. These may be denoted by a,, a, and

a, respectively. From Fig. 1.4, by vector resolution

e T T
OP = OM + MN + NP (2)

— —
where |OM | =A, = magnitude of component of OP along the
x-direction.

- —

|[MN| = A, = magnitude of OP along the y-direction
— —

|NP| = A, = magnitude of OP along the z-direction.

o |

(a) ()
Fig. 1.4
o — — — )
Hence, substituting OM =A, a,, MN =A, a,and NP = 4, a, in the
above equation, we have
_)
OP=A,a, +Aja, +A, a, ..(3)
In particular, the position vector R, of a point P(A,, A, A,) is
given by

R

p=xa;+tya, +za, ...(4)



VECTOR ANALYSIS 7

In terms of the base vectors, the sum of two vectors or the product
of a vector by a scalar can be written as :
A+B=(A,a,+A a,+A;a,)+(Bya, +B,a, +B,a,)
=(A;+Bya,+(A,+By)a,+ (A, +B,)a, ...(8)
mA =mA,a,+mA, a, +mA,a, ...(6)

__)
The magnitude of a vector A (= OP) is determined in terms of
A, Ay and A, as follows :

|A| = 0P =V(ON)? + (NP)?
=V(OM)* + (MN)* + (NP)*
=VAZ+AZ+4,° AT

_)
If o, B and y be the angles between the vector OP and the positive
directions of x, y, z respectively, then cosine of those angles are called
the direction cosines. From Fig. 1.4b, it can be written that

cos oL = A A
ClAl A
A
cosﬁz%z;{- ..(8)
A, A
cos Y= A ] =4
Therefore,
A,=Acosa
Ap=A4A cos B (9
A,=Acosy
and A=A a +A a +Aa,
=A [cos o a, + cos B a, +cos Y a,)] ...(10)

The unit vector corresponding to vector A is determined by the
relation

%zcosaax+cosﬁay+cosyaz=a ..(11)

From this, it follows that the magnitude of a is

la| =\/gsza+cos2B+cos27=1 ...(12)

Further, any three numbers proportional to the direction cosines
of a line having the same proportionality constant are called direction
ratios of the line. Let a, b, ¢ be the direction ratios of the line and
cos a, cos B, cos y its direction cosines ; then

cosa _cosf _cosy
a b c
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N Veos? o + cos® B+ cos® Y
Va? + b2 +¢?
1

= ..(13)
Va? + b2 + c2

a
Therefore cos QL = —
:Ja2 + b2+ c?

b
cos 3= ..(14
P :/aQ +b% +c? 14

c

and cosy=
a’?+b%+c

1.2C. The Scalar or Dot Product

The scalar or dot product of two vectors A and B (written as
A - B, and read as “A dot B”) is defined as the product of the mag-
nitude of A, the magnitude of B and the cosine of the smaller angle
between them,

2

A BAABcosH ...(15)

The dot or scalar product gives a scalar quantity and it obeys the
commutative law i.e.

A -B=B-A ...(16)

|

I

|

, :

| |

l l

x r7 T \ i

l-._g Cose—-{ PROJECTION PROJECTION

(

OF 8 OF ¢
a) (b)

Fig. 1.5
For this, Fig. 1.5a, suggests to express the left side as

A -B=A (B cos0)=A (Projection of B on A)
= B (Projectionof Aon B)=B - A.
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A physical example of the scalar product is F - L, the work-done
by a constant force F when its point of application undergoes a
displacement L. In case, the force varies along the path, integration
is necessary to find the total work and the result becomes

Work done = I F . dL

similarly, the total magnetic flux y,, crossing a surface of area S is
given by B - S. If the magnetic flux density, B, is perpendicular and
uniform over the surface ;

0, W,,=B - S =BS cos 6 =BS cos 0°=BS

where S is the surface area of magnitude S and direction normal to
the area at every point. However, if the flux-density B is not constant
and uniform over the surface, the total flux y,, is given by the integral

¢m\mn:jB-dS

Distributive law. The dot product of a vector A with the vector
sum of B and C equals to the sum of dot product of A with B and dot
product of A with C, that is,

A-B+C)=A-B+A-C .(17)

This law is known as distributive law. In order to show the
validity of Eq. 17, let us refer to Fig. 1.5b from which it follows that

A (B +C)=A"- [Projection of (B + C) on A]
= A - [Projection of B on A + Projection of C on A]

= A - [Projection of B on A] + A x [Projection of C on A]
=AB cos 6; + AC cos 9

=A-B+A-C.
which indicates that the dot product obeys distributive law.

Furthermore, unit vectors a,, a, and a, are perpendicular to each
other hence

a,-a,=a,-a,=a,a,=0 ...(18)
and a,-a,=1-1-cos0°=1 ...(19)
a,-a,=a,-a,=1 ...(20)

Also a vector dotted with itself yields the magnitude squared,

or A A=AAcos0=A2
= A7 =44+ AA, + AA,
=AZ + A2+ A2

Next, we wish to find a general expression for A - B, for this let
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A=Aa, +Aa +A,a,

and B =Ba, + Bya, + B,a,
Then A - B is given by
A B=(A;a,+Aa +A4, a,) (B,a,+Bya, rB,a,) ..(21)
Using Eqgs. 18-20 in Eq. 21, yields
A -B=A,B,+AB, +A,B, ...(22)

Probably the most important application of the dot product is that
of finding the component of a vector in the given direction. If a be a
unit vector in any direction, then

A-a=|A| |a| cos 04, = |A| cos 64, ..(23)

is the component of A in the direction of the unit vector a. Thus
A - a_is the component of A in the direction of A,, or

A-a,=A,=Acosa ...(24)

Hence, the problem of finding the component of a vector in any
desired direction becomes the problem of finding a unit vector in that
direction.

Example 1.2. Write in component form the expression for the
vector which extends from

(a) The origin to C(- 1, - 5, 3)

b)C(-1,-5,3toD(3,-5,2)

Solution. Let there be two general points P (x1,y;,2;) and
Q (x9, ¥, 2), the position vectors rp, rg may be written in terms of
the unit vectors a,, a, and a,. Thus

_)
rp=2x)a, +y1a, +21a,=0P (@)
___)
and ro =Xxya, +y2a, + 298, = 0Q (D)

Then, the vector which extends from point P to @ will be given
by the vector relation (Fig. 1.6)

S s
OP +PQ=0Q

-5 o 9

PQ =0Q -OP ..(ii)
Introducing (i) and (ii) in (iti), we have

-3

PQ=(xg—x1)ay+ (@2 —-y1) a,+(22-21) a,
Hence the vector which extends from point P to @ will be given

by :

_9
PQ=(xg—x1)a,+ (2 —y1) 8y +(22—21) &,
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(a) Point P =origin (0,0,0)=0

and Q=PointC (-1, -5,3)
Then, O_é‘=—1ax—5ay+3az
(b) &3:(3+1)a,+(—5+5)ay+(2—3)az=4ax—a,.
Example 1.3. Find the magnitude of the vector
(@) A=3a,+4a,-5a, 211
(b) B=2cos axa, +2sin o a,

+7a,. P

Solution. If A has components Q
AL Ay A, along the x,y,z axes
respectively, then o

<V

A=A;a +Aa, +A; a,

and the magnitude of A is given by

A A=AZ+AZ1A2=42 ¥ Fig. 1.6

Hence A=|A|=VAZ+AZ+A2

(@ A=83,A=4,4A,=-5
A=V9+16+25=5vY2=5x1.414="17.07

(b) B,=2cosa,B,=2sina, B, =7

Hence, B= V4 cos? o + 4 sin® o + 49

=V4 +49 =53 =7.28.
Example 1.4. Determine the component form of the unit vector
(a) which is directed from (3, 1, - 2) towards (4, - 1, 0)
(b) which lies in the direction of .he vector 6 a,—3 a, +6 a,.

Solution. (a) The vector which is directed from P (3,1, —2)
towards @ (4, — 1, 0) is given by

P_é=(4—3)ax+(—1—1)ay+(0+2)a2
=ax—2ay+2az= |P_é| apg

— — -
where |PQ| is the magnitude of the vector PQ and apq is the unit
vector along the direction from P to Q.

- 1 =
Hence apg=—=— [PQ]

|PQ|
~ AT e 2 e 2e)
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1 2

(b) Let the given vector be A then
A=6a,-3a,+6a,=|A| ay
where a, is the unit vector which lies in the direction of A, therefore,
ageL
|A]
=m[6ax—3ay+6321

_2, 1. .2
=38 -3 toa,

(Al

Example 1.5. Use the dot product to find the angle between the
twe vectors.

(a) 3a,-2a, +a,and —-a,+2a,+7a,

(b)2a,and -a,+2a,+7a,

Solution. From the definition of dot product,
A B=ABcos 6

=A.B,+A,B, +A,B,
=3X=D+(=2)x2+1x17
or Cose:\/9+14+1'\ll+i+49 [-3-4+71=0
6=90°
Hence the two vectors are at right angles.
(b) Given A=2a,,
A, =2
Ay=A,=0
and B=-a,+2a,+"7a,
B,=-1
B, =2,
B,=17
A=|A|=2
and B:\Ifl_{ﬁzl—g—:m

Therefore from the definition of dot product of two vectors, we
have,

ABcos 6=A.B,+A,B,+A,B,
or ABcosB=-1x2= -2
cos 6 = -2 _ 1 1
2 x V54 V54 7.34
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E

8=90+cos_1L- 1

7.34

Example 1.6. Show that the cosines of the angle y between the

vectors A and B is given by the sum of the products of their direction
cosines.

]: 97.8°.

Solution. Let cos oy, cos B, cos y; be the direction cosines of A
and cos oy, cos By cos ¥, be the direction cosines of B, then

A=A a +Aja +Aa,
R A
= A2 +‘4?,’ +-A€ e S a
A A AT AT ™

z
+ == e g+ - a
VaZvaZval ® AT i Al }
or A=A [cos oy a, +cos Pa, +cos v a,]
where A=VA? +A§:A5~

A, =A cos o

A, =A cos By
and A,=Acos v,
similarly B =B [cos ) a, ~ cos fipa, + cos v, a,)

A B=ABcos vy
=AB [cos o) cos 0ty + cos B; cos Bg + cos ¥; cos Yol

where vy is the angle between vectors A and B

COS Y = COS Ol COS Olp + oS Py cos By + cos y; cos Yy
or v =cos™ ! [cos o cos oty + cos By cos By + cos y; cos Yol

Example 1.7. Show that
a=cos aa, +sin aa,

and b=cosBa,~- sinfa,

are unit vectors along the x-y plane, inclined at angles o and —
respectively, with the x-axis. By appropriate product relation between’
the vectors, derive the expansion formula for cos o (o.+ B) and cos
(ot = B).

Solution. Let a, and a, be the unit vectors along the positive x

- >
and positive y-directions ; then for vector OA, OC will represent the

— — —> — .
vector |OA| cos a a, and CA the vector |OA| sin o a,, such that

— — —
OA=|OA| cosxa,+ |OA| sino a, (D)
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_.)
y similarly OD will represent the
— —
vector |OB]| cos B a, and DB the

_)
- vector — |OB| sin B a,. This vec-

ay -) . .
« |c D tor DB will be drawn by assuming
o[<3 X an equal but opposite unit vector
X
P (- a,). Thus,

- - -
OB = |OB| cos Ba, —|OB| sin Ba,
..(i1)

Fig. 1.7

Equations (i) and (if) are similar to the given equations for a and
b respectively.

: —1OAl =+ 2 7
Magnitude of a = |OA| = V(OC)“ + (CA)

=V(cos )2 + (sin a)? = 1 (i)
-
and magnitude of b= |OB)|
= \/(cos B)2 + (- sin B)2 =1 ...(iv)

Thus, a and b are unit vectors.

It also appears, from Fig. 1.7 that angle between a and b is
(oo + B) and this will be calculated with the help of the dot product of
two vectors a and b.

a-b=abcos (ax+p)=1.1cos (ax+P)

=cos (o + B) .(v)
But, a - b =(cos 0a, +sin aa,) - (cos oa, — sin fa,)
=cos o cos B —sin o sin B ..(vi)

Therefore, equations (v) and (vi) give

cos (o + ) = cos o cos B — sin o sin B
Replacing + B by — B, we obtain

cos (ot — B) = cos o cos B + sin a sin B.

Example 1.8. By squaring both sides of the equation A=B-C
and interpreting the result geometrically, prove the “law of cosines”.

Solution. Given :

A=B-C (D)
or A+C=B

This shows that A,B and C
form the sides of a triangle shown
in Fig. 1.8. Squaring both sides of
Eq. (i), yields,
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A A=B-C)-B-0
A’-B.B-B-C-B-C+C-C
=B2-2B-C +(?
A%=B2+C? - 2BC cos 0g¢
which is the “law of cosines”.
1.2D. Cross Product or Vector Product

The vector product (of A and B) written with a cross between the
two vectors as A x B and read “A cross B”, is a vector normal to the
plane containing A and B and having magnitude equal to the product
of the magnitudes of A, B and the sine of the angle 8, where 6 is the
angle measured in the anticlockwise direction from first vector (A) to
second (B) one. Its sense is that A, B and A x B from a right-handed
system or in the direction of advance of a right handed screw as A is
turned into B. This direction is illustrated in Fig. 1.9a. In Fig. 1.9,
A and B are shown to be in the same plane ; then :

S = A x B will be in the direction shown.

(a)

b Y|
x
Vo]

DIRECTION
OF ROTATION
OF A TOWARDS
E (c)

Fig. 1.9

In order to make it more clear, we may follow the right hand
thumb rule. According to this, if the figures of the right hand indicates
the sense of rotation from first vector towards the other (from A
towards B), that is, in anticlockwise direction then the thumb will
point the direction for the product A x B [Fig. 1.9¢].

Thus, from the definition,
AxBAABsin6a, ...(25)
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where a, is the unit vector and ‘n’ stands for the normal, that is, a,
will be perpendicular to the plane containing A and B [Fig. 1.9c].

Following the above definitions, it follows that
BxA=-AxB ...(26)

that is, the direction of B x A will be opposite to that of A x B, hence
the commutative law of multiplication does not hold good for cross-
product of vectors. But the cross-product also obeys the distributive
law like dot product, that is,

AxB+C)=AxB+AxC ..(27)

If A and B are two vectors with the same direction, then evidently
A x B is a vector of zero magnitude as the angle 6 between A and B
is zero. These two vectors are then said to be parallel vectors. This is
also true when A and B have opposite directions.

A case of special importance is

AxA=0 ...(28)
In particular, a, xa, =a, xa,=a,xa,=0 ...(29)
It may also be seen that a,x a, is a vector of unit magnitude

perpendicular to a, and a, and therefore it is a unit vector a, along
the positive z-direction.

Then, a,xa,=a, ...(30)
Also, a,xa,= —a,. .(31)
Similarly, a,xa,=a,, a,XxXa,=—a,

and a,xa,=a, a;xa,=-a, ..(31)

It should be noted that we have a positive sign when a,, a, and
a, are in the same cyclic order, and a negative sign, otherwise.

When A and B are given in terms of base (unit) vectors, viz,
A=A a, +A, -a,+A4; a,

and B=B,a,+~Bya,+B,a,

then, AxB=(Aa,+Aa, +A,a,)x(Ba, +Byay + B.a,)
=ABya,xa, +ABja, xa,

+A.B,a, X a, + two sets of similar terms.

or AxB=0+|(A,Bya, - A,B,a,) + similar terms

=(A,B,~A,B))a,+(A,B,-AB,)a, +(A,B,-A,B,) a,

This can also be written in the form of a determinant, in a more
easily remembered form

a, a a,
...(33)

AxB=|A, A, A,
B, B, sz
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The cross product may be used to replace the right-hand rule
familiar to all electrical and communication engineers. Consider the
force on a straight conductor of length L, where the direction assigned
to L corresponds to the direction of the steady current I and a uniform
magnetic field of flux-density B is present. Using vector notation, the
force experienced by the conductor may be computed form,

F=ILxB

The idea of cross-product if incorporated in a co-ordinate system,
leads to have a right handed coordinate system wherein if x is rotated
in an anticlockwise direction towards y, the z-axis must be indicated
by the direction of thumb. Fig. 1.10, shows the various possibilities
to have a right-handed cartesian coordinate system.

4 X b 4

V4
Fig. 1.10

Example 1.9. Given A=2a, +2a,-a,, B =6a,-3a, +2a,, ind
A x B and the unit vector perpendicular to both A and B.

Solution. We have

a a, a,
AxB=|2 2 -1
6 -3 2
=a,(4—3)—ay(4+6)+a2(—6—12)
=a, - 10a, - 18a,

The unit vector perpendicular to A and B is given by :

AxB _ AxB
ABsin6 |AxB|

a, - 10a, - 18a,
= V1+100+324

1 2 18
THV1T 2 TV1T M T VI 2=




18 ELECTROMAGNETICS

Example 1.10. As shown in Fig. A
1.11, a rigid body rotates with an an-
gular velocity w about an axis through
O. Fuind the linear velocity V of a point
P of the body.

Solution. Let OA be the axis of
rotation ; then w is directed towards

OA. Let the radius vector 5;’ be r.
Then OP=r and NP =r sin 6, where
N is the foot of the perpendicular from
P on OA and € is the angle between
o and r.

Due to the rotation, P moves per-
pendicular to the plane OPN with a
velocity

- = )
o - NP, ie wrsin®

Hence, V=OXr
1.2X. Product of Three Vectors

Let there be three vectors A, B and C. Now, there are three ways
in which the three vectors may be multiplied.

(a) A (B - C): This signifies the product of a vector A, with the
scalar product of vectors. B and C.

(t ) Scalar Triple Product : A- (BxC)

Let the vectors A, B and C occupy the position as indicated in
Fig. 1.12, with the three edges of a parallelopiped. Let, 8 be the angle
between B and C, and ¢ the angle between A and a,, unit vector
normal to the plane containing B and C (i.e., the unit vector along
the directly of the vector S = B x C).

r-

HEIGHT OF'¢.
PARALLEL - —
orirep  ant/ €

[} e
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The scalar triple product {A - (B x C))
=A-{BCsinba,}=(A-a,)BCsin@

= (A cos ¢) BC sin 0
= (Height of the parallelopiped) (Area of the base of it)
= Volume of the parallelopiped ...(34)

This shows that the scalar triple product [A - (B x C)] represents
the volume of the parallelopiped formed by the vectors A, B and C.
This geometrical representation also shows that

A-BxC)=AxB)-C ...(35)

that is, the positions of the dot and the cross in a scalar triple product
are interchangeable.

or A - BxC)=B-(CxA)=C.-(AxB) ...(36)
(c) Vector Triple Product. A x (B »x C)

If A, B, C are any three vectors, then multiplication indicated
by Ax(BxC) results in a vector triple product. The vector
{A x (B x C)} will be perpendicular to the vector S =B x C and vector
A, whereas vector S = B x C is perpendicular to the plane containing
B and C (Fig. 1.13). Hence, A x (B x C) will lie in the plane of vectors
B and C. Therefore, it is now possible to resolve this product inte
components parallel to B and C and thus, it will be expressed as :

Ax (B xC)=mB+nC (37
where m and n are suitable numbers.
Multiply both sides of Eq. 37 scalarly by vector A, then
A-{AxBxC)l=mA -B)+nA-C) .(38;

The left hand side is a scalar tripie
product of AJA and (B xC). Since

xCyfc Ax (BxC) is also perpendicular to A,
therefore, the left hand side of Eq. 38 1s
>~ zero, so that,
8 mA-B)+nA-C)=0
Fig. 1.13

m n

AC = (A~B):p (say)

Introducing these values of m and n in 37, we have :
AxBxC)=p(A-C)B-p(A-B)C ...(40)

Both sides in Eq. 40 are equally balanced in A, B, C. Hence p

must be some numerical constant independent of A, B, C. To find the
magnitude of p, we shall take the special case, when

or ..(39)



20 ELECTROMAGNETICS

A=B=a,
and C=a, then
axx(axxa_y):p (ax'ay)ax—p (ax'ax)ay
or a,xa,=0-pa,
or -a,= -pa,
or p=1

Substituting, p =1, in Eq. 40, we have the relation,

| AxBxC)=(A C)B-(A B)C | .(41)

Furthermore, Eq. 41 may be written as
(AxB)yxC=-Cx(AxB)
=-[(C-B)A-(C-A)B]
=(A-C)B-(C-B)A

Thus, | (AxB)xC=-Cx(AxB)=(A-C)B— (B C)Al ..(42)

Example 1.11. Prove that
A-C B C
A-D B:'D
() (AxB)- [(BxC)x(CxA) =[A-(BxC)?
Solution. (a) Let P=C xD
then (AxB)-P=A-(BxP)
since dot and cross are interchangeable in scalar triple product
A BxP)=A. [Bx(CxD))
=A- [CB-D)-D @B C)]
=(A-C)(B-D)-(A-D)B-C)
_|A-C B-C
“"|A‘D B-D

(a)(AxB)~(CxD)='

(b) Putting BxC =P
BxC)x(CxA)=Px(CxA)
=(P-A)C-(P-C)A
[(BxC)-AJC-[BxC) - CJA=mC.

where m=BxC)-A
and BxC)-C=0
Hence (AxB) - [(BxC) x (C x A)]
=(AxB)-mC

=m[AxB] - C=m[A - (B xC))

as dot and cross are interchangeable, substituting the value of m, we
have

(AxB) - [(BxC)x(CxA)=[A-BxC)?
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Example 1.12. An unknown vector v satisfies the equation
v(a-v)+ax@xv)=b

where a and b are known vectors and angle between a and b is acute.
Find (a - v) and also solve for v.

Solution. Given that v satisfies the equation
va-v)+ax(@axv)=b ..(@)
Multiplying both sides scalarly by a, we have,
(a-v)y(a-v)+a-[ax(@axv)=a-b .(@0)
and making use of the identity

AxBxC)=(A-C)B-(A-B)C . (Ti)
We have, ax(axv)=(a-v)a—(a-a)v
=(a-v)a-a’v ...(iv)

From (i) and (iv)
@@a-vi’+a-[(a-via-a?vl=a-b
(a~v)2+a2(a-v)—az(a-v)za‘b
@@-v)i’=a-b
Hence, a-v=Va-b ..(v)
Rewriting the equation (i)
v(a-v)+ax(axv)=b
Then, v(a-v)=b-ax(@axv)
=b-(a-v)a+ a2v, from (iv)
v(@-v) +(a-v)a—a2v=b ...(vD)
Substituting the value of (a - v) from (v) in (vi) yields

v(Wa-b)+a(Va -b)-va’=b

or viVa-b-a%=b-a(¥a-b)
Hence v= b-a(Va-b) ...\vii)
’ Na-b -a?
1.2F. Vector Representation of a S
Surface

Fig. 1.14 shows a plane surface of ar-
bitrary shape. This surface may be repre-
sented by a vector S whose length
(magnitude) corresponds to the magnitude
of the surface area and direction normal
(outward) to the plane of the surface. This SURFACE AREA
vector S can also be conveniently expressed ds

Fig. 1.14
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in terms of a unit normal vector a, perpendicular to the surface that
1s,

S =8a, ...(43)
The direction of S should follow the right hand screw rule.
1.3. VECTOR CALCULUS
1.3A. Differentiation of a Vector

We shall often be concerned with the rates of change of scalar
and vector quantities, with both time and space co-ordinates, and
thus with the time and space derivatives.

Let ¢t be a scalar variable and A (¢) be a vector function of ¢ (i.e.
A has a definite magnitude and direction for every value of ¢). In a
time 8, vector A, as in Fig. 1.5a may change by 8A both in magnitude
and direction. Then, the differential coefficient of A with respect to
t is defined as a limit by the equation

dA _ i ALFN-AQ) ..(44)
dt ot = ot

The differential ceefficient dA/dt is itself a vector. In order to
obtain its geometrical representation,

let O;’ be the vector A(¢) and O—()Q The
vector A(t +8t), i.e. vector A(t) is
drawn for different values of ¢ from
the same point O. The other end of
the vector will trace out a space curve
as depicted in Fig. 1.15.

Fig. 1.15 Referring to Fig. 1.15, we have

- =9 o
A(t + 8t) - Alt) =0Q — OP = PQ = 3A (say)
Hence dA = lim %A ...(45)
dt &0 O

The direction of dA/dt is the limiting direction 3A/d¢ or that of
3A. But as @ tends to P, PQ tends to the tangent line at P. Thus, the
direction of dA/dt is along the tangent to the space curve traced out
by the tip of the vector A (¢). If the length of the arc of this curve be
S from a fixed point on it upto P, then the magnitude of dA/dt is
given by

dA| _ ), 1241
dt 5 —0 ot

. |3A| 3 _ds
s}li,no ds &t dt ...(486)
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[34| _ Chord PQ
8 = arcPQ

Let A=A a,+Aja, +A,a,, at any time £, and after time 3, it
becomes A (t +8t) such that A(t+8t) = (A, +3A,) 8, + (A, +814,) a,
+ (A, + 84,) a, then from,

dA_ i, A8 = A0)

Since the ratio — 1 as &' approach rero.

d ot 90

it fcilows that,
A _im fa, (A, + 84,) + &,(A, + 84,1+ a4, + 04,)
-0

—(a A 4 aydiy + 8,A,)1/0t
—lim ax-&4x+ay~8Av+az~&li
& —0 ot

dA ( dA,) J [(dA\

\a N é-d—"—)a { ...(47)
Yol dt | 2|

The time derivative of a vector is then equal to the vector sum of
the time-derivatives of its components.

If A is a function of several scalar variables, say ; x,y,z and ¢,
then in a similar manner, the partial differectial coefticicits
7A A
o’ 3y

m, a scalar function of ¢, then

dgmA'g am A+ dA

etc. can also be defined. If A and B are vector functions anrc

dt dt P
dA 1_3) dA dB 48
7 dt -B+A- gt LLAB)
and (A B)———éxB Ax(filt3

The proof of the last formula is given below. The others can be
proved in a similar way.

Let A(@¢+3t)=A()+0A=A+5A, for brevity and Bt~
=B(t)+5B=B+SB then
(AxB)— lm(A+8A)»<(B+8B) AxB
& —0 ot
. [AxB+Ax3B +5AxB+dAx3B~AxBI]
= lim el e s
& -0 ot
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Y SB  3A %A
_&hino [Ax ot T 5t x B+ ot XSBJ
= % x B+ AXx dg?— (neglecting 3rd term)

Example 1.13. If A =t% a, + (3¢ - 2t) a, + (2,: B %jaz find, gd% and

the magnitude of%‘?— when t = 1.

Solution. Given

2 1
A:t3ax+(3t —2t)ay+[2t—?]az

On differentiation, we get

%%z 3t? a, +(6t -2) a, +[2 +tl2Jaz
When t=1
%‘? =3a, +4a, + 3a,
and l‘;—‘? =V9+16+9 =V34 =5.91.
Example 1.14. If a be a variable unit vector, show that (i) %? is
a vector normal to a, (ii) % is a unit vector normal to a, 0 being the

angle through which a turns.

Solution. Since a is a unit vector, then a - a = 1. Differentiating
this, we have :

da a a»@-o
dt dt ~
da
2 -dt—O
da

This shows that a and qz 2re at right angles.

— -
Let OP=a and OQ =a + da be two neighbouring values of the
._)
given vector a making an angle 36 with each other. Then PQ = 3a,

and da _ lim %a
de —60 -0 36
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da

Then, it may be seen that PT) is normal to a, since da is normal
to a in the limiting position. Moreover,
93\ jim |28 = 1im B30
d6 8 -0 56 88 -0 36
=0P=1

Hence Z—g is a unit vector normal to a.

1.3B. Scalar and Vector Fields

One of the most important concepts in the subject of electromag-
netic fields is that of a field. There are two types of fields commonly
encountered in our study : scalar fields and vector fields. The
temperature distribution in a room is the most common example of a
scalar field. As shown in Fig. 1.17a, the contours of constant tempera-
ture T, To, T3 assume that there is a smooth and uniform variation
in the contour change. This temperature distribution is called a field
because the temperature will have values at various times and posi-
tion in the room (region). This is denoted by T (x, ¥, z, ?).

The basic difference between a scalar field and a vector field is
that the quantity of interest is a vector field is assumed to have a
directional property as well as a magnitude at points in the region.
A common example of a vector field is the flow of a fluid in a con-
stricted pipe (Fig. 1.17b).

If R be any region in space and at each point of this region a
vector v =v (x, y, 2) is given, then R is said to be a vector field. Each
vector v of the field is regarded as a localized vector attached to the
corresponding point (x, y, z). Here, v can be expressed in terms of its
components.

V=Uga,+ A, + 0,8,

or v =va,,
where v = magnitude of v.
Tix,y,z)
z

x
{a)

—T:\\_#_//’__—:’—

I — = — SN YA 27

— ——./
N, —
rb)
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Fig. 1.17

a,= the unit vector along the line joining O to P (x, 3, 2) in positive
r-direction vy, vy and v, are the compenents of v along the three axes
respectively, all being functions of x, y and z (¥ig. 1.17¢).

Similarly, if at each point of a region R in space, a scalar
¢ =0 (x,y, 2) be given, then ¢ defines a scalar field in Z. An example
is the temperature at every point of a mass of heated liquid or
electrostatic potential at any point due to a point charge (may be
assumed to be situated at the origin O).

A simple example of a vector field is the field defined by the radius
vector r=x a, +y a, +z a,. A physical example of a vector fieid is
afforded by the velocities of the particles of a fluid under flow or
electric field due to a point charge (may be assumed to be situated at
the origin 0).

1.3C. Gradient of a Scalar Field

We shall be interested in cne particular function of the space
derivatives of a scalar quantity—the gradient—and in two particular
functions of the space derivatives of a vector quantity—the divergence
and the curl. Again, many other functions could be defined, but those
studied here are unique as they are useful to describe certain physical
quantities.

Let ¢ (x,5,2) be a function defining a scalar field at a point
(x,y, z) in cartesian co-ordinate system. If the co-ordinates x, y, z are
increased by dx, dy and dz respectively, then

_9% ;. .9, 00 )
do = I dx + Y dy + y dz ...(49)

In equation 49, the scalar quantity has been assumed to be
continuous and differentiable function of the co-ordinates. We now
wish to know the change d¢ over the distarce dr.
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Now d¢ is the scalar product of two vectors A and B as follows :

g 00 90 . 00
A-axax +a, PN ra; S ..(60)
B=a,dx+a,dy+a,d, ..(81)

The vector A, whose components are the rates of change of ¢ with
distance along the co-ordinate axes, is called the gradient of the scalar
quantity ¢. The gradient is commonly abbreviated as ‘grad’ and the
operation on the scalar ¢ defined by the term gradient is indicated by

the symbol, V called ‘del’ or ‘nabla’.
Thus, A=grad¢ +Vo ..(62)

For the general 3-dimensional case, the operator ‘del’ is defined
as

= ) ) 9
Va(ax FR ay+az azJ ..(83)
The partial differentiations indicated are to be carried out on
whatever scalar quantity stands to the right of the V symbol.

Rewriting equation 49,
dcp-[axaxvaya +aZaz) (aydx + a, dy + a, dz)

=Vé-dr ...(64)
where dr=a,dx+a,dy+&,dz
The equation ¢ (x,y, z) = constant, represents a certain surface
and as we change the value of the constant, we obtain a family of
surfaces known as equipotential surfaces (contours). In Fig. 1.18
curves Sp corresponding to ¢ =C; and Sy corresponding to ¢ =Cq
represent two such equipotential surfaces. Let point P with position
vector r lies on ¢=C; and @ with position vector r+dyr lies on
¢ = Cy as shown in Fig. 1.18. Then s S,

PQ =dr \
If d,, denotes the distance along the
normal from the point P to surface Sy, we

may write
o

dn=a, - dr

where a,, is the unit vector normal to the
surface Sy at P.

We have
.90 90 N
do = n dn = an (a, - dr) ...(65)

=Vé-dr [from Eq. 54] ...(56)
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and, in particular, if dr lies in the surface S;, we have
do=(V¢)-dr=0 .(57)

showing that the vector V¢ is normal to the surface ¢ = constant. Since
the vector dr is arbitrary, we have from Eq. (56).

Vo = [%SJ a, ..(58)

Hence, V¢ is a vector whose magnitude is equal to the maximum
rate of change of ¢ with respect to the space variables and direction
normal to the surface ¢ = constant (i.e. a,).

Furthermore, if 8! denotes the length PQ and a,,, the unit vector

in direction PQ, then the directional derivative d¢/dl, is defined by
the relation

2. Jim % .(59)
where 0l is the difference between values of ¢ at @ and P.
Since ol = |or]|,
and ol = “os (ZNPO) (i,]lVPQ)
then 8l = amaflan .(60)

Substitution of the value of 8/ from Eq. (60) in Eq. (59), yields :
2 . 5
% _ lim {(am - ap) gﬂ

al 3 -0
=a, a, -aa% ..(61)

Introducing (58) in (61), we have

...(62)

G
al ~8m Ve

According to Eq. (62), the directional derivative d¢/dl is the com-
ponent of V¢ along the unit vector a,,. It also follows that |V¢| gives
the maximum rate of change of ¢.

Moreover, following Eq. (64), the magnitude of d¢ can be written as
do=V¢-dr=|V¢| |dr| cos @ ...(63)
where 8 is the angle between the vectors V¢ and dr.

The direction of dr is chosen such that d¢ is a maximum. The
obvious solution will be with cos 8 =1, or 8 = 0° that is the direction
of Vo.
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In terms of its components, the magnitude of V¢ is

2 2 2 1172
|Vo| = (g%) +(§$] +(%$] ..(64)

To summarize, the gradient of a scalar function is a vector with
the following properties :

1. Its components at any points are the rates of change of the
function along the directions of the coordinates axes at that point.

2. Its magnitude at the point is the maximum rate of change of
the function with distance.

3. Its direction is that of the maximum rate of change of the
function, and it points towards larger values of the function.

The gradient is thus a vector point-function derived from a scalar
point-function.

Example 1.15. Find a unit vector normal to the surface
ny +2xz=4
at the point (2, - 2, 3).

Solution. A vector normal to a surface is given by the gradient
of that function. Thus grad

Vo—a 9 9, o 9
V¢—axax+ay+ay+3282

g 9 2 9 .2 9 .2
=ay3° (xy+2xz)+ayay %y + 2x2) + a, 3% (x“y + 2x2)
=Q2xy+22) ax+x2ay+2xaz
Thus, the vector normal to the surface (x2y + 2xz = 4) at point (2,
-2, 3)is V¢ given by
Vo= -2a, +4a, + 4a,
and the magnitude of V¢ is
Vo] =V4+16+16 =6

Hence a unit vector normal to the surface

__Vo _
Vo
__1 2 2
.._3ax+3ay+3az.

% (- 2a, + 4a, + 4a,)

Example 1.16. Find the directional derivative ofx2 +y2 +4xyz at
(1, - 2, 2) in the direction 2 a, -2a, +a,.

Solution. The gradient of the function (x® + y2 + 4xy2) is
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Vo = a, (2x + 4yz) + a, (2y + 4xz) + a, (4xy)
and 2t point (1, — 2, 2), V¢ becomes

Vo= -14a, +4a, - 8a,
The directional derivative along (2a, — 2a, + a,)

:am‘vq\’
1(2ax—2ay+az)
1-14a, +4a, - 8a
V219241 A x 42y = 82,)
:%( 28 -8-8)= - 142,

txample 1.17. Show that the gradient of the product of two scalar
funcizons m and n can be expressed by :

v (mn) = mVn +nVm

Solution. V(mn)=a 8 L (mn) +a, aa (mn) +a, $ (mn)
—a 'ma_n+n§ﬂ'+ mon ., 0m)
Rhad PR T L wid

=mVn+nVm.
1.3D. Divergence and Curl of Vector Field

Let A (x, y, 2) defines a vector field. The operation of the vector
operator V on A gives two different results corresponding to the scalar
and vector multiplication of two vectors.

Let us consider, first the scalar multiplication of V and A. The
product being a scalar quantity is known as the divergence cf the
vector field A, and is denoted by div. A, (VA). Thus if,

A=A a +A,  a +Aa,

V~A_[a i+aya +a, 5 ) (Aa, +Aja, + Aa,)

0A, 0A JdA
i Zz
_a\x(axa aya +a, 82]
0A, dA, 0A, )
+a,ja, +aya}~+aza—

v |

since a -a;=a,-a,=a,-a,=1
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and a;-a,=ay-8,=a,-a,=0
= dA, an 0A,
Thus V-A= %t 3 +—5;__—

Next, consider the product
S d 0 9
VXA=(ax5xf+ay?;;+azé_z]x(axAx+ayAy+azAz)

= s, %4 %4 imi
=8y X| 3T Aty + o8, other two similar terms.
t4

—a, (?AZ L), (a_zg“?é_z} a (:‘:“;x_éaész

dy oz ) o, ox \ o0x
a 2 a
= é Jd @ )
or VxA= 3% > == curl A
le A, A,

The vector V x A is known as the curl of vector field A, and is
denoted by curl A since cross product also shows the rotation hence
if curl A = 0, the field A is called irrotational. The divergence and
curl of a vector field have been further considered in sections 1.4 and
1.5.

Example 1.18. Find the divergence and curl of the vector
A=xyza,+ 3x2yay + (xz’.2 - yzz)az.

Solution. From definition.

9

dy

=yz +3x% + (Bxz - %)

=3x2—y2+z (y + 2x)

o A_T. A_O 2,,90 .2 2
div.A=V A—ax(xyz)+ (3xy)+az(xz ¥°2)

a, a)’ a,
_|o 9 9
Curl A= F™ Y 3%

xyz  3x? y xz? - yzz

CurlA=a, [% (xz2 - yzz) - % (3x2y)]

+a, [E% (xyz) — gax' (x2? ~yzz)} ta; [’a% (3’523’) - % (xyz)]

= A, (- 2z - 0) +a, (xy —2°) +a, (Bxy — x2)
= ~2yza,+(xy— zz)ay + (6xy -- x2) a,
Example 1.19. Prove that :
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@ V- (0A) = (V) - A+ ¢V - A)
B VA - B=(A-V)B+B - VA+Ax(VxB)+BxVxA
) VxAxB)=B-V)A-BV-A-(A-V)B+A (V-B)

Solution. (a) V- (0A) = (ax a—i— +a, % +a, gz-} (0A)

(Z ](¢A)
=Za,c-5?—3;%.4+Za1,¢~q’%A

SRR

=(Vo) - A+6(V-A)

(b) Since
Ax(VxB)= Ax(Zax—xB]
JB
=2Ax[axxax)
oB B
:z AT&- ax—Z(Aax ax
JB )
=y A= ax—(A-Zax—a]B
Ax(VxB)=)Y A-%B -(A-V)B

so that, Ax (VxB)+(A-V)B = Z( aB]a,,

Similarly, Bx (Vx A)+ (B - V)A = Z [B ) %xé)ax

Adding up, we get
Ax(VxB)+BVUxA)+A-V)B+(B-V)A

aB JA
Telaew )
:Zaxgx—(AB):V(A-B)
(¢) Putting V =V, = Vg, we see that
Vx(AxB)=V4x(AxB)+Vg(AxB)

=(Va-B)A-(V4-AB+(Vg-B)A- (Vg -AB
=(B-Vy)A-(V4-AB+A(Vg-B)-(A- Vp)B
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Replacing V4 and Vg by V (since V- A=V, -A+Vg- A=V, - A +0),
we have
Vx(AxB)=B-V)A-B(V-A)+A(V -B)-(A-V)B
1.3E. Repeated Operations by V

Let ¢ (x,y,z) be a function defining a scalar field, then the

gradient of this field, namely V¢ defines a vector field. The divergence
of this vector field is

div (grad ¢) = div (V¢) = "V' Vo

) 9 ( o d d
—(axa +ay-+a 5:] (ax£+xy5g+qz§3)

2 2 2
_9% d% 3%
an? 9?32

The operator (V - V) is often written as v2 and is known as the
“Laplactan” operator. This operator is a scalar operator.

The curl of the vector field V¢ is curl (grad ¢) =V x (Vo)

a, a, a,
R
=lor 2|
lae do del

ox oy |

This shows that the field V¢ is irrotational. It follows therefore,

that, if A is a vector field expressed by, A = V¢, then curl A =0 and
this shows that an irrotational vector field A can be expressed as the
gradient of scalar field ¢.

Example 1.20. Prove that,
curl (curl A) =V x (V x A)
=grad (div A)- V2 A
Solution. curl (curl A) =V x (V x A)
Using the relation,
AxBxC)=A -CO)B-(A -BC
Vx(VxA)=(V-AV-(V-V)A

=grad (div A) - V2A
Example 1.21. Determine the constant a so that the vector
v=(x+3y)a,+(y-22)a, + (x+az)a, is a solenoidal.
Solution. Since
V=(x+3y)a,-(y-22) a,+(x+az)a,
is a solenoidal, therefore, the divergence of this vector V is zero.
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Then the divergence of V, is given by
V-V=V.[x+3y)a,+(-22)a,+(x+az)a]=0
d d ad
or a, 5; +a, gy' +a, ;3;
X [(x + 3y) ax+(y—2z)ay+(x+az)=0

or V. V—*(x+3y)+——(y 2z)+-—(x+az)
or 1+1+a=0
or a= -2.

Example 1.22. A vector V is called irrotational if VxV = 0, find
constants a, b, ¢ so that,

V=(x+2y+az)a,+(bx~3y—-2z)a,+(4x+cy+22)a,
is irrotational.
Solution. Vector
=(x+2y+az)a, +(by-3y-2)a,+(dx+cy+22)a,
Taking curl of V, we have,

VxV=Vx[x+2 +az) a, + (bx — 3y —2) a, + (4% + ¢y + 22) a,)]

=(ax§;+ay%+az%]x[(x+2y+az) a,+(bx-3y~2)a,

+ (4x +cy + 22) ay)]
% 2, 2
- 90 9 9
ox dy oz

x+2y+az bx-3y-z 4dx+cy+2z
=ax[%(4x+cy+2.z)——~(bx—3y—z)]

+ayl: (4x+cy+22)+—(x+2y+az):|

+az[£(bx—3y+z)—g(x+2y+az)
=(c-1a;-(4-a)a,+(b-2)a,

Since vector V is irrotational,

Therefore,

o @ o
i
P

MQH<
1

VxV=0
c - 0
4- 0
b - 0

LUy
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1.3F. Integration of a Vector

If A (t) and Q(t) be two vector functions of a scalar variable ¢,
connected by the relation

dA(t)
dt =a (t)
then A(¢) is said to be the integral of a (¢) and is written as

[awyae=aw+c

This integral is an indefinite integral and C is an arbitrary
constant.

(a) Line Integrals. Let ¢ be the given curve in the xy-plane and
let f(x,y) be a function of x and y. Divide the curve c into n-parts of
lengths 814, 8y, ... 8l,, and let (x,, y,) be any general point on the rth
part 3/, of the curve (Fig. 1.19 a).

Then the limit of the sum
fx1,y1) 8L +f(x2,y2) 8lg + ... +f (xp, ¥n) 8, ...(65)

When n — -, and the length of each part 8/, — 0, is called the
line integral of f (x,y) along the curve C. It is denoted by

j flx,ydl
c

On similar lines, the line integral of a function f(x, y, z) along a
space curve C can also be defined.

The concept of the line integral can also be extended to vector
integration by taking the vector elements 8l;, dly, ... 81, [Eq. 65] and

then performing the vector addition.

Three types of line integrals may thus be defined :
jc odl, ICA-dl, chxdl
y

x 0 X
(@) (b)

Fig. 1.19
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The middle integrals is a scalar while the other two are vectors.
Since dl =dr, where r is the position vector of a point on the curve
C, therefore, the three line integrals may also be written as

-fc ¢dr, J'C Adr, -[c Axdr

An example of the line integral is affected by the work-done by a
force F acting on a particle which moves in a curve C. The work-done
during the displacement 8r is F - 8r. So, the total work-done by the
force is

lim ) F-dr= I F.dr
5, -0

If the force F arises from a potential ¢, then

F=grad ¢
e 0 0
—axa¢+aya$ ¢
Also dr=a, dx+aydy+azdz
gp =90 g, 90 5 00,
So F dr—axdx+aydy+azdz—d¢

Therefcre, the work-done in moving the particle from A to B along

the curve C
J,ao=] ao=[o];

We see that in this case, the work done depends only on the initial
and final points, A and B, and not on the path followed in reaching
B from A. Such a field of force is called a conservative field.

Example 1.23. Find the work done when a force F = (1,r y +x)
a, - (2xy + y)a, moves a particle in the xy- -plane from (0, 0) to (1, 1)

along the parabola y =x. Is the work done different when the path is
the straight line y = x ¢ Refer to Fig. 1.19c.
Yy Solution. In xy-plane, the position
vector r is
(1,1 r=xa,+ya,
and this gives

dr =a, dx+a,dy

10,0, The workdone = '[c F.dr

Fig. 1.19 (c)
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= J [ - y* +x) &, — 21y +3) &) - [a,dx + a,dy]
C

= L (% =y +x) dx = (2xy +) dy]

Since x :y2

dx = 2ydy

Work done = [(y4 --y2 +y2) 2ydy - (2y3 +y) dyl
c

1
= JO 2°-2° -y dy

In case the particle moves from (0, 0) to (1, 1) along y =x, the
workdone is
J. F- dr:j [xz—y2 +x dx — (2xy +dy)]
c c
1 2
= J‘O [xdx — (2x2 +x)dx]l= -2

The function ¢ may be determined by the integral L F - dr. That
18,

q):J.CF-dr
_ 2 2 - AN
=) [x*-y°+xldx - (2xy +y)dy)
c
3 2 2
_|x _ .2 x .2 Y
_[3 yox+ o —xy 2]
3 2 2
=—%—2xy2+?——l~

Further, for y =x ; we notice that, the gradient of a function ¢ is
given by
13 19 , 2 19
0= 3 x° + 5 x“ — 2xy 5

may be related to F by F =grad ¢. Since the integral for both the
paths give the same result, therefore, the field is conservative and
the work-done does not depend on the path followed.
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Example 1.24. If F = 2ya, —za, + xa,, evaluate J‘ F xdr along the
c

curvex =cost, y=sint,z=2cott, fromt=0¢tot =m/2.
Solution.
a, a, a,
F xdr= 2y -2z X
‘dx dy dz
= —(zdz — xdy) a, + (xdx — 2ydz) a, + (2ydy + zdx) a,
= (4 cot ¢ sin ¢ — cos? t) dta, + (4 sin? ¢ - cot ¢ sin t)ydt a,
+(2sintcott—2cottsint)dta,,
On ¢

/2
J der:J‘ [(4cottsint-—coszt)ax
c 0

+(4sin2t-cottsint)ay]dt
:(4‘l_l.ln)ax+(4.%.ln_%)ay

[ _gjax+( _;_]ay

(b) Surface and Volume Integrals. Let S be a surface in space
and let f (x,y, z) be a function defined at every point of this surface.
Divide the surface S into n parts &Sy, Sy, ... 8S, and let (x,, y,, 2,) be

a point on the rth part, i.e., 8S,. The then limit of the sum

3 f @12 88,

r=1

as n — o and the area of each part 8S, — 0 defines

0] resoas

the surface integral of f (x, y, z) over S.

The surface element 3s, can also be regarded as a vector having

a magnitude equal to the surface area and direction along an outward
normal to the surface element. Again, three types of surface integrals
may be defined :

HSMS. HSA-ds,HAxds

Denoting by a,, the unit vector normal to the surface, the above
integrals can also we written as
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”S ¢ (a, ds), ”S A a, ds), HS A x (a, ds)

The middle integral measures the flux of A across the surface. If
A = density x fluid velocity
A =pv then
A-ds=(A-a,ds
=(pv - a,) ds = pvds cos 6

Therefore, -US A-ds= HS puds cos 6

In particular if we imagine a fluid flowing through a uniform
circular cylinder, then 6 = 0, and the above integral will represent the
mass of the fluid flowing out of the surface S Fig. 1.19(d). This
formula is also used to calculate the electric or magnetic (¢ or ,,)

flux in electromagnetic system.

The volume integrals .UIV ¢0dV and J.HU AdV

Fig. 1.19 (d)

are defined by dividing the volume V in n elementary volumes ;
8V, 8Vy, ... 8V, and by assuming any point (x,, y,, z,) inside the rth

subdivision 8V, such that as n tends to infinity, the dimensions of
each subdivision tends to zero, and

n
lim | Y F @ ymz) 8V |= ]| ey dv.

noe lr=1
The first of these is a scalar and the second, a vector.

1.4. FLUX AND DIVERGENCE—THE DIVERGENCE
THEOREM

It is often necessary to calculate the flux of a vector through a
surface. The flux do of a vector A through an infinitesimal surface
ds is given by

do=A-ds ...(66)

where the vector ds representing the element of area is normal to its
surface. The flux d¢ is component of the vector normal to the surface
multiplied by the area of the surface. For a finite surface, the total
flux is then obtained by integrating A - ds over the entire surface :
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o=] A ds .(6T)
S

For a closed surface bounding a finite volume, the vector ds is
taken to point outward.

Y

Ay, \-
I(Ay‘# a-y’Ay)ay

a
Az d

~Axax ™ A(Ax-f 9%’54,)5,
4———{——‘-—' x0x
> X
Ay dy
A
(4+37)az / [ : %
2 -
‘Ayay __/
< dx 7J
z¥
Fig. 1.20.

As an example of flux, let us consider fluid flow. Here, we can
define a vector pV, p being the fluid density and V the fluid velocity
at a point. The flux through any closed surface is the net rate at which
fluid (mass) leaves the volume bounded by the surface.

The outward flux of a vector through a closed surface can be
calculated either by using Eq. 67 or as follows. Let us consider an
infinitesimal volume dx dy dz and a vector A (as in Fig. 1.20) whose
components A,, A, and A, are functions of the coordinate x,y and z.
If the volume considered is of an infinitesimal size then the first order
variations of the vector A will be significant.

Let A, be the average value of A on the left face in the x-direction.
Since A, is directed towards the left face (inward), hence the outward
normal component of A at the left side face is — A,. If the vector field

changes between left and right faces, the normal component of A at
the right face can by Taylor’s theorem, be represented by an infinite
series

A, A, (ax)?
F Ax+¥2‘ 21 Foeeenenns

A+

where Ax is very small, the square and higher order terms may be
neglected so that at the right side face, we have the normal com-
ponent of A

dA,

dx

A+ Ax
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In a like manner, the normal component of A at the bottom face
(—A4,) and the top face is

0A
X
A+ P Ay
Similarly, at the back face, it is — A, and at the front face is

A, + ééz- Az
Z oz
Now the outward flux of A over the left side face
= d (DL = —AxAyAz

and over the right side face is

04,
dop =|A, 3. Ax |Ay - Az ...(68)
Then the net outward flux through the two faces is
d o = 5 5 Az-%ﬁA (69)
Op +dop="5"Ax- Ay - Az="37 Av

where Av is the volume of infinitesimal element.

If we calculate the net flux through the other pairs of faces in the
same manner, we find the total outward flux for the element of
volume Av to be

0A, 9Ay OA,
Adsotai = (a—xx + —5_)'1 + _ngU ..(70)
For finite volume v, the total outward flux is then given by
integral
0A, 0A, A,
¢t°t“l_-[v[ax + Y + dv .(71)
At any given point in the volume, the quantity
aa, oa, 24,
ox dy oz

is thus the outgoing flux per unit volume. We call this, the divergence
of the vector A at the point. The divergence of A is abbreviated as div
A and defined as

d
div A = lim ZPtotal
Av -0 Av

_%x oy % (72)
iz
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According to the rules for the scalar product, we can write the
divergence A as

div.A=V-A ..(13)

where the operator V has already been discussed.
The operator V has physical meaning, not by itself, but only when
it operates on a function appearing to the right of it.

In Eq. 71, the total outward flux is also equal to the surface of
the outward normal component of A, thus

JSA~ds=J [aﬁh% aA)dv (149)
v

7z
x "oy %

Then JS A.-ds= Jv (V-A)dv .(75)

This is the divergence theorem relating the surface integral to
volume integral. It is obvious from Eq. (75) that the left hand side
involves only the values of A on the surface S, whereas the right-hand
side involves the values of A throughout the volume v enclosed by S.
This important theorem will be used frequently.

If the volume v is allowed to shrink sufficiently such that V- A
does not vary appreciably over it, then

J. A-ds=(V-Av ..(76)
S
and divergence can therefore be defined as
VA= lim L] A as T7)
vo0 U's

As we have seen, the divergence is the outward flux per unit
volume as the volume approaches zero. Further, if the divergence of
a vector field is zero, the field is termed as solenoidal.

1.5. LINE INTEGRAL AND CURL OF A VECTOR FIELD

b
The line integral J- A - dl evaluated from a point ‘a’ to the point
a

‘b’ for the work done W by a force F acting along some specified path
is given by

W=[F-dl (18)

where both F and dl must of course be known functions of the coor-
dinates.
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For illustration, let us calculate Y F=ky
the workdone by a force F, which is
in the y-direction and has a mag- )
nitude proportional to y, when it b
moves around the circular path from d
a to b as shown in Fig. 1.21. Since
F=Krsin 6, dl =r d6, and the scalar /4
product introduces a factor cos 6. (K
is a proportionality constant between
F andy) a X

b Fig. 1.21. The force F proportional to
W= J. F.dl y, and its point of application moves
a from a to b. The work done is given by
the line integral of F - dl over the
/2 curve shown.

= J’O (Kr sin 8) (rd 0) cos 0

_Kr?
T2

A vector field in which the line integral of A - dl around any closed
path is zero is said to be conservative. Thus, for a conservative field,

[a-a1=0 .(80)

The circle on the integral sign indicates that the path is closed.

For an infinitesimal element of path dl in xy-plane, and from the
definition of the scalar product,

...(79)

A-dl=A; Ax+ ANy ...(81)
Thus, for any closed path in the xy-plane,
JA-d1=[A,dr+[A,dy .(82)

Let us now refer to Fig. 1.22 to evaluate j A - dl. Let vector A has
a component A, (average) along the path 12, and A, along the path

14
Ax+ -aaﬂ;;-Ay
—
1 4T 3 1
JAy
Ay Ay A?’*é'?‘“
AX ———e]
/ 2
0 X

Ax —

Fig. 1.22.



44 ELECTROMAGNETICS

14. If the field is not uniform, its value at edges 23 and 43 may be
expressed to a first approximation by

0A

Py
Ay + I Ax
0A,

%

Performing the integration of J A - dl in anti-clockwise direction,

and A+ Ay

we have
0A
fa - d1=a,ac+ Ay+a—xyAx\lAy
' dA, v
- Ax+§Ay Ax—AyAy ...(83)

Collecting the coefficients of A;and A, in (83) and comparing
these with the corresponding terms in (82), we then obtain

JAx dx=- %— Ay Ax
and JAydy::%zAxAy
Further, [A a1= [%1 - %ﬁjm Ay .(84)
If we let gz=a—;;1—% ...(85)
then A - dl=g3ds ...(86)

where ds = Ax Ay is the area enclosed on the xy-plane by the in-
finitesimal path. It may be emphasized that Eq. (86) is correct only
if the line integral is evaluated in the direction such that a right hand
screw advances in the positive z-direction. The above requirement is
met by performing the integration in an anticlockwise direction.
When the small path is arbitrarily oriented in space, then
J'A -dl is the sum of the projections of ds on the co-ordinate planes,

multiplied by functions similar to g, in Eq. (86) :
J.A - dl =ds cos (£a,, x) g, +ds cos (a,, y) 8y
+ds cos (a,, 2) g, ...(8T)
=ds, 8y +ds,8y +ds.g, ...(88)

where, for example, cos (Za,, x) is the cosine of the angle between the
vector ds, which is normal to the surface and the x-axis, and where
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_0A %4
gx— ay - az .(89)
- a_A}. _?é_z_ (90)
B % "
dA, O0A
8z = -gxl - ‘—é;‘ ...(91)

From Eq. (88) it appears that the right hand side is just the scalar
product of ds with a vector C, such that C,=g.,,C, =g, and C,=g,.
The vector C is called the curl of A :

a4, aa)) (a4, '
CurlA:ax(—z —1]+aytg—"-—zj+az[9i‘1 %} .(92)

dy  ox oz ox ox oy
a, a, =
3 3 3l =
1% % aZ;.VXA ...(93)
A, A A

Rewriting Eq. (88) for a small path of integration, we have

JA d1=(V <A -ds | .(94)

Here again, care must be taken about the direction in which the
line integral is evaluated. This direction of integration must be re-
lated to the direction in which the right side of Eq. (94) is positive by
the right-hand screw rule. The above equation provides us with a
definition of the curl that is same for all the co-ordinate systems :

l(v X A), = lim e | ...(95)

This equation shows that the component of the curl of a vector
normal to a surface AS is equal to the line-integral of the vector around
the boundary of the surface divided by the area of the surface for the
limiting case in which the surface area approaches zero.

As an example, let us calculate the curl of the gravitational force.
We shall first calculate the components in a formal manner in rec-
tangular co-ordinates and then calculate these components with the
help of the above definition of the curl.

For the first approach, we choose a co-ordinate system in which,
the z-axis is perpendicular to the earth’s surface and pointing upward,
and in which the x-axes and y-axes are parallel to the earth’s surface.
Then, the gravitational force F on a mass m has the following com-
ponents :

F,=F,=0,
F,= -mg ..(96)
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a, a, a,
5 0 9 d
T \Y === = — | =
hen xF x 3 % 0 97
0 0 -mg

If we proceed in the second manner, we choose small rectangles
around which IA« dl= I F - dl is to be evaluated. To obtain the z-

component of the curl, we choose a path in the xy-plane. Since F is
perpendicular to dl on all parts of the path, F - dl=0 around this

path, and so (Vx F),=0. To find the y-component of the curl, we

choose a path lying in the xz-plane. On the two parts of the path
parallel to the z-axis there are contributions to the integral, but they

are equal and opposite, thus (V x F),=0. By similar arguments,
(V x F), is also zero.

We could, of course, have said from the beginning that the curl
of the gravitational force field is zero, for we know that such a force
field is conservative. Further, Eq. (93) shows that the curl of a vector
that is not a function of x, y, or z is zero.

As a second illustration, let us consider the velocity of fluid in a
fluid stream in which the velocity v is proportional to the distance
from the bottom of the stream. We choose the z-axis parallel to the

direction of flow, and the x-axis perpendicular to the stream bottom,
as in Fig. 1.24. Then

Ue=0,v,=0,v,=cx ...(98)
Now, the value of the curl may be evaluated from Eq. (98). For
(VxV),, we choose a path parallel to the yz-plane and in the line
integral IV -dl, around such a path it is seen that the contributions
are equal and opposite on the parts parallel to the z-axis, hence
(Vxv),=0
Likewise, (Vxv),=0.
Now, in order to calculate the y component we choose a path
parallel to the xz-plane and evaluate the line integral IA - dl around

it in the sense that wauld advance a right-hand screw in the positive
y-direction. On the parts of the path parallel to the x-axis, v-dl =0,
since v and dl are perpendicular. On the bottom part of the path, at
a distance x from the yz-plane,

[V di=cxa -(99)
whereas at (x + Ax)
jV- dl= —c (x +Ax) Az ...(100)
Therefore, for the whole path,
[V di=-cax A (101)
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and the y-component of the curl is
Jvdl mn
(V xv), =lim = - =-c ...(102)
Y S0 S Az Az
Calculating (V x v) in a formal manner,
a, a, a,
G o d 4
\Y == = =|=- ...(10
X V x 2 cay (103)
0 0 cx

which is the same result as above.

I/M/ |I||m/////

X40X &omd o am e == Geved
,’/ f = V=Vxdz
XL gﬁ",,
V '
1 1
. H
i | i
' ! s
1 ' B
! v
‘L _____ [
________ z z+dz
Y
Fig. 1.23
(P HOLDER
SHAFT
D
D

Fig. 1.24. Paddle wheel for measuring curl.
A physical interpretation of the curl of V can be obtained with
the aid of the curl-meter, or paddle-wheel device of Fig. 1.24. If this
device is inserted with its shaft vertical to the trough (Fig. 1.25 a)
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TROUGH

waTER = |rioiva
TROUGH /ta—— b —o

(a) (b}

Fig. 1.25
with the assumed sinusoidal variation for the velocity of the water,
it spins clockwise when it is on the left of the centre of the trough
(position ‘1’ in Fig. 1.25 b and counterclockwise when it is on the right
of the centre of the trough (position ‘2’ in Fig. 1.25 b, corresponding
to negative and positive values of curl. At the centre of the trough
(position ‘3’ in Fig. 1.25 b), the curl meter does not rotate ; since the
forces on the paddles are balanced. This corresponds to the curl of
v being zero. The rate of rotation of the paddie wheel shaft is propor-
tional to the curl of V at the point where it is inserted. Thus, it rotates
fastest near the edges of the trough. At any point the rate of rotation
is also maximum with the shaft vertical (rather than inclined to the

vertical), indicating that V x v is in the z-direction. It is assumed that
the paddle wheel is small enough to avoid the effects due to the flow
appreciably and to indicate closely the conditions at a point.

If the curl meter with vertical shaft is inserted in water with
uniform velocity, it will not rotate and consequently curl v equals
Zero.

1.6. STOKE’S THEOREM
For the small path of integral, we have
[A d1=(TxA)- ds (104)

Eq. (104) is true only for a path so small that Vx A can be
consideed constant over the surface ds
bounded by the path. In case. the path is
large enough such that this condition is
not met, the equation will be extended to
arbitrary paths by dividing the surface
into infinitesimal areas dsi, dsg, etc. as
shown in Fig. 1.26, so that for any one of
these small areas, we have

,[A dl; = ({7 x A) - ds; ..(105) Fig. 1.26. Proof of stoke’s
theorem for a general
vector field.
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We add the left hand sides of these equations for all the ds; and
then we add all the right hand sides. The sum of the left hand sides
1s the line integral around the external boundary, since there are
always two equal and opposite contributions to the sum along every
common side between adjacent ds;. The sum of the right sides is

merely the integral of (V x A) - ds over the finite surface. Thus, for an
arbitrary path

fa-a1=] @xa) das .(106)
S

This is stoke’s theorem. It relates a line integral to a surfuce
integral over any surface of which the line integral path is a boundary.

Now, the conditions for a vector-field to become conservative can
be obtained through the use of stoke’s theorem, which suggests that
the line integral of A -dl around an arbitrary closed paths is zero
provided V x A = 0 everywhere. This condition makes use of the sub-
stitution

A=Vf ...(107)
o 4 S _
for then, A = 3%’ A= . and A, = 3 ...(108)
— 0A, O
and (VxA)y:a’_%z
2 2
Sy S . .(109)

“oyoz oz oy 0

and so on for the other components of the curl. Then V x A =0, and
the function A is conservative.

The above discussion shows that the vector field A is conservative
if A can be expressed as the gradient of a scalar point function f, since
the curl of a gradient is always zero,

Vx(VH=0 ...(110)

We shall now show that the divergence of the curl is always zero,
from stoke’s theorem (106)

[a-a1=] Txayds ~(111)
S

in which A is any vector point-function. Remembering that stoke’s
theorem holds for any surface bounded by the path of integration of
the line integral, we consider two different surfaces bounded by the
same path. These two surface enclose a region of space, and since
they have a common boundary.
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VxA)ds, = v : ..(112
Isl( X A) ds -[Sz( x A) - dsg (112)

Here ds; and ds; represent vectors in directions determined by

the sense in which the line integral is evaluated. If we reverse the
direction of the vector ds; and call it dsy” = — dsg, where both ds; and

dsy point either inward or outward from the volume enclosed by the
two surfaces, then

VxA)d ,(VxA)dsy =0 ...(113
Isl(x)sl+JS2(><)S2 (113)

This expression gives the total flux of (V x A), either inward or
outward, for the volume enclosed by the two surfaces. Then, from the
divergence theorem

va' (VxA)dV=0 ...(114)
Since this expression must be true for any two surfaces bounded
by any arbitrary closed path in the field, it follows that, everywhere,

V. (VxA)=0 ..(115)

Eq. (115) can be verified by calculating the divergence of curl of
vector A with its components expressed in rectangular coordinates.

1.7. GREEN’S THEOREM

This theorem is a corollary of the divergence theorem and may
be derived as follows :

Let A=yV¢

where y and ¢ are scalar functions continuous together with their
partial derivatives of first and second orders. Then,

V-A=V.(yV0¢)
=yV20+Vy-Vo
Following divergence theorem

-”JV V- -Adv =HSAds, we have
”.[VW V2W+V\v-V¢)dv=”sA-ds

=stv-¢ds .(116)

This is referred to as the first form of Green’s theorem.

Moreover, if the functions y and ¢ are interchanged, this will lead
to have

.mv VY +V ¢ -V y)dv =Hs oV v - ds) .(117)
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Subtracting (2) from (1),
JIIV(wV2¢—¢V2w)dv=IIS wVo-0Vy)-ds  ..(118)

This is referred to as the second form of Green’s theorem. This
theorem is extremely useful in the solution of boundary value
problems in electromagnetic field theory.

1.8. HELMHOLTZ’S THEOREM

Helmholtzs’ Theorem is also known as the fundamental theorem
of vector analysis. According to this theorem any vector field is con-
sidered, in general, as a sum of solenoidal (fields having zero diver-
gence everywhere) and irrotational (field having zero curl
everywhere) fields. In other words a vector field is completely
specified by its divergence and curl. The divergence and curl con-
stitute the source and the vortex source respectively of the field.

1.8A. Solenoidal fields

Any vector field which has zero divergence everywhere is called
a solenoidal field. In such a field, all the flow lines ‘are continuous
and close upon themselves (e.g. magnetic field).

Thus, if F be a solenoidal field, then

V-F=0
But V x F # 0 (in general). Let this non-zero curl be given by
VXF=J(x‘y,z)
where vector function J constitute the vortex source for the field F.
Also, div (curl A)=0
Hence V-F=0
will be satisfied by assuming
F=VxA
VxF=Vx((VxA)
=V(V A)-V:A=J ...(119)

Now only the curl of A has been specified while its divergence
may be choosen as desired.

Thus choosing A such that
V.-A=0
Eq. (119) reduces to

VA= -J ...(120)

Equation (120) gives the vector Poisson’s equation and each com-
ponent of A satisfy the scalar Poisson’s equation given by
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VA, = - J,
V2, =-J, -.(121)
VA, = -,

Thus knowing A, either by (120) or by (121), vector field F may
be obtained from

[ F=VxA \ ...(122)
1.8B. Irrotational Field

A vector field F is said to be irrotational provided

[ VxF=0 ‘ .(123)

This does not imply (in general), that V - F = 0, otherwise the field
would vanish everywhere.

Since divergence of a vector is scalar quantity hence it may be
assumed that

V- F=p(y,2) ...(124)
where p constitute a source function for the field F. Using the identity
curl (grad )=V x (V-9)=0 ...(125)

It may be conveniently assumed that
F=-Vo ...(126)

The significance of choosing minus sign will be made clear in the
next chapter. In fact one may assume plus sign as well. Thus,

VF=Y To=p

V2 =—p .(127)

This equation is known as Poisson’s equation and function ¢ is
called scalar potential. ¢ is determined by solving the differential Eq.
(1) and hence field F may be computed from

F=-Vo ...(128)
1.8C. General vector field

Since any vector field may be resolved into a solenoidal and irrota-
tional fields, hence this vector field may be derived by superposition of
the two types of fields, that is, the solenoidal field obtained from

F=VxA
where VZA=J
and irrotational field obtained from
F=-Vo

where v2 0= -p
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Example 1.25. Verify whether the vector field
F= y2zax + zzxay + x2yaz
is irrotational, solenoidal or general.

Solution. For an irrotational field.

VxF=0
a, a, a,
d 0 0
LHS. = Ew 3 %
2 2

v’z Z% xYy
a, [x2—2zx]—ay [y2—2xy]+az [z2—2yz]¢0

Hence F will not be an irrotational field.

]

Now, in order that F is a solenoidal field
V.-F=0
= [éa; (yzz) + % (zzx) + 582 (xzy)] =0
since the divergence of the field does not exist hence the field is
solenoidal.
Example 1.26. Find V2E, where E=(x +y) a, + (x2 + yz)ay.

Solution. Using the value of V2 in the cartesian coordinates we
have,
2 2
vE-L E+ LB+ L E
0x oy 0z

2 2
2
- 53;5 lac B v ayBy + 2, + 255 (o, + o,y + 2B
a?..

+ ? [a,E, +a,E, + a,E,)]
74
2 2 2 2 2: 2.
aEx+aEx+aEx+ aEhaE“aE]
o 2 P T A

thus, V2E = a, [

’E, 9°E, K, '
+ a + + (l)
"'[axz 22 322

But E=@+y) a,+G%+y)a,
so that E, =x+y, Ey:x2+y2,Ez=0
3E, o’E,
Then, o = 1) ax2 =0
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and

and also since E, =0, thus

0B, OB, OE, 3By ¥, ¥E,
R~ A

Substituting these results in Eq. (i), we have
VE=(2+2)a,=4a,.
1.9. COORDINATE SYSTEMS AND VECTOR RELATION

In order to describe a_vector accurately, some specific lengths,
directions, angles, projections or components must be given. There
are three simple methods of doing this, but about eight or ten other
methods are also available which are used in very special cases. The
three useful methods are cartesian (rectangular), cylindrical (polar)
and spherical coordinate systems. We will first discuss these three
systems of coordinates and then the general curvilinear coordinate
system will be described in order to have the important vector rela-
tions in the three coordinate systems.

1.9A. The Rectangular (Cartesian) Coordinate System

(a) In the cartesian coordinate system the three coordinate axes
namely x, ¥ and z are mutually at right angles to each other.

(b) In order that the cartesian system is right-handed coordinate
system, the three axes are so chosen that a rotation (through the
smaller angle) of the x-axis towards the y-axis would cause a right
handed screw to progress in the direction of the z-axis. Using the right
hand, the thumb, forefinger and middle finger may then be identified
respectively as the x, y and z axes.

| a,xa =a, ..(129)
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(c) It is well known that the intersection of two surfaces is a line ;
the intersection of three surfaces is a point. Thus the coordinates of a

point may be given by stating three parameters, each of which defines a
coordinate surface.

Let in the rectangular coordinate system, there be three planes
X=X1;Y=Y1:2=21

These three planes intersect at a point which is designated by the
coordinates (xq, ¥y, 21) [Fig. 1.27].

z
l
. y;
] p A
L (x+dx,y+dy, z+dz)
I
P yn,20 | __
dz
dx o
aZ“ dy
o o ——
3 y
A
ax
X1

Fig. 1.27. The cartesian co-ordinate system.

Another method of locating a point is by giving its x,y and 2z
coordinates. These are, respectively, the distances from the origin to
the intersection of a perpendicular dropped from the point to the
x,y and z axes.

(d) If P has coordinates x,y andz and P’,x +dx, y +dy, and
z +dz. These six planes define a rectangular parallelopiped whose
volume is dv =dx dy dz ; the surface have differential areas ds of
dx dy, dydz, and dzdx. The distance dL from P to P’ is the diagonal of
the parallelopiped and has a length of [Fig. 1.27].

dL =\(dx)* + (dy)* + (d2)* ..(130)
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(e) The unit vectors are a,, a,, a, along the x, y and z axes respec-

ﬁ
tively. The position vector OP or rj, is given by OP =xa, +ya, +za,

=2
= |OP] a,
~% Ve2 +v2 +22 and : : :
where |JOP| =Vx“+y“+2° and a, is a unit vector along the line
joining the origin towards point P.
1.9B. The Circular, Cylinderical (Polar) Coordinate System

The circular cylindrical coordinate system is the three-dimen-
sional version of the polar coordinates of analytic geometry. In the
two-dimensional polar coordinates, a point is located in a plane by
assigning its distance r from the origin, and the angle ¢ between the
line from the point to the origin and an arbitrary radial line taken as
®=0. A three-dimensional coordinate system, circular cylindrical
coordinates is obtained by also specifying the distance z of the point
from an arbitrary z = 0 reference plane which is perpendicular to the
line r=0.

For simplicity, the circular cylindrical coordinate system is usual-
Iy referred as cylindrical coordinate system. The other similar sys-
tems are elliptic cylindrical coordinates, hyperbolic cylindrical
coordinates, parabolic cylindrical coordinates and others.

In the case of a circular cylindrical coordinates we have the
following important features :

(a) The three mutually perpendicular coordinate axes are taken
as r ¢ and z. The r, ¢ and z coordinates are known as the radius, the
azimuthal angle, and the distance along the axes respectively (1.28a).

(b) The unit vectors along the positive direction of r, ¢ and z are
a,, a, and a, respectively.

The unit vector a, at any point (ry, 01, 2) is directed radially
outward, normal to the cylindrical surface r = ry. It lies in the planes
P =¢1, and z = z;. The unit vector a,, is normal to the plane ¢ = ¢,
points in the direction of increasing ¢, lies in the plane z =2; and is
tangent to the cylindrical surface r = ry. The unit vector a, is normal
to the plane z-constant and points in the direction of increasing z.

The unit vectors a,, a, and a, are mutually perpendicular and are
so chosen as to give a right handed coordinate system. Thus

| a,xa,=a, ..(131)

shows that the forefinger, the middle finger and the thumb of the
right hand should represent respectively the unit vectors a,, a, and

a,. This is illustrated in Fig. 1.28b.
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zZh\ _
az
} _
s 7 ag
n~ -
Pl \3r
(r’IQ’111)
0 -
S y
P N
X (@)

P=A CONSTANT

= ACONSTANT

(c)

Fig. 1.28. A right handed circular cylindrical coordinate system.

(¢) In circular cylindrical coordinate system the coordinate sur-
faces corresponding to

(i) a set of circular cylinders ; r = constant
(it) a set of planes all passing through the axis ¢ = constant, and

(Zi1) a set of planes normal to the axis z = constant are used to
locate a point.

(d) A differential volume element in cylindrical coordinates may
be obtained by increasing r, ¢, and z by the differential increments,
dr,d¢ and dz. The two cylinders of radius r and r + dr, the two radial
planes at angles ¢ and ¢ + d¢, and the two “horizontal planes at eleva-
tions” z and z + dz now enclose a small volume shown in Figs. 1.28 ¢
and 1.28 d, having the shape of a truncated wedge. As the volume
element becomes very small, its shape approaches that of a rectan-
gular parallelopiped having sides of length dr, rd¢, and dz. It should
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be noted that dr and dz are dimensionally lengths, but d¢ is not,
however rd¢ is the curved length.

The surfaces have areas of rdrd¢,drdz, and rd¢ dz, and the
volume element whose edges are the elements of length correspond-

ing infinitesimal increments in the coordinates at the point P becomes
rdrd ¢ dz.

(e) Elements of length dl corresponding to infinitesimal changes
in the coordinates of a point are important. If the coordinates
¢ and z of the point P in Fig. 1.28d are kept constant while r is allowed
to increase by dr, P is displaced by an amount dl = a, dr. On the other
hand, if r and z are held constant while ¢ is allowed to increase by
d¢, then P is displaced by dl=a,rd¢. Finally, if r and ¢ are held
constant while z is allowed to increase by dz, then dl=a, dz. For
arbitrary increments dr, d¢ and dz,

dl=ad, +aydd+a,d, ...(132)
and dl = [(dr)? + (rd$)? + (d2)")'/2
1.9C. The Spherical Coordinate System

The salient features of a spherical coordinate system are :

(@) A spherical coordinate system is constructed on the three
cartesian axes by first defining the distance from the origin to any
point as . A surface r = constant represents a sphere in spherical
coordinates. The second coordinate is the angle 6 between the z-axis
and the line drawn from the origin to the point P.

The surface corresponding to 6 = constant, is a cone, and the two
surfaces, cones and sphere, are everywhere perpendicular. The inter-
section of the cone and sphere is a circle of radius r sin 8. The coor-
dinate 6 corresponds to latitude except that latitude is measured from
the equator and 6 is measured from the “North Pole”.

The third coordinate ¢ is also an angle and in this case is exactly
the same as the angle ¢ of cylindrical coordinates. It is the angle
between the x-axis and the projection in the z =0 plane of the line
drawn from the origin to the point P. It corresponds to the angle of
longitude but the angle ¢ increases to the “east”. The surface ¢ =
constant is a plane passing through the 8 =0 line (or the z-axis).

(b) The point of intersection of the three mutually perpendicular
surfaces namely,
(i) a set of spheres (radius r from the origin = constant),
(ii) a set of cones about the axis (6 = constant), and

(iii) a set of planes passing through the polar axis (¢ = constant)
is used to define the coordinates of a point.
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1 az ar
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(a)
Z
dr p’
(r+dr,8+d8,P+dP)

(b)

Fig. 1.29. The spherical co-ordinate system.

For example, the intersection of sphere r=r;, cone 6 =6;, and
plane ¢ =¢;, gives a point whose coordinates are said to be
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(r1, 81, 01), where ry is the radius, 6 is the polar angle or colatitude,
and ¢ is the azimuth angle or longitude (Fig. 1.29a).

(¢) The three unit vectors may be defined such that each unit
vector is perpendicular to one of the three mutually perpendicular
surfaces and oriented in that direction in which the coordinate in-
creases.

The unit vector a, is directed radially outward, normal to the
sphere r = constant, and lies in the cone 6 = constant and the plane
¢ = constant. The unit vector ag is normal to the conical surface, lies
in the plane, and is tangent to the sphere. It is directed along a line
of “longitude” and points “south”. The third vector a, is the same as
in cylindrical coordinates, being normal to the plane and tangent to
both the cone and sphere. It is directed to the “east”.

The three unit vectors are mutually perpendicular and a right-
handed coordinate system is defined by choosing the directions for
a,, ag and a, such that

r a, x ag=a, ...(133)

our system is right-handed, as an inspection of Fig. 1.29a will show,
on application of the definition of the cross product. The right-hand
rule serves to identify the thumb, forefinger, and middle finger with
the directions of increasing z, 6 and ¢, respectively.

(d) A differential volume element may be constructed in spherical
coordinates by increasing r, 0 and ¢, by dr, d6, and d¢, as shown in
Fig. 1.29 b. The distance between the two spherical surfaces of radii
rand r +dr is dr ; the distance between the two cones having generat-
ing angles of 6 and 0 + d6 is rd6 ; and the distance between the two
radial planes at angles ¢ and ¢ +d¢ is found to be rsin 6 d¢. The
surfaces have areas to rdrd®, r sin 8 drd¢, and r? sin 06d0d¢, and the

volume is 7% sin 6dr d6 do.

(e) The distance element dl corresponding to arbitrary increments
of the coordinates is

dl =a, dr + agrd8 + ayr sin 0d¢ ...(134)
and dl = [(d,)? + (rd®)? + r? sin® 0 (d¢)21 12
1.9D. Transformation Between Coordinate Systems

In the preceedinug sections, we have discussed the three important
and most commonly used coordinate systems. Either of these can be
used to express a vector quantity but in certain more difficult
problems it is some times felt necessary to tackle the problem as a
first step in cartesian coordinates and then to have the answer in the
desired cylindrical or spherical coordinates. Sometimes, it has been
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found that a vector if expressed in cartesian coordinate system will
provide sufficient simplification in the solution of the electric and
magnetic field problems. Further, in some other problems, the trans-
formation between coordinate systems in the reverse direction is
wanted.

However, there may be cases in which it may be advantageous
to use a mixed coordinate system and hence the transformation be-
tween coordinate systems becomes an essential aspect.

(a) Transformation between Certain and Cylindrical Systems

The transformation of a vector in cartesian coordinates into one
in cylindrical coordinates is fundamentally a two step problem involv-
ing a change in variables as well as a change in components.

Let us consider a vector A in cartesian coordinate system given
by :

A=aA, +aA +aA, ...(135)

where, A, A, and A, are functions of x,y and z. This vector A is
desired to be expressed in cylindrical coordinates. Let A in cylindrical
coordinates be :

A=a A +a,Ay+aA, ...(136)
where A, Ay and A, are the functions of r, ¢ and 2.

In order to carry out the transformation ; we will proceed in two
steps as explained below :

Ist Step : Change in the Variables. If we set up the two coordinate
systems as shown in Fig. 1.30, so that the z = 0 planes coincide, and
the y =0 plane is the ¢ =0 plane, then the following relationships
exist between the variables, at a general point P (Fig. 1.30).

x=rcos ¢
y=rsin¢ ...(137)
z=z

From the above three equations, we get

r2 = x? +y2

tan ¢ =2 ..(138)
X

zZ2=2

The first set of equations [Eq. (137)], gives x, y and z in terms of
r,¢ and z; and the second set of equations [Eq. (138)] gives
r, ¢ and z in terms of x, y and z. It is seen that no change is involved
in the variable z, and that the unit vector a, is same in each system.
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IInd Step : Change in the Components. In general, we have the
three cartesian components A,, A, and A, of the vector A [Eq. (135)]

and desire to get the three cylindrical components A,, Ay and 4,. Im-
mediately, we realize that the A, components are same, since the unit
vectors have the same significance in each case.

To find the A, components, we know that a component in a

desired direction may be obtained by taking the dot product of the
vector and a unit vector in the desired direction.

S, £ ’ ;y
So /
¢ Teae /
% Fig. 1.30
Hence, A=A a, ...(139)

Expanding these dot products, we have,
Ar=(ay A+ a;)'Ay +a,4,) (a,)
=A,(a,-a)+A,(a,-a)+A, (a8, a)
=A; (a;-a,)+A,(a, - a) ...(141)
and Ap=A-a,
=(ay A+ ayAy + azAz) -8y
=A;(ay-ay) +A, (a, ay) +A4, (a, - ay)
=A; (a, - ay) +A, (a, - ay) ...(142)
since a, - a, and a, - a4 are zero.
Referring to Fig. 1.30, we have
a,-a,=11cos¢$=cosd ...(143)
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a,-a,=sin¢ ...(144)
a, - ay=1.1cos [£(a,, a,) + £(a,, ay)]
=cos (¢ +90°) = —sin ¢ ...(145)
and a, - a;=1.1cos [90 - (90 - ¢)] =cos ¢ ...(146)

Introducing (143) and (144) in (141) and, (145) and (146) in (142)
we have

]

A, =(Ay cos ¢ +A, sin ¢) ...(147)
and Ay= —A,sin ¢ +A, cos ...(148)

The aforesaid steps can then be utilized to obtain the result.
Thus substituting Eqs. (147) and (148) in Eq. (136), we have the final
expression for vector A in cylindrical coordinate

A=(Aycos0+A,sind)a, +(—A,sin ¢+ A, cos 9) a,
+4,a, ..(149)

Example 1.27. Transform the vector to cylindrical coordinates :
y
F=axz+ay(1—x)+a2;.

Solution. We will follow the following steps to make the trans-
formation.

Ist Steps : Change of Variables. Substituting

X=rcos ¢
y=rsin¢
and z=2z

in the components F,, F,, F, we have
F.o=z=2
Fy=(1-x)=1-rcos¢
F, =% tan ¢
Therefore, F=za,+(1-rcos¢)a,+tan¢a,.
IInd Step : The change of components. We have,
F,=F,cos¢+F,sin¢

=2z cos ¢ + (1 —rcos ¢) sin ¢ (@)

and Fy= -F,sin¢ +F,cos ¢ ...(iD)
= —zsin¢+1(1-rcos ¢)cosd

F,=tan ¢ .(Ti)

substituting Egs. (i), (if) and (iiZ) in the expression
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F :Fr a,+F¢ a¢+Fz a,,
we have the transformed vector F in cylindrical coordinate systems
F=(F,cos0+Fysin¢)a,+(-F,sin¢+F,cos¢)a,+F,a,
=[zcoso+(l-rcosd)singd) a,+[-2zsin¢
+(1—r cos ¢) cos ¢] ag+tan ¢ a,
Basically the transformation between coordinate systems is
simple and is accomplished by following the steps : first change

variable and then change components. The informations listed in
Table 1.1 will make the problem easier.

Table 1.1
Cartesian to Cylindrical Cylindrical to Cartesian
x=rcos ¢ r=\jx2+y2
y=rsin¢ ¢=tan_lx
x
z z
Ar=A;cos$+Aysin ¢ x y
Ax=A -A 5
* r\/x2+y2 ¢‘/x2+y‘
Ap= ~Aysino+Aycos ¢ _ y x
) ! ALV_‘A’\/::c2+y2 +Aw\/x2+yz
Az :Az Az =Az
A=Arar+Apas+A4A:; a, A=Aa,+Aay+A; a,

Transformation from cylindrical to cartesian form
A=A a, +Aja,+A,a,
in cylindrical form and the desired form is
A=A;a.+Aja +Aa,
Following dot product
A=A a,=(A,a,+Apay+A,a,) a,
=Ara,-a,+Aya,- a,
=A,cos 9 +A4A(-sin9)

x Y
=|A -A ...(150)
[ r\/x2+y2 °\fx2+y2
and Ay=A-a,=(Ara,+Ayay+Aa,)-a,
=A,a, a,+Apa,-a,+Aa,-a,
=A,sin ¢+ Ay cos ¢ ...(151)

Y x
A +A
( r\/x2+y2 q)‘/x2+y2]
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and A,=A, ...(152)

substituting Eqs. (150), (151) and (152) for A,, A, and A, respectively
in Eq. (136), we have the desired result that is,

x y
A=A —-A 3 a
[ " \x? 4+ y2 ¢\/x2+y2 ] x

y x )
+|A +A +A4, a, ...(153)
( r‘/x2+y2 x\/x2+y2 %y 2

(b) Transformation of a vector in cartesian coordinates to
a vector in spherical coordinates and vice-versa.

The transformation of a vector from cartesian cnordinates to
spherical coordinates, or the reverse, is accomplished by following the
same general procedure as discussed above. The relationship between
the variables are somewhat more complicated but are readily ob-
tained with the aid of Fig. (1.32).

From the figure, it is seen that

p=rsin@
Thus, x=pcos ¢ =rsinbcos ¢
y=psin¢=rsinOsin ¢ ...(154)
z=rcos® |
These give r? =x? +y2 +22
cos 0= 72 e (155)
x“+y°+z
X
tanq)—x

Fig. 1.31
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Let the vector A=A a +Aja, +A a, ...(156)

is to be transformed into spherical system of coordinates, viz,
A=A,a +Agag+A,a, ...(157)
Ist Step : Change of Variables. This step is accomplished by
putting
x =rsin 0 cos ¢
y =rsin 0 sin ¢
z=zcosH
in the components A,, A, and A, of vector A.

IInd Step : Change of Components. This step involves the deter-
mination of the various components, namely A,Ag and A, of the

spherical coordinate system. This is approached as given below :

A=A a,

=(Aya,+Aja, +Aa,) a,

=A,(a, a)+A (a,-a)+A,(a, a) ...(158)
Ag=A- ag

=A, (a, - ag) +A, (a, - ag) + a, (a, - ay) ...(159)
Ap=A - a,

=A, (ay ay) +A) (a,  ay) +A; (a, - ay) ...(160)

The dot product relations between the unit vectors are :

(i) the dot-produced with a,
a.-a,=a,-a,=1-1-cos0=cosb ...(161)
ag-a,=a, ag=cos (90 +0) = —sin 6 ..(162)

Since a, x ag = &y, so a, and ag will be in one plane at right angles
and hence the net angle between a, and ag is (90 + 6)

a,-a,=a, a,=cos 90°=0 ...(163)
since a, is at right angle to a,.

(it) The dot-product with a, - a, - a, is obtained by finding first,
the projection of a, on the x-y plane, that is |a,| sin 6, then noting
the angle between |a,| sin 6 and a, vector, we have

a,-a,=a, a,=sinOcos ¢ ...(164)
ag-a,=a,-ag=Ccos 0 cosd ...(165)

a,-a,=a, - a,
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Here, a, is in the same plane as a, and a, but the angle between
a, and a, is (90 + ¢). Therefore,

ay-a,=cos (90 +¢) = —sin ¢ ...(166)
(it7) Similarly, it can be deduced that
a, a,=sinOsin¢ ...{167)
Zh
| |
| |
| —
! -la‘b :
! I
|
|

e ———
b4
%
X Fig. 1.32

ag-a,=cosOsin¢=a, ag ...(168)

ag - a5 = cos [90 - (90 - ¢)]
=cosdp=ay-ay ...(169)
A, =A, sin 6 cos ¢ +Ay sin ¢ sin ¢ + A, cos ¢ ...(170)
Ag=A,cos 0 cos ¢ +AycosBsin¢—A,sin 6 .(171)
and Ap= —Aysin ¢ +A,cos ¢ ..(172)

substituting Eqs. 170—172 in Eq. (157), we get the desired result.
Similarly, if A=A,a,+Agag+A;a,
is given and the desired form be

A=A a,+Aja, +A; a,

then, Ay=A-a,=A a, a +Agag a, +Aya,- a,
xz
=A, —=—x+A
" \/x2+y2+z2 e\/(3c2+y2) (x2+y2+z2)
Yy
-Ay s ...(173)
¢ ,{xz +y2
Ay=A-a,
=A ¥z

: +A
4 ‘/xz +y2 + z2 o \/(xz +y2) (x2 +y2 +22)

+A, = ..(174)
¢ 1[:’CZ_‘_yZ

and A,=A a,
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z —A \/—” (175)
q)‘\/ 2 ves J
x> +y’iz

A,
"Va? + y2 +2°

Introducing A,, A, and A, from equations (173), (174) and (175),
in equation (156) ; we get the transformed vector in cartesian coor-
dinate system from that in spherical coordinate systems.

The relations for the transformation between cartesian and
spherical forms are tabulated below in Table 1.2.

Table 1.2
Cartesian to spherical Spherical to cartesian
x =rsin 6 cos ¢ r=\jx2+y2+zz
y=rsin0sin ¢ r=cos~ | z
V% + y2 +2°
z= v
z2=rcos ¢ ‘D:ta“_lLtJ
A=Ay sin 0 cos ¢ A=A, . x B
* i Vx +y +z2
+Ay sin 0 sin ¢ + Az cos 8 As xz
\j(xz + y2) (x2 +y2 + 22)
— A, S
Nves
= Ay cos 0 cos ¢ Ao=A, - y
Vx -+-y32 +2
+Ay cos 0sin 6 - A, sin 6 A ¥z
6 N + yz) (xz +yz " 22)
Ay
Wy
Ao = — Ay sin 0+ Ay cos ¢
A=A
2y N +yi+ 22 +y +2z
__l_ v~ +
\sz +y2

Example 1.28. Loc te on a sketch and give the cylindrical coor-
dinates of the point whose cartesian coordinates are x = 1,y =2, z = 3.

Solution. Given x =1,y =2,z =3. From Fig. 1.33, it is evident
that
x=rcos¢o=1
y=rsin¢p=2
Then r=V1+4=15=224
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Y
R Er)
// \ | P(X,}’,Z)
A
I
i 5
| | !
| |
! ' ;
l r
I
Fig. 1.33
_y_2_
and tanq)—x 1—2
Therefore o =tan” 1(2)=63.4°
and z=3.

Thus the point P shown in Fig. 1.34 has the cylindrical coor-
dinates (2.24, 63.4°, 3).

Example 1.29. A circle, centered at the origin with a radius of
two units, lies in the xy plane. Determine the unit vector in (a) Car-
tesian coordinates (b) polar coordinates, which lies in the xy plane, is
tangent to the circle at (V3, 1, 0), and is in the general direction of
increasing values of y. Refer to Figure 1.34.

Solution. Since the circle is centred at the origin, lies in the xy
plane, and has point P (x =V3,y = 1), the problem becomes a two
dimensional one (Fig. 1.34).

From the given coordinates of point P, we have

x=V3=rcos® (@)
y=1=rsinb ...(11)
where r is the radius of the cylinder and is given by
r=V3+1=2 ...(iD)
—tan-1{L)_ 300 ;
and 0 =tan (\/3] 30 ..(Iv)

Referring now to Fig. 1.34, we have
S
PR=PQ+QR
— —
= |PQ| (-ay+ |QR]| (a))
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ﬁ
= (component of a, along x-axis) (- a,)
+ (component of a:along x-axis) (ay)
= |a, cos (90 - 8)| (- a,) + |a, sin (90 - )| (a,)

e d
where a, is a unit vector along PR, thus

-_% .
PR= -sin@®a,+cosHa, ...(v)
Substituting the value of sin 8 and cos 6 for 8 = 30°, we have
= 1 V3 .
PR = ——2—ax+~§ a,. . (vi)
. ‘—) . . .
since the magnitude of PR is unity, hence we can write
el 1 V3
PR=a,= 5 Aty A

(b) To determine unit vector a; at P in cylindrical coordinates :
The unit vector a, in cartesian coordinate is

.1, .8
ap— —-Eax*}' 2 ay

thus a, in polar coordinates will be given by

a,=A,a, + Agay . (vil)
where A =a, a,
(L1, . V8
= —Zax+ 2 ay - ay
1 V3
= -ga-atora,ar
1 N3 .
= ——zcose+ 9 sin
= —\{T3+j4§=0. ...(viir)
A (1, .
g=a, ag= —2ax+ 9 By - ag
1 N3

= —Eax'ae+78y'ae

——é—cos(90+6)+l/2§sin(90+6)

1 . V3 3
+2sm9+ 5 cose_4+4_

1 ...(ix)

Substituting (viii) and (ix) in (vii), we have,

a,=Aa, +Ag-ag=1-2ag (%)
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This shows and also is evident from Fig. 1.34, that a, is in the

increasing direction of 6 and has no component in the radial direction,
since it is tangential to the circle at P.

Example 1.30. Transform the vector from cylindrical coordinates
to cartesian coordinates.

A=ra, +ra,

Solution. A =ra, + ra, in cylindrical coordinates
=A,a,+Aa,+A4, 8, (gencral form)
On comparison A.=r

Ag=r and A,=0
Now r=\lac2+y2
rcos ¢ =x, rsin\¢:y

\
and 6=tan™} (‘XJ
x

\
Following Table 1.1

= X Y - ,
A=A, Ve +y* A V' +y° T

y x
A=A, +Ay T =y+x
YOI x4yt ®Vx? + 52

A,=0
Hence A=Aa +Aa, +Aa =@x-y)a, +(x+)y)a,
Example 1.31. Transform the vector A to spherical coordinates
z
= y;— aZ

Solution. Given A= y?z a,
in cartesian coordinates. Comparing it with the general form
A=A a, +Aa +Aa,
We get A,=A,=0 and4, :vxz

Following Table 1.2
x =rsin 6 cos ¢
y=rsin6sin ¢

z=rcos®
A, =A;sinBcos ¢ +A,sinbsin¢+A, cos O
=¥ cos 0

_rsin@sin¢-rcosb

- cos ©
r sin 6 cos ¢
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=rcos? 0 tan ¢ LD
Ag=A cosBcosd+A, cosBsing—-A,sinb
_rsin 9'sm orcosd sin 6
r sin 0 cos ¢
= —rtan ¢ sin 6 cos 8 e
and Ap= —Aysmmo+A, cosp=0. .

Then, the required vector in spherical coordinates will be ob-
tained by substituting Egs. (), (i1) and (iii) in the equation

A :Ar a, +Aeae +A¢a¢
Thus, A=rtan¢ cos? 0 a, —r tan ¢ sin 6 cos 6 ay.

Example 1.32. Transform the vector from spherical coordinates
to cartestan coordinates :

rschos¢

Solution. A= 1

rsin @ cos¢

in spherical coordinates comparing it with the general form,
A= A.,. a, + Agae +A¢ ac
we get A,=Ay=0
1
and Ap= r sin 0 cos ¢
Now, following Table 1.2

S
e:cos_l'é_—
NI
(D:tam_lf‘X
(*
and A=, 75 x2 =
Nx© +y +~ \/(x +y )(x +y +z)
~_A ! -
\lx +y
=0+A4Ag xz +0
J(x +y%) (2 +y% + 2%
— 1 )
_\/_xf‘+y2+z2 \/x2+y2 X
‘\ Va2 +y2+22 \/x2+y2
xz

Va2 +y2 Vx? + 5% + =
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= 4 ()
\/x2+y2 \lx2+y2+zz
A=A ——L——1 A N A—
Y 4 \[x2 +y2 +22 o \/(xZ +yz) (x2 +yz + 22)
x

+A '.“_——'——_‘?):

O V217

=0+ L +0 D)

x Vo2 +5%) (@2 +92 +29)
A,z Ag Vx? +y?
2

and A

¢ \/x2+y2+22 \/x2+y2+z
x2+ 2
x>ty

= - . (2i)
x Vx? +y2 +22

Then the required vector in the cartesian coordinates will be
obtained from

A=A a +Aja, +A,a,
By substituting A,, A, and 4, from Eqgs. (i), (if) and (iii), we have
xza, +yza, — Ve + y2 a,
A= V2 +v2) (2 + 12 + 22
XN +y°) (x°+y° +29)

Example 1.33. Of the components of vector V are

V=-"2—-v,=-2L—_vV,=0
x x2 +y2 y xZ +y2 z

Compute the divergence and curl using cylindrical coordinates.
Solution. With components

x y
V.= LV, =
x x2+y2 y x2+y2

and V,=0,

vector V in cartesian will be

V=5 |a, +| 5L D
[x2+y2Ja +(x2+y2]ay ¢

First we will transform V into cylindrical coordinates.

The first step to be followed is to change the variables by putting
in Eq. (1)
x=rcos¢, y=rsin¢, z=z
. rcoso r sin ¢
Thus, V= 2 a, + 2
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cos 0 sin
., sino

+ a (73]
X r Yy

The next step will be to change the components. This will be
approached as given below

The vector in cylindrical coordinates 1s

V=Va,+Vya,+V,a, .(10)
Multiplying (ii) by the unit vector a, we get
cos i
\A ar:_—rﬁ(ax'ar)*'s—n:ﬁ(ay - a,)
But from Eq. (iii), V- a,=V,
cos sin .
So, V, = -—r-(R (a, - a,)+ _r_QZ (a,-a,) .2}
similarly, we can deduce this,
cos sin
V¢:%(ax-a¢)+TQ(%-a¢) ()
Further, a,-a,=cos¢
a,-a,=sin¢
a, a,= —sin¢
and a, - a,=cos ¢

Introducing these in Egs. (iv) and (v), we have
2 22
A= [905 + §£1_Q]= 1

r r r

A¢=_cos¢s1n9+cos¢sm¢zo
r r

and A,=0 .(vi)

Substituting A, A, and A, from Eq. (vi) in (iii), we have the vector
in cylindrical coordinate,

V= 1 a,
r
Now, (V-V)in cylindrical coordinate
19 19 Vv,
V.- V= 3 rVr) + % Vo + 3

1y W13
r or r 9
1 1

=2 270
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a, a, a

= d 129 dJd
and also VxV= > rae %
1 0 0

-

a1y 1. . 191 ]
_aq,[az (r]-—o_l“P a, l:— - a(b (rl—o
1.9E. General Curvilinear Coordinate System

Each of the three coordinate systems, discussed earlier and many
others utilized in mathematical physics, are orthogonal coordinate
systems. In orthogonal coordinate system, the three coordinate sur-
faces intersect at right angles to one another at any given point.
Because of the simplicity that results from such a choice, orthogonal
coordinates are used almost exclusively. Since the fundamental
definitions of gradient, divergence and curl do not involve a particular
coordinate system, it is possible to develop general expressions for
these in terms of a general coordinate system. This system is oftenly
found useful in examples with symmetrical fields specially in cases
of cylindrical and spherical configurations.

Consider coordinate curves as shown in Fig. 1.35 where uy, u,

ug are orthogonal coordinate. Let a;, ay, ag be unit vectors tangent to

the respective coordinate curves at any point P. The unit vectors are
chosen as positive in the direction in which the corresponding coor-
dinates increase.

U, = COORDINATE

J
as

0 a,

U>=cooroinaTE

U=COO0R D//vﬂE/

a

(@)
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[

\/
[ Us=COURDINATE

7/
U1 =CO0RDINATE h,du,
= Ups=COORDINATE
-7
b)
Fig. 1.35

Now let, dly, dly, and dlg be differential component arc lengths

measured as positive along the coordinate curves in the positive
directions of the coordinates. The derivative of these arcs with respect
to the coordinates shall be designated as

dly

du M ..(176)
dly
dls

and —(;ZL; = h3 (178)

in which hy, ke, and hg are, in general, a function of the coordinates,
uy, ug, and ug and are called scalar factors. Fig. 1.35b shows a dif-
ferential volume in terms of the differential compounents of di. In the
limits of differential space, this element of volume has the edges of

dl] :hl dul ) dl2'—‘h2 dLLz; dlg'—"hg dU3 (179)

and volume, given by the product of these edges oriented respectively
in the directions of the unit vectors a;, a;, and ag,

dv = dll dlz dlq

substituting dly, dly, dl3 from Eq. (179) in the above equation, we
have
dv =hy hg hy duy duy dug ...(180)

The orientation of the three co-ordinates of the curvilinear co-or-
dinate system is chosen such that it follows a right-handed coordinate
system. That is, if a; is rotated into a, (in anticlockwise direction),
the resultanting direction of advance of a right-handed screw thread
establishes the direction of the third unit vector a3 as
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‘L ag=a) Xag ~|l ..(181)

(a) Cartesian Co-ordinate System

In cartesian system of co-ordinates the unit vectors may be desig-
nated as
a,, unit vector in the +x direction.
a,, unit vector in the +y direction.
a,, unit vector in the +z direction.
These unit vectors are illustrated in Fig. 1.36. The differential

components of the general arc d! are identical with the differentials
of the co-ordinates.

y ay
{ ax
'
@
LY
[
0 ] X
I ///
s
y
v /
4
Fig. 1.36
Consequently, u;=Il1=x; ug=Ily=y ; ug=Ilz=z ...(182)
and hence duy =dly ...(183)
dug =dlgy ...(184)
dug=dlg ...(185)
Consequently hy=hg=rlg=1 ...(186)

and the element of volume is

dv=dx dy dz ...(187)
(b) Cylindrical Co-ordinate System

A radial distance, an angular displacement, and a linear (or axial)
displacement may also be used to describe a cylindrical co-ordinate
system that is also an orthogonal system. Fig. 1.37, illustrates the
cylindrical co-ordinates r, ¢ and z, and a,, a, and a, the unit vectors

in the positive direction of the respective co-ordinates. It may be noted
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<{

Fig. 1.37

that a, is still the z-co-ordinate unit vector and hence is carried over
from the a,, a), a, notation of the cartesian co-ordinate system.

Reviewing Fig. 1.37, we have

dly=dr;dlg=rd¢;dl3=dz ...(188)
also uy=r;us=0;ug=z2 ...(189)
and hence duy =dr ;dug=dé
dug=dz ...(190)
dly dr W
Consequently hy= d—u1 == 1
_ dlz_ rdd
hz—-d—uz——%—-—r (191)
di3 dz
h3 = au—a = d—z‘ =1

and the element of volume is

dv =dly dly dly = rdrdodz ..(192)
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(c) Spherical Co-ordinate System

A radial displacement and two angular displacements may be
used to establish a spherical co-ordinate system that is also or-
thogonal. Fig. 1.38 illustrates the spherical co-ordinates, r, 8 and ¢,
and the a,, ag and a, unit vectors chosen in the positive directions of
the respective co-ordinates. Furthermore, a, and a, are still as-
sociated with the r and ¢ co-ordinates and hence are carried over from

zZ)

X

Fig. 1.38

the a,, ay, a, notation of cylindrical co-ordinates.
Reviewing Fig. 1.38, indicates that
dll =dr s dlg =rd®

dlg=rsin 8d¢ ...(193)
Also uy=r;uy=0
and ug=¢ ...(194)
and hence duy=dr;dus=d8
dug=do¢ ...(195)
Consequently
dly dr 1
hl dU1 dr =1
dly  rdo
ho = duy ~ db =r ...(196)
dly rsin6d¢ .
h3—du3- do _.rs;me~
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and the element of volume is

dv =r? sin 0 drd6 do ..(197)
The elemental area’s are
dlydly, dlodls, and disdly
and therefore, for the surface with constant radial distance 7’ is (as
depicted in Fig. 1.38) is
rd® r sin 6 d¢ = r?sin 6 d6do ..(198)
(d) Scalar and Vector Products

The fundamental definitions of vector multiplications, namely the
‘dot’ product and ‘cross’ product, can also be used to have general
relations pertaining to orthogonal coordinates. Thus, if A and B are
two vectors expressed in curvilinear coordinates by

A=2a;A; +a4y +azA3 ...(199)
and B = alBl + asz + 83B3 (200)
then, since a;, ag and ag are mutually perpendicular so that
a]_~a1=ag~a3=a3~a1=1;
al~a2=az-a3=a3-a1=0;
ayxaj=agXag=agxag=0;

and a; x ag =ag
ag Xag=a;
ag X ay =ag
Consequently, A B :AlBl +A232 +A3B3 ...(201)
a a ag
and AxB=|A; Ay, Aj ...(202)
B, B, Bs

It should be noted that, one of these vectors if replaced by the
‘del’ operator (discussed in section 1.9.5.5), the above expressions do
not hold.

(e) The V-Del) operator

Vectors may, in general, be functions of both space and time. The

V-operator is a vector space-function operator and is defined through
the partial derivatives with respect to space variables. The use of
partial derivatives is simply a method of mathematically holding time
fixed (if the vector is a function of time) and investigating the be-
haviour of a vector spatially in the region at that particular instant
of time.

In any orthogonal coordinate system the V vector operator is
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= d d d ;
V=a;- 3l + ag 3l + ag 3l ...(203)

or in terms of the coordinates u;, ups and ug, since in general the
spatial differential dl = hdu

= 1 o 1 0 1 0 ,
V= ! h1 8u1 +az hz BU2 +a3 h3 aU3 -(204)
In cartesian coordinates where
ay=a,:a=4a,;a3=4a,
Ui =X U=y Uzg=2
and h1=h2=h3=1,
the del operator is
S ) 0 0
V-axax+ayay+az % ...(205)

In the cylindrical coordinate system where
aj=a,;a;=8y;8,=a,
Uy1=riug=90,uz==2

and hi=1;hg=r;hg=1
the del operator is

9 19 d

V=a,$+ao;5$+a2$ ...(206)
Finally, in the spherical coordinate system where

a)=4a,;a=8g; a3 =8y
uy=r;ug=0;ug=0

and hi=1;hg=r;hg=rsin8

the del operator is
s d 10 1 4
V’a'ar+"9rae+a¢rsinea¢ ...(207)

(f ) Gradient of a Scalar Function

For a complete meaning in the scence of an equation, the V
operator must be applied to or be permitted to operate directly upon
some other function. The gradient results when this operation occurs
upon a scalar function. In this section we will first find an expression
for the gradient of a scalar function in curvilinear orthogonal coor-
dinate system from the definition of gradient and then the result so
obtained will be extended to other orthogonal coordinate systems.
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Referring to Fig. 1.35a let ¢ (11, ug, ug) be a scalar function. The
component of gradient of ¢ along the u; axis, from the definition, is

(grad ¢), = lim £~ ¢O) @) - %0)
du; >0 L
- lim $A-00)
dul -0 (h ldul)
-1 00
=T du; ...(208)

where d¢ is an increment in the value of function ¢ between points
A and O corresponding to a change in length dl; = 2, du; along the
u) axis.

This follows from the definition that the gradient of any scalar
function ¢ will be a vector whose component in any direction is given
by the change of ¢ for a change in distance along that direction.
Similarly,

(grad ¢)2 = h% % ...(209)
and (grad 6)g = hia ;—li .(210)

Multiplying Egs. (208), (209) and (210) by a;, a; and a3 respec-

tively, the resultant expression for gradient of function ¢ i.e. grade
¢ becomes

1 do 1 do 1 d
grad ¢ = a; Eﬁu—l +a271—2 3, +ag— hs 833 ..(211)
Introducing Eq. (204), we have
grad 9=V ¢ .(212)
= 1 0 1 0 1 9

where V=

1 hy duy " * by dup T hy ug
From Eq. (211), we have for
(i) Cartesian coordinates :

Vo-n 0.q 9, , 9%

Vo=a, 3 T 3y ta, 3 ...(213)
(i1) Cylindrical coordinates :

9 199 . 9
Vo=a, 5 A, r 30 +a, > ...(214)

(iti) Spherical coordinates :

9 199 1 9
Vo = 3, o+ 30+ 3 g 5o ..(215)
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If the function ¢ is the sum of two components, as
0=01+02 ...(216)

then the gradient of the sum of the two components can be shown to
be the sum of the gradients of the components, as

Vor+0=Vo;+Vy; .(217)

since from Eq. (211) each term of the partial derivative can be dif-
ferential as

d(91+92) 391 30y

u, " ou, ou, ...(218)

If the function ¢ is the product of two scalar functions w; and
w9 as
o= w; W9 ...(219)

then, the gradient of the product of two components can be shown to
be

V (0y09) =w; V g + wy V oy ; ...(220)
since each term resulting from Eq. (211) can be differentiated as

ou,  ‘ou, 2ou,

and a collection of all the terms will confirm Eq. (220)

..(221)

(g) Divergence of a Vector

The divergence of a vector field B may be computed from diver-
gence (Gauss’s) theorem which states that

Il @ Ba- HS B ds ..(222)
v
In the limit dv — 0,
-”s B-ds
VB = div B = lim —— ..(223)

It, therefore, follows that the divergence of a vector field may be
determined by finding the net outflow per unit volume in the limit
the volume approaches zero.

Let us now consider a vector flux field in which a vector B is
specified. In any orthogonal coordinate system the differential ele-
ment of volume is (dly, dly, dl3), i.e.

dv = h1h2h3 du 1dU2du3 (224)
Let the vector B be
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Us COORDINATE
DIRECTION

28

B+ 5224l

B8 O34 = 2791, R

a E B

‘ U, COORDINATE
DIRECTION

, 28

8 al

di,

Us COORDINATE
DIRECTION

Fig. 1.39
B=81 Bl+8232+8333 ...(225)

where B; is assumed to be the average value of the component of B
along u; axis and at the plane u; =0.

Now, the surface integral -”S B - ds gives the net out flow of flux

(differential flux emanating) through the surface s.

) Referring to Fig. 1.39 and using the symbol y to indicate the flux,
the area of face OADCO is

dlldlg = h1h3du 1dlt3
the flux entering (that —ve flux) the face (OADCO) is
dy(u2) = Boh1hadudug ...(226)

According to Taylor’s expansion formula, the flux at face
BFEGB from the value of B given by

oB 3B, (dly)?
=2 12+——2( 20,
dly 3122 2!

By -

If dl; is very small, the square and higher order terms may be

neglected, so that at the right face BFEGB, the normal component of
By becomes

0B, 0B,
By + 5, dly=By+ g hodug ..(227)
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Eq. (226) gives the component flux density By in terms of coor-
dinates uy, ug, ug and directed in the number 2 co-ordinate direction.

Over the differential surface at the right of the volume where the
ugy co-ordinate takes on the value of uy + dugy, the density is in general

changed, since it may be a function of position along the ugy co-or-
dinate. The differential flux over the right surface at ug + dug then is

9(Bah1h3) (duydug)

ay (ug + dug) = (Bahihs) duydug + 3%
2

duy ..(228)

In general h, and k3 may contain some function of the coordinate
up and hence must remain within the partial derivative.

The net differential flux gain of the right over the left surface is
Eq. (228) less Eq. (227)

0 (Bah1hyg)
3u2

Similarly fluxes in the directions u3, and u; are respectively

or dy (ug +dug) — Ay (ug) = duydusdug ..(229)

d (Bshoh
—La*”’li) duidugdus ..(230)
ug
d(B1hgh
and _(al_u322 duydusdug ...(231)
1
Adding (229-231), and using
_[s B.ds
Div B =lim =V.B
dv—-0 dv
1 -Us B-ds
We have = lim s———
dv — 0@l1dl2dl3
= 1 d(B1hohs)
VB = hohadu dugdig { du,  Grdugdus
d(Bghsh) 0(Bghihg)
+ au2 dulduzdu;; + -—"——aua duldugdu;;
- 1 | 9(Bihghy) d(Bghshy) dBshihg)| | (2392)
V-B= h1h2h3 I: au1 * 8u2 * au3

This expression is valid for any orthogonal co-ordinates system.
Eq. (232) simplifies to the following forms for the three systems as
given below :
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i = dB, 9B, 0B,
Cartesian V- -B-= e ...(233)
ox  dy az
el 7.8 212 L2
Cylindrical V- B = r[a (Br)+ ¢ 8 (rBz)}
B 0B, 1% aB
e % ..(234)
Spherical V-B=—1—{ (r smeB,)+ (r sin 6 Bg)
2 sin 0 [ Or
¢ (rB¢)]
_2B, 3B, 1By coto, 1 B,
" r " or r o9 r 9 rsin® a¢
...(235)

(h) Curl of a Vector

Consider a space field in which a vector A is specified. The curl
of A is a vector determined by the vector sum of three-line integrals
of the scalar, or dot, products of the vector A, taken over the
perimeters of the three mutually orthogonal elementary areas and
divided by these areas. The curl of A is symbolized by V x A and the
nth component (n = 1, 2, or 3) is expressed as

an‘_(E

As >0 Asy,

Fig. 1.40 illustrates some of the variables to be used in evaluating
the first component of the curl in general orthogonal coordinates
(n =1). This curl component is normal to the coordinate surface for
which u; is a constant and is directed in the positive sense of the
u coordinate. The line integral is to be taken in the direction around

the elementary area in the order oabc, to confirm with the convention
of the advance of a right-hand thread in the positive u; co-ordinate

direction. This direction of circulation is indicated in the figure by the
arrow symbol encircling the small circle with the dot in the centre
(right hand thumb rule), which represents the unit vector a; pointing

out of the paper.
Let the vector field A be of the form
A= a; Al + 82A2 + 33A3 (237)

Then the closed integral along the path oabco is

|V><A(n= ..(236)

jclA-d1=IaA-d1+fbA-d1+ICA-d1+fOA-d1 .(238)
0 a b c

The line integral from o to a is Ay - dl; or in terms of the coor-
dinate uy, the magnitude is Aghodusy. The arc length in general or-
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U3 COORDINATE
DIRECTION

thZ._(AuZh_Z)du
c b
dly;=A,du QAzh
3 3—1" h3A3+—g—-7 3dl.2
2
— 9(Azh3)
:h3A3+—aja—:-dU2

a| CTz f a \
dlz=hadu, Up COORDINATE
DIRECTION

U; COORDINATE
DIRECTION

Fig. 1.40. Line integral used in evaluation of (curl A)1.

thogonal co-ordinates is dly, but the differential variable is dug. The
ho factor, even though it originates from dly, must now be carried
with Ag as hgAs when considering how this combination changes as

the variable is shifted to the section cb of the line integral. Because,
in general, both the vector and the respective h’s are functions of the
space coordinates along the section cb, the combination k54, takes on

a value of

d (haAy)
dU3

}lez + dU3 ...(239)

when differential of higher order are neglected. A similar procedure
determines that the A3A3 combination takes on a value of

3 (h
haAg + —(Eﬁ duy ..(240)
ug

along the direction of ag, in the section ab.

Now, writing the total line integral of A - dl or (h3A,) du, around

the total path oabco yields the following relations, written in mag-
nitude form with minus signs included where the scalar, or dot,
product is negative,
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oA
lhoAgl dug + {hsAs + X 813::3) duz} dug
d(h
- [thz + _(a:;i) st3:| dug — (h3Agl dus
_ 9(hzA3) A(haAy)
T Ouy dugdug - 3 dugdug ...(241)

Now considering that the area dlydls (= hohsdusdus) shrinks to a
point, the component of the curl in the u; direction, from Eq. (236) is

d (hgA3) 9 (hodo)
8u2 8u3
hohg
In a similar manner the second and third components of the curl

can be evaluated. The vector sum of these three components in
general orthogonal co-ordinates is

(Vx Ay =2, ..(242)

Soa_ 1 d (h3Az) 9 (haAp)
VXA—h1h2h3{alh1[ duy | oug
d(hiAy) 9 (h3Ag)
”2"2{ dus | ouy }
d (hoAg) d(h1Ay)
+a3h3{ T o, }} ..(243)

In determinant form, the curl of A in general orthogonal coor-
dinates is
aihy aghy aghj
= 1 d d d

VxA:W; 511_; 5;; g{; ...(244)
hiA1  hoAg  hsAg
which in cartesian coordinates is
a, a a
= d d 0
== — = ...(245
VxA x 3 2% (245)
A, A A,
The cylindrical co-ordinates it is
a, Ay, a,
Tea-l|l9d 9 9
VxA= e 55 % ...(246)
A, rAd, A,

In spherical coordinates it is
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a, agr a,rsind
1 2 a2 2
r?sin@ [or 90 99
A, rAs rsinA,
Further, Eq. (244) can also expressed as
a ag ag
19 123 13
h1 aul hz au2 h3 8u3
(i) Scalar Laplacian-Divergence of the gradient of a scalar

function. It has been established that the divergence of vector A, in
curvilinear coordinates is

VxA= ..(247)

VxA=

= 1
' (A1h2h3) + 50 (Azhsh D+ 5, (Ash 1ho)
hihahg
...(248)
If vector A is the gradient of some scalar function ¢, that is
A=Vo
100 00100 o0 100 (549

TG quy T *2 Ry ougy M3y dus
Now, comparing (240) with the general expression
A=a; A; +a49 +agAg

. 1 dp
we obtain A= Ty 90,
1 dp
A2 h2 au2
1 do
Ag h3 8u3
Introducing these in Eq. (248), yields
V-A=V. (Vq))

1 hohs 3¢ |, o (hsh1 09
1h2h3 aul h1 aul Buz h2 aLL2

1h2 3 __Q\
au3[ hs au3J ...(250)

The symbol V - V, indicating a successive operation upon a scalar
function, could always be used, but precedent has established the
symbol V2 as a notation. The combined form has been given the name
of the Laplacian operator.

Writing (250) for the three commonly used coordinate systems
gives
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2 22 2
Cartesian : V2¢ = 8_% + d—% + ) ...(251)
an® H? 3P
C 1/0( 0¢), 0 (199), 1( 90
Cylindrical : 2==|== —|= 3=
ylindrical Ve ri|or rar)+8¢(r a¢)+az[razﬂ
2 2 2
=l§—43+a—9+-12-a—¢1+§—2— ...(252)
ror  ogr® r°d¢° oz
ovze_ L [3(2  30), 3 (. 3
Spherical : V¢ = 2ane {ar (r sin 6 8rJ+ % (sm 0 %
L[ 1 2
d¢ ( sin 6 d¢
2090 9%  cot0dp 1 0% 1 %
==t4+—F+ T+ —
ror g2 2 90 ;23 r? sin” 0 3¢

...(253)

It should be noted that two forms are given for each of the
expressions for the cylindrical and spherical coordinates. One form
may be more convenient to use than the other in a specific situation.

Example 1.34. Compute the work done by the force vector

F =ya, —xa,
around the closed path abcdefa shown in Fig. 1.41.
Solution. The work done by the force vector F is given by

[F.aL
abcdefazjb F.d1+jcF-d1+de-d1+IfF-d1+IaF-dl.
a b c d f

These five integrals will be determined independently.

Before we find these integrals, we see that

)4
2l9 e
=1
cfz' y—x
1 f
y=x2
-1 0a 1 E3

Fig. 1.42
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F.dl=(ya,-xa,)) - (dxa, +dy a,)
=ydx-xdy

(a) Along path ab,y =x%, dy = 2x dx
and F-dl=x2dx — 2x%dx = - 2% dx
b = - 1
I F-dl= _r Pde= (@)
a x=0 3
(b) Along path be, y=(2 -1)x+V2, then =dy = (V2 — 1) dx.

Then, F-dl=ydx-—x (V2 - 1)dx
=[(V2 -1)x+ V2] dx —x (V2 - 1) dx

V2 ds
J:F-dl:_[o V2 dx =2 (i)

x=-1
(c) Along path ¢d,x=0,dx=0,F-dl=0
d
[ Fa=o i)
c
(d) Along path de,y=2,dy =0
F-dl=2dx

e 1/2
and J- F-dl =J. 2dx=1 ..(iv)
d x=0

(e) Along path ef,y =1/x,dy = — lz dx
x

and F-dl= [%]dx. Then

f 1 2
I F~dl=J‘ =dx=2log, 2 ..(v)
e x=1/2%

(f) Along path fa,y =x, dy =dx and
F-dl=xdx-xdx=0

a
f F-dl=0 ...(Uii)
f
Adding Egs. () - (vii), we obtain the total work done

IF-dl=%+wl§+0+1+2loge2+oz4.134.

Note that F =ya, —xa, = —ra,, i.e., the force is everywhere tan-
gential to the circle with the centre at the origin and since paths cd
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and fa are radial to the origin, F-dl=0 for these paths. Thus
J‘F -dl is zero for the paths cd and fa.

Example 1.85. Show by direct integration that the surface area

of a sphere of radius R is 4nR? and that the enclosed volume is

4 53
31r.R.

Solution. The surface area is given by
2n em
— - 2 o
S—IdS,—J.¢=0 L=0 R*sin 6d6 d¢

2 “-27t J'TC ) 2
=R =0 e51n9d9d<})=41tR
The volume is similarly obtained as

V= J‘ dv = .[,Iio ijo -[en=0 r? sin 6 dr do do

_4n
~ 3

Example 1.37. Find the (smallest) angle between the two vectors

RS

A=a,-3a,+2a,
B=-3a,+4a,-a,

and also determine a unit vector perpendicular to the plane containing
A and B.

Solution. The angle between the two vectors can be found by
using either the dot product or the cross product. Using the dot
product, we have

A B

0% 08 = TAT BT

Forming

A B=(a,-3a,+2a,) (-3a,+4a,-a,)
=-3-12-2=-17
[Al =V1+9+4 =V14 =3.74
|B| =V9+16+1=V26=5.1
-17
37ax51- 08
or eAB:153°

Then cosOyp=

from the cross product we may also obtain
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. AxB
sin 6 =—L-———-L
48741 B
forming
AxB=-5a,-5a,-5a,
|JAxB|=5V1+1+1=8.66
. 8.66
Then sin eAB" 374x5.1 =0.45

048=27° or 153°

From the dot product, the ambiguity in angle is resolved. There
are two unit vectors perpendicular to the plane containing A and B.
_ AxB
" |A| |B] sin64p
_ 5@c+a,+a)
T 8.714x5.1x0.45
-0.58 (a, + a, + a,)
0.58 (a, + a, + a,)
The second result is obtained as the negative of the first one.

EXERCISES

1. Prove, by vector methods that the sum of the squares of diagonals of a
parallelogram is equal to the sum of the squares of its sides.

ap

or a,

[Hint : Let a and b denote two sides of the parallelogram in magnitude and
direction, and let di and dz denote the two diagonals. Then dij=a+b and
d2 =a-b. It follows that

di-di=(a+b)-(a+b)
and dz -d2=(a-b)-(a-b)
Add these to have the result].

2. If A and B are the sides of a parallelogram C and D are the diagonals, and
0 is the angle between A and B, show that

(C*+ D% =2 A%+ BY

and that C*-D*=4ABcos®

3.1If r-dr=0
show that r = constant.

4. If A=2a,+2ay-a,
and B =6a; -3 ay + 2a,.

Find () A-B and AxB

(ii) a unit vector perpendicular to the vectors A and B

a;—10ay—18 a,
5V17

5.If A=4a,+3a,+a,
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and B=2a,-ay+2a,.

Find : (i) a unit vector a, perpendicular to vectors A and B such that A, B
and a, form a right-handed system, and

(i) the angle between the vectors A and B.

1

2: =92, ~ 108 go0 40'J

185

6. If a and b are two unit vectors lying in the xy-plane and vectors a and b
makes angles o and § with the x-axis respectively, such that

[Ans. 7

a=aycos O+ ay sin o
and b = ay cos f§ + ay sin .

show that the trigonometric relations for the sine and cosine of the sum and
difference of two angles follow from the interpretation of (a - b) and (a x b).

7. (a) Determine ‘¢’ so that the vectors 2a, + ¢t ay + a, and 4a, — 2a, — 2a, are
perpendicular.

(b) If A =a, + 2ay + 3a;
B=-a;+2ay+a,
and C =3a, + ay.
Find ‘¢’ such that A + ¢ B is perpendicular to C. [t =5]
8. Prove that
@) A BxC)=B- (CxA)=C-(AxB)
(i) AxBxC)=(A-C)B-(A-B)C
(iit) AxB)xC=A-C)B-B-0A
(iv) (AxB).CxD)= |2 C B-C

) (A-B)-{(BxC)x(CxA)={A BxC)
9. If A, B and C are three vectors with components Ay, Ay, A; etc., show that

A: A, A,
A BxC)=|B, B, B,
C. C C.

10. If r be the radius vector from tne origin of coordinates to any point, and
A be a constant vector, then show that

V-A-r)=A

11. If A is a constant vector and r is the vector from origin to the point
(x,y, 2), show that

(@) (r—A)- A=0, is the equation of a plane
(b) (r—A)-r=0, is the equation of a sphere
(¢)divr=3;curlr=0;grad (A -r)=A

(d) for any arbitrary function f(r),

12. Find the gradient of a scalar function ¢, where
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(i) ¢ (x,y, 2) = xPy + €%, at the point (1, 5, - 2)
@) ¢ =log. r,
where r=\+ y2 +2°
[Ans. Vo =10a, + a, +0.136a, [r = %J—cp = -l—;-}
e r
13. Find the divergence and curl of the vector A, where
@) A= xzyax -22xza, +2yza,
(ii) A=xyza, + 3x2yay + (2% - yzz) a,
14. Prove that
OV 0A)=Ve)-A+¢ (V- A
G VA B)=(A-V)B+B - VNAXx(VxB)+Bx(VxA)
(iii) curl A = grad div A - VA
(iv) div curl A =0.
W IfF=(x+y+1)ax+ay—(x+y)a, then
F.curlF=0.
15. (a) Show that the vector field A, where
A=(x2—y2+x) a;, 2xy+y)a;
is irrotational, and find a scalar function ¢ such that
A =grad ¢.
13 2,12 12
[Ans.3x yHox 2y]
(b) A vector field is given by
A=(? +xy2) ay+ (y2 +x2y) ay
show that the field is irrotational, and find the scalar potential.
122 1 3 3
[ny +3(x +y)]
16. Show that the vector field

V=@x+3y)ax+(y-32)ay+(x-22) a;
is solenoidal.

17. 1§ v xay +yay +2a;

- Ve +y2+22

show that V-V:Wf-’?z?andeV=0
18. Verify that the vector field
A =yza, + zxay + xya,,
is both irrotational and also solenoidal.

19. Find the divergence and curl of the vector field
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F=x—ax
r
where r =xac +yay +2za;.
3 2,2 2
o p X +2(y+2%) x° (azy — ay2)
[Ans. V-F= S ,VxF= 3
r r
20. Given a =ay Cos O — ay sin o
and b =a,cos P +aysinf,

using the above vectors derive the formula for expansion of sin (o + B). Illustrate
by a figure.

21. A circular disc rotates with angular velocity w about its axis of symmetry,
which is taken to the z-axis. The direction of rotation is related to that of the z-axis
by the right-hand screw rule. Find the velocity v of a point on the disc, and show
that

V x v=2wa,.

If now the disc is assumed to be nonrigid, such that ® is a function of the
radius 7, show that Vxv=0if w= const/r?.

22. A vector field is defined by A=f(r)r. Show that f(r) = const 12 if
V.A=0. Show that Vx A=0.

23. The vector A =3x ax+yay+2za;, and f= x2 +y% + 2. Show that V - fA at
the point (2, 2, 2) is 120 by finding the vector f(A) and taking its divergence.

Make the same calculation by first finding the vector Vf and using the
identity.
V- A =fV A+A Vf
If x, y and z-are measured in centimeters, what are the units of V. fA ?

24. The components of a vector A are

Ax=y'§§—z§§,Ay=z§£—x—a[-

ox oz
X
A;=x dy Yo
where f is a function of x, y and z. Show that
A=rxVfA r=0
and A Vf=o0.

25. Show that a field of force is conservative if the force exerted on a body is
always directed toward a fixed centre and is only a function of r. Such a field is
called a central force field. Find the potential energy at a distance r from a centre
of attraction if the force varies at 1/r%. Set the potential energy equal to zero at
infinity.

26. Show, by differentiating the appropriate expressions for r, that the

dr

¢ |18 given by

velocity r (or
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P = oy + rpay + 58
in cylindrical coordinates and by
r=ra,+rba, +rsin 0 ¢ a,
in spherical coordinates.

27. The vector A is such that it is everywhere perpendicular to, and directed
away from, a given straight line ; that is, in cylindrical coordinates, A; =A4=0.
Calculate the outgoing flux for a volume element, and show that
_Ar OAr

+ .
r or

v.

28. The vector r is directed from P’ (x, ', 2’) to P (x, y, 2). If the point P is fixed
and the point P’ is allowed to move, show that the gradient of (1/r) under these
conditions is given by

= (1) 1n
v (ﬂ= =

/ r
where r; is the unit vector along r. Show that the above expression gives the
maximum rate of change of 1/r.

Show similarly that, if P’ is fixed and P is allowed to move,
(1 ri
v ( 1. n

29. Show that

jv (VxA)dv:—JSAxds

where A is an arbitrary vector and s is the surface bounding the volume v.

30. From the definition of the divergence, obtain an expression for div F in
cylindrical coordinates.

gl 13 3F:
[Ans.dw.F—rar(r,F)+r % + az]

31. A vector field is given by the expression

A:(f}ax+[%jay+(§]az

where r=\Nx"+y“+2°
Transform the vector to cylindrical coordinates.

32. Explain the transformation of a vector from cylindrical coordinates into
cartesian co-ordinates.

Transform the following vectors from cylindrical coordinates to cartesian
coordinates

(a) lar
r

(b) ay sec ¢.
33. (a) Transform the following vector to spherical coordinates

(i) A=xa, +va, +za;
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(if) yf a,

(b) Transform the following vector from spherical coordinates to cartesian
coordinates.

@) A=

rsin9a¢

1

(i) A=——— ag.
@) rsin 6 cos ¢ a0
34. Determine the cartesian components at (1, 1, 1) of the vector field

C= ’17 a, if the field is expressed in (a) cylindrical co-ordinates ; (b) spherical
coordinates. [Ans. (@) F(1,1,1) =% (ax + ay)
G F(1,1,1)=3 (a: + ay + a,)]
35. Given the vector field
A =a;, cos ¢ sin 0 + ag cos ¢ cos 8 + a4 sin ¢

(a) Show that the magnitude of A is everywhere the same ;

(b) Show that A = a, cos 2¢ + ay sin 2¢.

36. (a) Prove that V2 [%)z 0, with the usual meaning of r.

(b) Transform the vector field E = (1/r) a¢, given in cylindrical co-ordinates,
to spherical coordinates.

37.(a) IfA =x2y a, — 2xz ay + 2yz a,;, where ay, ay and a;, represent unit vec-
tors in the x, y, and z directions respectively, Find V x (V x A). [Ans. (2x + 2) ay]

(b) Derive an expression for the divergence and curl of a vector field in

curvilinear coordinates. Also, deduce expressions for grad ¢ and V2 for the com-
monly used orthogonal systems.
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