
1.1 GENERAL

Structural engineers are required to analyse and design various types of structures.
The knowledge of displacements, strains and stresses is important to them to check
serviceability and safety of the structures. There are different varieties of structures such as
trusses, frames, buildings, bridges, irrigation structures, folded plates, box-girders etc. In the
earlier days, analysis was carried out by introducing certain simplifying assumptions so as to
bring the analysis within the reach of hand calculation methods.

One possible way of classifying varieties of structures in civil engineering field is to put
them in two categories as

(i) Discrete element or skeletal structures
(ii) Continuum structures.
The discrete element structures are formed by joining discrete structural members at

their ends forming joints. Each member may be straight or curved. For such members, sectional
dimensions are small compared to the length dimension. Pin jointed trusses, frames, grids,
arched portals and space frames are skeletal structures. Some of these are shown in Fig. 1.1.
The members of the skeletal structures are simple members and their properties namely force-
displacement relations can be found easily using standard structural mechanics formulae.
The analysis of a skeletal structure is no more a difficult job. For large size structures, stiffness
matrix method is now widely used tool of analysis.

( )i ( )ii ( )iii

( )iv ( )v

Fig. 1.1. Skeletal structures (i) Plane truss (ii) Plane frame (iii) Grid (iv) Arched portal (v) Space frame.
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The continuum structures are formed from surface elements and solids. Plates, stiffened
plates, shells, folded plates, box-girders are some examples of the continuum structures. Some
of these are shown are in Fig. 1.2.
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Fig. 1.2. Continum structures (i) Plate (ii) Stiffened (iii) Shell (iv) Folded plate
(v) Box girder (vi) Axisymmetric solid.

The analysis of a continuum structure is a difficult job. To begin with, the behaviour of
the structure is described in terms of a governing differential equation or equations. This is
not so difficult. The general procedure is to express equilibrium of an infinitely small element
of the structure in terms of stress-resultants and external forces acting on the element. The
stress-resultants are written in terms of generalised strains and the strains are expressed as
derivatives of displacements. Finally, combining all relations, it is generally possible to derive
a governing differential equation in terms of displacements. This may be a single equation or
a set of simultaneous differential equations. The analysts� aim is to obtain the solution of the
governing differential equation(s) satisfying kinematic and force boundary conditions.
Obviously, the first attempt is to obtain exact or analytical solution. In analytical solution,
algebraic or trigonometric or hyperbolic expressions are obtained for field variable and other
dependant variables. These expressions are continuous over the entire structure domain and
it is possible to calculate the quantities of importance at any location in the structure using
appropriate coordinates of the location.

An alternate approach of obtaining solution of governing differential equation is to
express the field variable (w) as a combination of linearly independent trial or approximate

functions satisfying boundary conditions such as = φ∑ i i
w C . An error function R(x) arises

when w  is substituted in differential equation. The values of the constants iC  associated with
trial functions φi are obtained from the solution of simultaneous algebraic equations which are
formed using any one of the following procedures :

(i) Equate residual or error function R(x) to zero at selected locations known as collocation
points (Point collocation).

(ii) Equate integral of the residual function R(x) over sub-domains or zones of the
structure to zero (Zone collocation).
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(iii) Minimise the integral of the square of R(x) over entire structure (Least square).
(iv) Equate integral of weighted residual over entire structure domain to zero. The method

is known as Galerkin method if weighing functions are same as trial functions.
The details of these methods are discussed later.
Exact and other analytical methods of solving differential equations can be applied in a

few cases of simple structures with simple boundaries and loading. There are difficulties in
handling oblique and curved boundaries, patch loads and irregularly shaped structures.

With the advent of the computers, the emphasis of the researchers shifted to the
numerical methods. Some of these are finite difference method, variational finite difference
method (finite difference energy method), finite element method, discrete energy method and
finite strip method. In numerical methods, the numerical values of the field variable are obtained
at selected points or nodal points of the structure. The values of the variables at intermediate
locations are to be obtained by suitable interpolation. The availability of the computers and
ever increasing need of the engineers to analyse large complex structures have given tremendous
boost to the rapid development of the numerical methods.

The various methods of analysis of continuum structures are divided in two groups as
shown in Fig. 1.3. The methods which are based on solution of governing differential equation,
either analytically or numerically, are included in group 1. For all these methods, it is necessary
to know the governing differential equation. The methods included in group 2 are those methods
which are based on minimisation of a functional. These are either analytical or numerical
methods. For these methods, there is no need to know the governing differential equation.
However, it is necessary to know the functional to be minimised. For structural engineering
problems, in which displacements are treated as primary unknowns, the functional is the
total potential energy of the structure.

Analysis of continuum structure

1. Solve governing
differential equation

2. Apply minimum
theorem�

( ) Series solution
( ) Point collocation
( ) Zone collocation
( ) Least square

( ) Galerkin method

( ) Finite difference method
( ) Galerkin finite element method

(a) Analytical

(b) Numerical

( ) Exact solutioni

ii

iii

iv

v

vi

i

ii

( ) Rayleigh-ritz

( ) Finite element method
( ) Finite difference energy method
( ) Discrete energy method

( ) Finite strip method

(a) Analytical

(b) Numerical

(c) Semi-analytical

( ) Rayleighi

ii

i

ii

iii

i

Fig. 1.3.  Analysis of continuum structure-classification of methods.

From Fig. 1.3, it is noted that the finite element method is a numerical method used for
analysis of continuum structures and is based on application of minimum potential energy
theorem. The method has acquired immense popularity and has emerged as a powerful and
versatile tool of analysis. The applications are not restricted to the structural engineering.
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The problems related to soil engineering, hydraulics engineering, fluid flow, magnetic flux,
seepage and heat flow, too, have been analysed using the method. The reason for the popularity
of the method is it�s ability to analyse any structure with oblique and curved boundaries, any
loading, mixed boundaries and arbitrary shape. In structural engineering, the method has
been applied for static analysis, frequency analysis, response analysis, geometric and material
non-linear analysis and stability analysis.

Quite obviously, there is abundance of literature available dealing with various aspects
of the finite element method. There are journals especially devoted to the method alone. Some
well known books, often quoted, are listed in references [1-11].

The first paper which closely resembles application of finite elements to structural
problem was published by Turner et al [17]. The term �finite element� was first introduced by
Clough in 1960 [18].

In finite element method, continuum structure is considered as an assemblage of
elements. These elements are sub-domains or sub-regions or zones of the structure. The
elements are treated as joined together at joints or nodes. The elements as well as nodes are
not real, but are notional or imaginary. The displacement variation over each element region
is prescribed in terms of displacements at nodes of that element using polynomial functions.
Thus, the displacement variation over entire structure is prescribed, piecewise, separately
over each element. This is in contrast to Rayleigh-Ritz method where displacement variation
over entire structure is written in terms of continuous functions and each function is associated
with a mathematical constant.

The total potential energy of an element can be expressed in terms of nodal parameters.
The total potential energy of the entire structure is the summation of the energies of all elements
and is the function of nodal parameters of all nodes of the structure. The conditions to minimise
the total potential energy of the structure with respect to each of the nodal parameters result
in a set of simultaneous equations. This set, after applying suitable kinematic boundary
conditions, is solved to get numerical values of nodal displacements. Other dependant quantities
can then be calculated using relevant relations.

The finite element method is a numerical method. It�s application involves tremendous
calculations. It is not possible to utilize the capacities of the method without use of computer.
The steps involved in the application of the method are definite and are to be followed in a
definite sequence. These steps can be concisely written in matrix notations and hence the
method is amenable to computer usage. It is to be mentioned that the programming steps in
finite element method are almost similar to those used in stiffness matrix method except for
the details of calculating element stiffness matrices. As such, the stiffness method can be
considered as a special case of finite element method. In recent books, a unified treatment of
both methods is presented. It is rewarding to study stiffness matrix method and it�s
programming before taking up the study of finite element method.

There are two different views of looking at the finite element method. Many researchers,
particularly mathematicians, describe the method as a tool to solve differential equation. This
is true. However, in the present book, the finite element method is presented as a means of
obtaining deformed state of the structure using minimum total potential energy theorem.

1.2 SOLUTION OF GOVERNING DIFFERENTIAL EQUATION

To explain various methods mentioned under group 1 of Fig. 1.3, examples of single
span beams subjected to different loads and having different boundary conditions are considered.
The governing differential equation of Euler-Bernoulli beam is:
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4

4
( )d w q x
EIdx

= ...(1.1)

with usual meaning of the symbols. The dependant quantities are related to w as

Slope of the tangent =
dw
dx

Bending moment = � 
2

2
d w

EI
dx

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

...(1.2)

Shear force = � 
3

3
d w

EI
dx

Boundary conditions used are

Simply supported : w = 
2

2
d w
dx

 = 0 (since EI ≠ 0)

Clamped support : w = 
dw
dx

 = 0

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

...(1.3)

Free end :
2 3

2 3
d w d w
dx dx

=  = 0 (since EI ≠ 0)

The conditions on deflection and slope are known as geometric or kinematic or essential
boundary conditions and those on bending moment and shear force are natural or force boundary
conditions.

1.2.1 Exact Solution

Example 1.1. Figure 1.4 shows a propped
cantilever subjected to distributed load of linearly varying
intensity from A to B. The load is expressed as

q(x) = 
qx
L

...(1.4a)

Hence, governing differential equation is
4

4
d w qx

EILdx
= ...(1.4b)

Integrating successively,

=
3 2

3 2
d w qx

EILdx
 + C1 ...(1.4c)

=
2 3

2 6
d w qx

EILdx
 + C1x + C2 ...(1.4d)

= +
24

1

24 2
C xdw qx

dx EIL
 + C2x + C3 ...(1.4e)

w = 
3 25

1 2

120 6 2
C x C xqx

EIL
+ +  + C3x + C4 ...(1.4f)

w

A

q/unit

B

L

Fig. 1.4. Propped cantilever.
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The boundary conditions are
(i) w = 0 at x = 0

(ii)
2

2
d w
dx

 = 0 at x = 0

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

(iii) w = 0 at x = L
...(1.5)

(iv)
dw
dx

 = 0 at x = L

Substituting Eq. 1.5 in Eq. 1.4

4

2
3 25

1 2
3 4

24
1

2 3

0 0 0 0 0
0 0 0

0
120 6 2

0
24 2

C
C

C L C LqL
C L C

EIL
C LqL

C L C
EIL

= + + + + ⎫
⎪= + + ⎪
⎪⎪
⎬= + + + +
⎪
⎪
⎪= + + +
⎪⎭

...(1.6)

Solution of Eq. 1.6 gives

C1 = � 
10

qL
EI

, C2 = 0, C3 = 
3

120
qL

EI
, C4 = 0 ...(1.7)

Hence, solution for deflection w is

w(x) = 
5 3 31

120 60 120
qx qLx qL x

EI L

⎡ ⎤
− +⎢ ⎥

⎣ ⎦
...(1.8)

Expressions for dependant quantities can be found using Eq. 1.2.

1.2.2 Series Solution

Example 1.2. Figure 1.5 shows a simply supported beam carrying distributed load of
linearly varying intensity from A to B. The load is expressed in half sine series as

B

q/unit

A

L

x

Fig. 1.5. Simply supported beam.

q(x) = 
∞

=

π⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠π∑
1, 2, 3

2
1 sin

m

x q m x
q

L m L
...(1.9)

Also, deflection w(x) is expressed in terms of half sine series as

w(x) = 
1, 2, 3

sinm
m

m x
w

L

∞

=

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ...(1.10)

Each term of assumed series for w(x) satisfies all four boundary conditions. Substituting
Eqs. 1.9 and 1.10 in governing differential equation (Eq. 1.1) and comparing coefficients:
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4 4

4

4

5 5

2

2

m

m

m q
w

E I mL

qL
w

E I m

⎫⎛ ⎞π = ⎪⎜ ⎟⎜ ⎟ π ⎪⎝ ⎠
⎬
⎪= ⎪π ⎭

...(1.11)

Hence, solution for deflection w(x) is

w(x) = 
4

5 5
1, 2, 3

2 1
sin

m

qL m x
LEI m

∞

=

π⎛ ⎞
⎜ ⎟π ⎝ ⎠

∑ ...(1.12)

The deflection at x = L/2 using Eq. 1.12 is

w(at x = L/2) = 
4

5 5
1 1 1 1 1 12

0 0
243 31251

qL
EI

× − × ×⎡ ⎤+ + + +⎢ ⎥π ⎣ ⎦
= 0.0065107qL4/(EI)

Exact deflection at centre is w = 
45

768
qL
EI

i.e., w = 0.0065104 qL4/(EI)

1.2.3 Methods Based on Residual R(x)

Consider a differential equation
Lw � q = 0 ...(1.13)

where, L is a differential operator and w is field variable (deflection) for which solution is
desired. An approximate (trial) function ( )w x  is assumed as a combination of functions
satisfying boundary conditions. Each function is associated with an unknown constant. Thus,

( )w x  = 
1

n

i i
i

C
=

φ∑ ...(1.14)

The differential equation will not, in general, be satisfied if ( )w x  is substituted in
differential equation. An error function or residual R(x) can be expressed as

 R(x) = Lw � q ...(1.15)
If n functions are used to construct trial solution, then n simultaneous equations are

obtained to get the values of Ci(i = 1 to n). This is done by applying certain conditions on
residual function as mentioned earlier.

1.2.4 Point Collocation Method

Example 1.3. Figure 1.6 shows a simply
supported beam carrying uniformly distributed
load on entire span.

Approximate solution is assumed as

( )w x  = C1 sin 3
3

sin
x x

C
L L
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
...(1.16)

Each function independently satisfies all four boundary conditions. Residual R(x) is
obtained by substituting ( )w x  in governing differential equation (Eq. 1.1) as

B

q/unit

A

L

x

w

Fig. 1.6. Simply supported beam.
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 R(x) = C1

4 4

34 4
81 3

sin sin
x x q

C
L L EIL L

π π π π⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

...(1.17)

In point collocation method, residual is equated to zero at selected points known as
collocation points. For this example, the points chosen are at (i) x = L/4 and (ii) x = L/2.
Substituting these values in Eq. 1.17 and simplifying:

+ = ⎫
⎬+ = ⎭

1 3

1 3

0.707 57.267
81.0

C C k
C C k

...(1.18)

in which, k = qL4/(EIπ4)
Solution of equations yields

C1 = 1.207 k, C3 = 0.00256 k ...(1.19)
Hence, solution for deflection is

w(x) = 
4

4
3

1.207 sin 0.00256sin
qL x x

L LEI
π π⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦

...(1.20)

The deflection at centre (x = L/2) using Eq. 1.20 is
w(x = L/2) = 0.012365qL4/(EI)

The exact value of deflection is

w(exact) = 
45

384
qL
EI

 = 0.013021 qL4/(EI)

1.2.5 Zone Collocation

Example 1.4. Simply supported beam shown in Fig. 1.6 is analysed. Approximate
solution is assumed as

1( ) sin
x

w x C
L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

... (1.21)

Substituting in governing differential equation (Eq. 1.1), the residual obtained is

R(x) = C1

4

4 sin
x q

L EIL
π π⎛ ⎞ −⎜ ⎟

⎝ ⎠
...(1.22)

In zone collocation method, the integral of R(x) over certain zones (sub-regions) of
structure is equated to zero. Choosing the zone from to x = L/4 to 3L/4:

3 / 4 4

1 4
/ 4

sin
L

L

x q
C

L EIL

⎡ ⎤π π⎛ ⎞ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ dx = 0 ...(1.23)

This gives   C1

3

3
2

2
qL
EIL

π
−  = 0

C1 = 
4

32 2
qL

EIπ
Hence, expression for deflection w(x) is

w(x) = 
4

3 sin
2 2

xqL
LEI

π⎛ ⎞
⎜ ⎟π ⎝ ⎠

...(1.24)

The deflection at centre (x = L/2) using Eq. 1.24 is obtained as
   w(x = L/2) = 0.011403 qL4/(EI)
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1.2.6 Least Square Method

Approximate (trial) function for field variable is assumed as a combination of functions
satisfying boundary conditions as in Eq. 1.14. The integral of square of residual function is
minimised with respect to constants Ci. This gives n simultaneous equations from which values
of Ci are found. Thus,

∂ ⎡ ⎤
⎢ ⎥∂ ⎣ ⎦∫ 2

0
( )

L

i
R x dx

C
 = 0 ...(1.25)

This can also be written as

∂
∂∫0

( )
L

i

R
R x dx

C
 = 0 ...(1.26)

Example 1.5. A simply supported beam carrying uniformly distributed load (Fig. 1.6)
is analysed. Assume,

π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠1 3
3

( ) sin sin
x x

w x C C
L L

...(1.27)

 Each function independently satisfies all four boundary conditions. The residual is
obtained by substituting Eq. 1.27 in Eq. 1.1.

R(x) = C1
π π π π⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

4 4

34 4
81 3

sin sin
x x q

C
L L EIL L

...(1.28)

⎫∂ π π⎛ ⎞= ⎪⎜ ⎟⎝ ⎠∂ ⎪
⎬

∂ π π⎛ ⎞ ⎪= ⎜ ⎟ ⎪⎝ ⎠∂ ⎭

4

4
1

4

4
3

sin

81 3
sin

R x
C LL

R x
C LL

...(1.29)

Using Eq. 1.26 for C1 and C3

⎫π π⎛ ⎞ = ⎪⎜ ⎟⎝ ⎠ ⎪
⎬

π π⎛ ⎞ ⎪=⎜ ⎟ ⎪⎝ ⎠ ⎭

∫

∫

4

40

4

40

sin ( ) 0

81 3
sin ( ) 0

L

L

x
R x

LL

x
R x

LL

...(1.30)

Carrying out integrals

⎫⎛ ⎞ ⎛ ⎞π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪− =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠π ⎪⎝ ⎠ ⎝ ⎠ ⎪
⎬
⎪⎛ ⎞ ⎛ ⎞π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠π⎝ ⎠ ⎝ ⎠ ⎪⎭

24 4

1 4 4

24 4

3 4 4

2
0

2

81 2 81
0

2 3

L q L
C

EIL L

L q L
C

EIL L

...(1.31)

Solution gives

 C1 = 
4

5
4qL
EIπ

, C3 = 
4

5
4

243
qL
EIπ

...(1.32)

Hence, expression for w(x) is written as

 w(x) = π π⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠π ⎣ ⎦

4

5
4 1 3

sin sin
243

qL x x
L LEI

...(1.33)
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Following standard mathematical formulae have been used to evaluate integrals in
Eq. 1.31.

π π⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∫0

sin sin
L m x n x

dx
L L

= 
≠⎧

⎪
⎨ =⎪⎩

0 if

if
2

m n
L

m n

0
sin

L m x
dx

L
π⎛ ⎞

⎜ ⎟
⎝ ⎠∫  = 

=⎧
⎪
⎨ =⎪⎩

0 if 2, 4, 6.....
2

if 1, 3, 5.....

m
L

m
m

The deflection at the centre of beam using Eq. 1.33 is calculated as
w(x = L/2) = 0.01302qL4/(EI)

Exact value is
45

384
qL
EI

 = 0.01302qL4/(EI)

1.2.7 Galerkin Method (I)

Example 1.6. A simply supported beam AB of span L carrying distributed load of linearly
varying intensity from A to B (Fig. 1.7) is analysed using Galerkin method.

B

q/unit

A

L

w

Fig. 1.7. Simply supported beam.

Loading on beam is expressed as

q(x) = 
qx
L

Approximate deflection function is assumed as

( )w x  = C1 sin 
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2

2
sin

x x
C

L L
...(1.34)

Each function satisfies boundary conditions. Residual function R(x) is obtained by
substituting Eq. 1.34 in governing differential equation (Eq. 1.1) as

 R(x) = C1 sin
π π π π⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

4 4

24 4
16 2

sin sin
x x qx

C
L L EILL L

...(1.35)

In Galerkin method, the integral of the weighted residual over problem domain is equated
to zero. Thus,

ψ∫0
( )

L
i R x dx  = 0 ...(1.36)

where, ψ1 are weighing functions. In Galerkin method, the weighing functions are the functions
used to construct the approximate ( )w x . Hence,
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π ⎫⎛ ⎞ψ = ⎜ ⎟ ⎪⎝ ⎠ ⎪
⎬

π⎛ ⎞ ⎪ψ = ⎜ ⎟ ⎪⎝ ⎠ ⎭

1

2

sin

2
sin

x
L

x
L

...(1.37)

Applying Eq. 1.36 for i = 1 and 2

π ⎫⎛ ⎞ =⎜ ⎟ ⎪⎝ ⎠ ⎪
⎬π⎛ ⎞ ⎪=⎜ ⎟ ⎪⎝ ⎠ ⎭

∫

∫

0

0

sin ( ) 0

2
sin ( ) 0

L

L

x
R x dx

L
x

R x dx
L

...(1.38)

Carrying out integrals

⎫⎛ ⎞π ⎛ ⎞ − = ⎪⎜ ⎟⎜ ⎟ ⎝ ⎠ π⎝ ⎠ ⎪
⎬

⎛ ⎞ ⎛ ⎞π − ⎪⎛ ⎞ − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ π⎝ ⎠ ⎝ ⎠ ⎭

4 2

1 4

4 2

2 4

0
2

16
0

2 2

L qL
C

EI LL

L L q
C

EILL

...(1.39)

This gives

⎫
= ⎪⎪π

⎬
− ⎪= ⎪π ⎭

4

1 5

4

2 5

2

2
32

qL
C

EI
qL

C
EI

...(1.40)

Hence, expression for deflection is written as

w(x) = π π⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎝ ⎠ ⎝ ⎠⎣ ⎦

4

5
2 1 2

sin sin
32

qL x x
L LEI

...(1.41)

The deflection at centre of beam using Eq. 1.41 is
w(x = L/2) = 0.0065355qL4(EI)

Exact value of deflection at centre is w(exact) = 
×

45
2 384

qL
EI

 = 0.0065104qL2(EI)

Following formulae are used to calculate integrals in Eq. 1.38.
2

0
sin

L x L
x dx

L
π⎛ ⎞ =⎜ ⎟ π⎝ ⎠∫

2

0

2
sin

2
L x L

x dx
L
π −⎛ ⎞ =⎜ ⎟ π⎝ ⎠∫

1.2.8 Galerkin Method (II)

Example 1.7. A clamped beam carrying uniformly distributed load (Fig. 1.8) is analysed
using polynomial function as trial function. It is difficult to imagine a function satisfying all
boundary conditions. It is to be derived systematically as detailed below.
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q/unit

L

w

Fig. 1.8. Clamped beam.

Let ( )w x  =  C0 + C1x + C2x
2 + C3x

3 + C4x
4 ...(1.42a)

dw
dx  = C1 + 2C2x + 3C3x

2 + 4C4x
3 ...(1.42b)

2

2
d w
dx

 = 2C2 + 6C3x + 12C4x
2 ...(1.42c)

3

3
d w
dx

 = 6C3 + 24C4x ...(1.42d)

4

4
d w
dx

 = 24C4 ...(1.42e)

Using boundary conditions
w = 0 at x = 0 ; C0 = 0

dw
dx

 = 0 at x = 0 ; C1 = 0

w = 0 at x = L ; C2L
2 + C3L

3 + C4L
4 = 0

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

...(1.43)

dw
dx

 = 0 at x = L ; 2C2L + 3C3L
2 + 4C4L

3 = 0

Last two equations involve three constants. Hence, their values can not be found. But,
relation between them can be found. Eliminating C2 from these equations �

  C3 = � 2C4L
and eliminating C3 from these equations

C2 = C4L
2

Hence, trail function can be written as

( )w x  = C4(L
2x2 � 2Lx3 + x4) ...(1.44)

This function satisfies all boundary conditions. Residual function is obtained by
substituting Eq. 1.44 in Eq. 1.1.

 R(x) = 24C4 � 
q

EI
...(1.45)

Integral of weighted residual over beam span is equated to zero.

2 2 3 4
40

( 2 ) 24
L q

L x Lx x C
EI

⎛ ⎞− + −⎜ ⎟
⎝ ⎠∫ dx = 0

5

424
30
L q

C
EI

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 = 0
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    C4 = 
24

q
EI

Hence,  w(x) = 
⎛ ⎞

− +⎜ ⎟⎜ ⎟
⎝ ⎠

2 2 3 41
24 12 24

qL x qLx qx
EI

...(1.46)

This is the exact solution for clamped beam.

1.2.7 Finite Difference Method

Finite difference method gives numerical solution of a governing differential equation.
The numerical values of the field variable are obtained at selected locations known as grid
points or nodes. The differential equation is converted to a difference equation. This is done by
expressing differentials of a function in terms of function values at neighbouring nodes.
Fictitious outside nodes are introduced at both ends of the beam. The difference equation
corresponding to a governing differential equation (Eq. 1.1) of a beam is written as

1 – 4 6 – 4 1 w = 
4( )q x h

EI
...(1.47)

where, h is the distance between two nodes. The deflection at outside node is related to the
deflection at inside node as

Simply supported end :   wo = � wi, wb = 0 ...(1.48a)
Clamped end :   wo = + wi, wb = 0 ...(1.48b)
Suffices i, o and b represent inside, outside and boundary node respectively. The

difference equation is applied to the nodes where deflection is unknown. This results in a set
of simultaneous equations. Thus, a problem of solving differential equation is converted to a
problem of solving simultaneous algebraic equations.

Example 1.8. A propped cantilever of span L carrying uniformly distributed load on
span (Fig. 1.9) is analysed. The span is divided in six equal parts giving h = L/6. Fig. 1.9 shows
deflections at outside nodes as related to corresponding inside nodes. wA = wB = 0.

q/unit

L h= 6
w

W1
W2 W3

W4

W5

W5

B
1 2 3 4 5A

– W1

Fig. 1.9. Propped cantilever.

Applying difference equation to nodes 1 to 5 and simplifying, using boundary conditions,
the equations obtained are written in matrix form as

− ⎧ ⎫⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− −⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥− − =⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− −⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥− ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭

1

2

3

4

5

5 4 1 0 0
4 6 4 1 0
1 4 6 4 1
0 1 4 6 4
0 0 1 4 7

w k
w k
w k
w k
w k

...(1.49)

where, k = qh4/(EI) = qL4/(1296 EI)
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Solution gives w1 = 4.5548k = 0.003515qL4/(EI)
w2 = 7.3288k = 0.005655qL4/(EI)
w3 = 7.5411k = 0.005819qL4/(EI)
w4 = 5.4110k = 0.004175qL4/(EI)
w5 = 2.1575k = 0.001665qL4/(EI)

The matrix of coefficients in finite difference method is not necessarily symmetric.

1.2.10 Galerkin Finite Element Method

This method is used to obtain numerical solution of governing differential equation.
But, it is quite different from finite difference method discussed in art 1.2.9. In Galerkin finite
element method, the structure is discretised into elements. The variation of field variable is
prescribed piecewise over each element domain in terms of nodal values and derivatives of
field variable, using shape functions. The shape functions should be sufficiently differentiable
as required by the order of the differential equation. Further, if nth order derivatives appear in
differential equation then the function has to be such that it�s (n � 1) derivatives are continuous
at element boundary [1]. The weight functions are the shape functions. Consider a typical
differential equation.

Lu + q = 0 ...(1.50)
The variation of u over element is

u = 
=
∑

1

r

j j
j

N u ...(1.51)

The residual is obtained by substituting Eq. 1.51 in Eq. 1.50 as
R(x) = L(N1u1 + N2u2 + ...... + Nrur) + q

where, r indicates total number of displacement parameters associated with the element. The
integration of weighted residual is written as

+ + + +∫ 1 1 2 20
[ ( ...... ) ]

h
i r rN L N u N u N u q (i = 1 to r) ...(1.52)

This gives the contribution of an element as
[A]{δe} + {qe} ...(1.53)

Combining such contributions from all elements and applying boundary condition, a set
of equations is obtained in the form

[K]{D} + {Q} = {0} ...(1.54)
The values of nodal parameters are obtained by solution of equations in Eq. 1.54.
This approach is useful when functional associated with the problem is not known. This

method is a numerical version of the analytical Galerkin method studied in art. 1.2.7.
To overcome the stringent requirement of (n � 1) continuity, an alternative approach is

adopted in which the weighted residual function is converted to weak form by distributing the
differential terms among weight function and field variable. The details of the alternate
approach are discussed in art.13.1.

1.3 METHODS USING MINIMUM POTENTIAL ENERGY PRINCIPLE

For methods in this category, the knowledge of governing differential equation of the
structure is not necessary. However, it is necessary to know the functional to be minimised.
For problems in structural engineering (in which displacements are primary unknowns), the
functional is the total potential energy of the structure.
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The total potential energy of the structure π is expressed either in terms of unknown
mathematical constants or in terms of nodal displacements. The conditions of minimising π
with respect to constants or nodal displacements result in a set of simultaneous equations.
The solution of these equations decides the deformed state of the structure. Other dependant
quantities can then be found at various locations in the structure.

1.3.1 Rayleigh Method

In Rayleigh method, applied to beams and plates, the field variable (w) is assumed as
  w = Aφ

where, A is a mathematical constant and does not have any physical meaning, and φ is a
function (polynomial or trigonometric) which satisfies kinematic boundary conditions. The
total potential energy of the structure is minimised with respect to unknown constant A.

Example 1.9. A cantilever beam AB of span L, flexural rigidity EI carries uniformly
distributed load q/unit length on entire span (Fig. 1.10). Use Rayleigh method to analyse and
comment on results.

B

q/unit

A

L

x

w

Fig. 1.10. Cantilever beam.

Assume, w(x) = Ax2

dw
dx

= 2Ax

⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭

...(1.55)

2d w
dx

= 2A

Assumed function satisfies kinematic boundary conditions as

(i) w = 0 at x = 0 (ii)
dw
dx  = 0 at x = 0

Hence, assumed function is acceptable. The strain energy in the beam is

⎫⎛ ⎞
⎪= = ⎪⎜ ⎟⎝ ⎠ ⎬
⎪

= ⎪⎭

∫ ∫
22

2
20 0

2

(2 )
2 2

2

L LEI d w EI
U dx A dx

dx

U EIA L

...(1.56)

The potential of the distributed load is

⎫= − = − ⎪
⎬
⎪= − ⎭

∫ ∫ 2
0 0

3 /3

L L
V q w dx q Ax dx

V qAL
...(1.57)

Total potential energy of the beam is
   π = U + V = 2EIA2 � qAL3/3 ...(1.58)
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Applying minimum π theorem

A
∂π
∂

 = 4EIAL � qL3/3 = 0

A = 
2

12
qL

EI

Hence, w(x) = 
2 2

12
qL x

EI
...(1.59)

The deflection at free end (x = L) using Eq. 1.59 is w(x = L) = qL4/(12EI) as against exact
value of qL4/(8EI).

In general, the results obtained by Rayleigh method are not satisfactory. We seek to
find that deflected shape of the structure which gives absolute minimum total potential energy.
For this, it is necessary to examine all possible kinematically admissible deflected shapes.
But, Rayleigh method examines only those deflected shapes which are generated by assumed
function by changing associated constant A. Obviously, the search is limited to the type of
shapes generated by assumed function and the one giving minimum π is treated as true solution.

1.3.2 Rayleigh-Ritz Method

Example 1.10 In Rayleigh-Ritz method, the field variable is expressed as a linear
combination of more than one functions. Thus,

w(x) = i iA φ∑ ...(1.60)
Each function φi must satisfy kinematic boundary conditions of the problem. The

cantilever beam shown in Fig. 1.10 is analysed.
Assume

2 3 4
1 2 3

2 3
1 2 3

2
2

1 2 32

( )

2 3 4

2 6 12

w x A x A x A x
dw

A x A x A x
dx

d w
A A x A x

dx

= + +

= + +

= + +
...(1.61)

The assumed trial function satisfies boundary conditions as
At x = 0, w = 0 + 0 + 0

At x = 0, dw
dx

 = 0 + 0 + 0

The strain energy in beam is

U = 
22

2
1 2 320 0

(2 6 12 )
2 2

L LEI d w EI
dx A A x A x

dx

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ 2 dx

U = 2 2 3 2 3 4 2 5
1 1 2 1 3 2 2 3 3

144
4 12 16 12 36

2 5
EI

A L A A L A A L A L A A L A L⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦
...(1.62)

Potential of distributed load is

V = � 2 3 4
1 2 30

( )
L

q A x A x A x dx+ +∫

V = � 
53 4

31 2

3 4 5
qA LqA L qA L

− −

⎫
⎪
⎪
⎬
⎪
⎪⎭

...(1.63)

π = U + V

U

V
||

W
||
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Applying minimum π theorem

1 2 3
0, 0, 0

d d d
dA dA dA

π π π= = = ...(1.64)

Resulting equations in matrix form are
2 3 3

1
2 3 4 4

2
3 4 5 5

3

8 12 16 /3

12 24 36 /4
2

16 36 288 /5 /5

L L L qLA
EI

L L L A qL
AL L L qL

⎡ ⎤ ⎧ ⎫⎧ ⎫⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎩ ⎭⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

...(1.65)

Solution gives

A1 = 
2

2 3, ,
4 6 24
qL qL q

A A
EI EI EI

−= =

Hence, the solution for deflection w(x) is

 w(x) = 
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

2 2 3 41
4 6 24

qL x qLx qx
EI

...(1.66)

This is the exact solution for beam in Fig. 1.10. This was possible because trial function
included all terms of the polynomial (e.g. x2, x3, x4) which are present in exact solution. Exact
solution will not be obtained if trial function is chosen as w(x) = A1x

2 + A2x
3.

1.3.3 Review of Stiffness Matrix Method

Before embarking on the study of finite element method, it is advisable to take a hurried
review of the stiffness matrix method. The stiffness matrix method is used for analysis of
skeletal structures. The method involves formulation and solution of joint equilibrium equations.

An alternate view of the stiffness matrix method is to consider it as a variational approach
in which certain functional associated with the structure is sought to be minimised. The
functional is the total potential energy π of the structure. It is expressed in terms of
displacements of the joints in the structure. The conditions to minimise the total potential
energy yield a set of simultaneous equations in which joint displacements are unknowns. It is
interesting to note that these equations are same as joint equilibrium equations. This important
fact is presented here and then applied to the finite element method for solving continuum
structures.

Example 1.11. Analyse simple frame shown in Fig. 1.11 using stiffness matrix method.
The axial deformations are neglected and sway is not possible. Each joint is associated with
rotation only. For a typical member force-displacement relation is written as

4 m 5 m

y

x

A
B C

90 kN 135 kN

2 m

3 m

10 kNm20 kNm
60 kN/m

D E

Fig. 1.11. Frame for example 1.11.
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AB

BA

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 
4 / 2 /
2 / 4 /

A FAB

B FBA

EI L EI L M
EI L EI L M

θ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
+⎨ ⎬ ⎨ ⎬⎢ ⎥ θ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

...(1.67)

or {fe} = [se]{δe} + {q′e}
in which,

{fe} = Member end forces (moments)
[se] = Member stiffness matrix
[δe] = Member displacement vector
{q′e} = Fixed end reactions (moments)

Equation 1.67 is written for all members using appropriate member properties and load
acting on them.

AB

BA

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = EI
1.0 0.5 80
0.5 1.0 80

A B

A

B

θ θ
θ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬⎢ ⎥ θ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭
...(1.68a)

BC

CB

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = EI
0.8 0.4 125
0.4 0.8 125

B C

B

C

θ θ
θ⎧ ⎫⎡ ⎤ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬⎢ ⎥ θ −⎣ ⎦ ⎩ ⎭⎩ ⎭
...(1.68b)

DB

BD

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = EI
1.333 0.667 20
0.667 1.333 40

D B

D

B

θ θ
θ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬⎢ ⎥ θ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭
...(1.68c)

EC

CE

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = EI
1.333 0.667 30
0.667 1.333 60

E C

E

C

θ θ
θ −⎧ ⎫⎡ ⎤ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬⎢ ⎥ θ⎣ ⎦ ⎩ ⎭⎩ ⎭
...(1.68d)

There are four non-zero rotations in the frame namely θA, θB, θC and θD. Hence, four
joint equilibrium equations are to be developed. These equations, written in terms of end
moments, are

(i) MAB = 0
(ii) MBA + MBC + MBD = MB ...(1.69)

(iii) MCB + MCE = MC

⎫
⎪
⎪
⎬
⎪
⎪⎭(iv) MDB = 0

MB(= 20 kNm) and MC (= � 10 kNm) are external moments acting on joints B and C
respectively. It is possible to substitute moments in Eq. 1.69 in terms of joint rotations from
Eq. 1.68 and develop four equations. For example, the first equation is written as

MAB = EI θA + 0.5EI θB + 80 = 0
Other equations can also be obtained similarly. However, this method of proceeding

equation by equation is inconvenient, tedious and not suitable for computer programming. An
alternate approach known as assembly procedure is used [15]. The assembly procedure consists
of adding elements of member stiffness matrices to the structure stiffness matrix in a systematic
way. Also, fixed end forces and moments acting on joints are added to the right hand side of
the equations.
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We begin with the blank matrices as shown in Eq. 1.70. The unknowns are also entered
as column headings. Similarly, the unknowns associated with the members are entered as
column headings above respective member stiffness matrices, in Eq. 1.68.

A B C D

A

B

C

D

θ θ θ θ
θ⎡ ⎤ ⎧ ⎫

⎢ ⎥ ⎪ ⎪θ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ θ⎪ ⎪⎢ ⎥ ⎪ ⎪θ⎢ ⎥⎣ ⎦ ⎩ ⎭

 = 

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

...(1.70)

or, [S] {D} = {Q} + {P}
The rows and columns of the structure and member stiffness matrices are identified by

the unknowns associated with them.
Assembly procedure proceeds member by member. Consider member AB. The stiffness

coefficient 1.0EI appears in θA row and θA column in member stiffness matrix, in Eq. 1.68a.
Hence, this coefficient (1.0 EI) is entered at similar position i.e. at the intersection of θA row
and θA column in structure stiffness matrix. Same procedure is followed for entering remaining
three coefficients. The fixed end moments are entered in corresponding rows on right hand
side, but with change of sign. The contribution of member AB to the equilibrium equations is
seen as

1.0 0.5
0.5 1.0

A B C D

A

B

C

D

θ θ θ θ
θ⎡ ⎤ ⎧ ⎫

⎢ ⎥ ⎪ ⎪θ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ θ⎪ ⎪⎢ ⎥ ⎪ ⎪θ⎢ ⎥⎣ ⎦ ⎩ ⎭

 = 

80
80

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

...(1.71)

Assembly procedure is completed by considering remaining members one by one. The
moments acting on joints B and C are added to the right hand side against corresponding
unknown rotations. Thus, the cumulative effect is seen as shown below in Eq. 1.72.

EI

1.0 0.5

0.5 1.0 0.8 0.4 0.667
1.333

0.4 0.8
1.333

0.667 1.333

A B C D

A

B

C

D

θ θ θ θ
θ⎡ ⎤ ⎧ ⎫

⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪+ θ
⎢ ⎥ ⎪ ⎪+ ⎪ ⎪⎢ ⎥

⎨ ⎬⎢ ⎥+ θ⎪ ⎪⎢ ⎥
⎪ ⎪+⎢ ⎥
⎪ ⎪⎢ ⎥+ θ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎢ ⎥⎣ ⎦ ⎩ ⎭

 = 

80

80 125 20
40

125 60 10

20

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪+⎨ ⎬ ⎨ ⎬− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

...(1.72)

It is noted that the coefficients in θE row and θE column of member stiffness matrix of
member EC (Eq. 1.68d) are not added to structure stiffness matrix because θE is not an unknown.

Final form of equilibrium equations is obtained by summing up the quantities in Eq. 1.72.
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EI

1.0 0.5 0 0
0.5 3.133 0.4 0.667

0 0.4 2.133 0
0 0.667 0 1.333

A B C D

A

B

C

D

θ θ θ θ
θ⎡ ⎤ ⎧ ⎫

⎢ ⎥ ⎪ ⎪θ⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥ θ⎪ ⎪⎢ ⎥ ⎪ ⎪θ⎢ ⎥⎣ ⎦ ⎩ ⎭

 = 

−⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪−⎩ ⎭

80
15
55
20

...(1.73)

or,  [S] {D} = {R}
Solution of equations by Gauss elimination method gives

     θA = � 
91.053

EI
, θB = 

22.105
EI

,

 θC = 
21.640

EI
,

26.065
D EI

θ = −

This completes first stage of solution. Second stage consists of back substitution to
calculate member end forces using known joint rotations. Thus,

AB

BA

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 
1.0 0.5 91.053 80 0
0.5 1.0 22.105 80 103.422

−⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

...(1.74a)

BC

CB

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 
0.8 0.4 22.105 125 151.340
0.4 0.8 21.640 125 98.846
⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
...(1.74b)

DB

BD

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 
1.333 0.667 26.065 20 0
0.667 1.333 22.105 40 27.919

−⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

...(1.74c)

EC

CE

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 
1.333 0.667 0 30 15.566
0.667 1.333 21.640 60 88.846

− −⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
...(1.74d)

It is left to the reader to draw bending moment diagrams for all members. All end
moments are in kN m units.

1.3.4 Stiffness Method as a Variational Approach

In Art 1.3.3 the stiffness matrix method was explained as a method to formulate joint
equilibrium equations to obtain unknown joint displacements. An alternate view is to consider
the stiffness method as a variational approach. A variational approach is one in which certain
functional associated with the structure is sought to be minimised. In structural engineering
problems the functional is the total potential energy π of the structure. It is interesting to note
that the conditions to minimise π with respect to joint displacements yield the equations which
are exactly identical to the joint equilibrium equations.

Example 1.11 (Fig. 1.11) is considered again for explanation purpose. If member is not
carrying loads, then for a typical member AB :

AB

BA

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

 = 11 12

21 22

A

B

s s
s s

θ⎡ ⎤ ⎧ ⎫
⎨ ⎬⎢ ⎥ θ⎣ ⎦ ⎩ ⎭

...(1.75)

or,  {fe} = [se]{δe}
The end forces (moments) will do work on end displacements (rotations). This work is

stored in member as strain energy Ue as

W = Ue = 1
2

(θAMAB + θBMBA) ...(1.76a)
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  Ue = [ ]1
2

AB
A B

BA

M
M

⎧ ⎫
θ θ ⎨ ⎬

⎩ ⎭
...(1.76b)

Substituting for end moments from Eq. 1.75

Ue = [ ] 11 12

21 22

1
2

A
A B

B

s s
s s

θ⎡ ⎤ ⎧ ⎫
θ θ ⎨ ⎬⎢ ⎥ θ⎣ ⎦ ⎩ ⎭

...(1.76c)

or, Ue = 
1

{ }
2

T
eδ  [se] {δe} ...(1.76d)

The fixed end forces (moments in this case) are converted to equivalent joint moments.
These are equal to negatives of the fixed end moments. Thus,

Fixed end moments = {qe′} = FAB

FBA

M
M

⎧ ⎫
⎨ ⎬
⎩ ⎭

...(1.77a)

  Equivalent joint moments = {qe} = � {q′e} = FAB

FBA

M
M

−⎧ ⎫
⎨ ⎬−⎩ ⎭

...(1.77b)

The potential of equivalent joint loads (moments in this case) is written as

 Ve = � [ ] [ ]FAB FAB
A B A B

FBA FBA

M M
M M

−⎧ ⎫ ⎧ ⎫
θ θ = + θ θ⎨ ⎬ ⎨ ⎬−⎩ ⎭ ⎩ ⎭

...(1.78a)

  Ve = � {δe}
T{qe} = + {δe}

T {q′e} ...(1.78b)
The total potential energy of the member AB is the sum of strain energy Ue and the

potential of loads V. Thus,

′

π = + ⎫
⎪
⎬π = δ δ + δ ⎪⎭

1
{ } [ ] { } { } { }

2

e e e

T T
e e e e e e

U V

s q
...(1.79)

Substituting from Eqs. 1.76(c) and 1.78 (a) and carrying out multiplications

πe = 
1
2

(s11θA
2 + s21θAθB + s12θAθB + s22θB

2) + θAMFAB + θBMFBA ...(1.80)

Taking derivatives with each component of {δe} and noting that s12 = s21 :

e

A

∂π
∂θ

 = s11θA + s12θB + MFAB ...(1.81a)

e

B

∂π
∂θ

 = s21θA + s22θB + MFBA ...(1.81b)

Writing in matrix form

e

A

e

B

∂π⎧ ⎫
⎪ ⎪∂θ⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪∂π⎪ ⎪

∂θ⎪ ⎪⎩ ⎭

 = 

11 12

21 22

A FAB

B FBA

s s M

s s M

θ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪θ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

...(1.81c)

or,   e

e

⎧ ⎫∂π
⎨ ⎬∂δ⎩ ⎭

 = [se] {δe} + {q′e} ...(1.81d)



22 FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS

This relation is derived for an individual member. Later, similar expression will be
used at structure level.

A connectivity matrix [Ci] is introduced for ith member such that

and    
δ = ⎫⎪

⎬
= δ ⎪⎭

{ } [ ]{ }

{ } [ ] { }
e i i

T
i e i

C D

D C
...(1.82)

For a typical member AB

A

B

θ⎧ ⎫
⎨ ⎬θ⎩ ⎭

 = 
1 0 0 0
0 1 0 0

A

B

C

D

θ⎧ ⎫
⎪ ⎪θ⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥ θ⎣ ⎦ ⎪ ⎪
⎪ ⎪θ⎩ ⎭

Members AB, BC, DB, EC are numbered 1 to 4 respectively. Total potential energy of
member 1 (AB) can be written using Eqs. 1.79 and 1.82 as

π1 = 
1
2

{D}T [C1]
T [se1] [C1] {D} + {D}T[C1]

T {q′e1} ...(1.83)

writing [S1] = [C1]
T [se1] [C1] ...(1.84a)

and {Q1′} = [C1]
T {q′e1} ...(1.84b)

The total potential energy of AB is written as

π1 = 
1
2

 {D}T [S1] {D} + {D}T {Q1′} ...(1.85)

Matrices [S1] and {Q1′} for member AB are

[S1] = 

1 0
0 1 1 0.5 1 0 0 0
0 0 0.5 1 0 1 0 0
0 0

EI EI
EI EI

⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

[S1] = EI

1 0.5 0 0
0.5 1 0 0

0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

{Q1′} = 

1 0
0 1 80
0 0 80
0 0

⎡ ⎤
⎢ ⎥ ⎧ ⎫⎢ ⎥ ⎨ ⎬⎢ ⎥ −⎩ ⎭
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 

80
80

0
0

⎧ ⎫
⎪ ⎪−⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

Matrix multiplications in Eq. 1.84a enlarge member stiffness matrix of 2 × 2 size to a
size of structure stiffness matrix of 4 × 4. The coefficients are placed at the locations adopted
in assembly procedure. Also, the multiplication in Eq. 1.84b enlarges matrix {qe′} of 2 × 1 size
to a size of structure load matrix of 4 × 1.

Omitting the details of multiplications, enlarged matrices [Si] and {Q1′} for remaining
members are given below.
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For member 2 (BC)

[S2] = EI 2

0 0 0 0 0
0 0.8 0.4 0 125

; [ ]
0 0.4 0.8 0 125
0 0 0 0 0

Q′

⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪

⎪ ⎪⎢ ⎥ = ⎨ ⎬⎢ ⎥ −⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭
For member 3 (DB)

[S3] = EI 3

0 0 0 0 0
0 1.333 0 0.667 40

; [ ]
0 0 0 0 0
0 0.667 0 1.333 20

Q′

⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪−⎪ ⎪⎢ ⎥ = ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

For member 4 (EC)

[S4] = EI 4

0 0 0 0 0
0 0 0 0 0

; [ ]
0 0 1.333 0 60
0 0 0 0 0

Q′

⎡ ⎤ ⎧ ⎫
⎢ ⎥ ⎪ ⎪

⎪ ⎪⎢ ⎥ = ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

Total potential energy of entire structure consists of
(i) Strain energies of all members,

(ii) Potentials of loads acting on members and
(iii) Potentials of loads acting on joints proper.
Using Eq. 1.85, total potential energy of the entire structure is

π = 
4 4

1 1

1
{ } [ ]{ } { } { }

2
T T

i i
i i

D S D D Q′

= =
+∑ ∑ � {D}T {P} ...(1.86)

Writing,

′ ′ ′ ′ ′

⎫= = + + + ⎪
⎬

= ′ = + + + ⎪⎭

∑
∑

1 2 3 4

1 2 3 4

[ ] [ ] [ ] [ ] [ ] [ ]

{ } { } { } { } { } { }
i

i

S S S S S S

Q Q Q Q Q Q
...(1.87)

π = 
1
2

{D}T [S]{D} + {D}T {Q′} � {D}T {P} ...(1.88)

Applying minimum potential energy theorem :

D
∂π⎧ ⎫

⎨ ⎬∂⎩ ⎭
 = [S]{D} + {Q′} � {P} = {0} ...(1.89)

or, [S]{D} = � {Q′} + {P} ...(1.90)
or, [S]{D} = {R} ...(1.91)

Structure stiffness matrix [S] is obtained by adding enlarged matrices [Si] and {Q′} is
obtained by adding {Qi

′} of all members. Thus,

[S] = EI

1.0 0.5
0.5 1.0 0.8 1.333 0.4 0.667

0.4 0.8 1.333
0.667 1.333

⎡ ⎤
⎢ ⎥+ +⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥⎣ ⎦

...(1.92)
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 {R} = 

80 0
80 125 40 20

125 60 10
20 0

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪+ − +⎪ ⎪ ⎪ ⎪+⎨ ⎬ ⎨ ⎬− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭

...(1.93)

Matrices of Eqs. 1.92 and 1.93 are exactly same as those obtained in Eq. 1.72. It is, thus,
proved that the conditions of minimum total potential energy yield the joint equilibrium
equations.

Whether the equations (Eqs. 1.73, 1.90) are treated as joint equilibrium equations or
conditions to minimise total potential energy of the structure, the process of obtaining the
equations is exactly identical, namely formulation of member stiffness matrices and member
load matrices and assembling them to form structure stiffness and structure load matrices. It
is important to understand this fact clearly as it will be used while developing formulations in
finite element method.

1.3.5 Concept of Finite Element Method

The finite element method is used to analyse continuum structures. The stiffness matrix
method, on the other hand, is used to analyse discrete element or skeletal structures. Recent
trend, however, is to present unified treatment of both the methods considering discrete member
as a special case of continuum elements.

The basic concept of the finite element method is to divide the continuum structure into
sub-regions or sub-domains or zones. This process of division into sub-domains is known as
dicretisation of the structure. A typical discretisation of a two dimensional plate into triangular
regions is shown in Fig. 1.12(a). The sub-domains are known as elements. The structure is
treated as an assemblage of these elements. An element (in finite element method) has generally
more than two nodes. The elements are assumed as connected to each other at nodes. In
reality, the elements do not exist as separate entities. One can imagine that the elements are
obtained by drawing chalk lines or pencil lines on the structure. Further, nodes are not actual
nodes. These are imaginary or notional nodes. Actually, elements are connected together all
along the common edge, and not at nodes only. In skeletal structure, the members are actual
and they are actually connected together at joints only. Each member of skeletal structure has
two nodes-one at each end.

y v( )

x u( )
Node Element

Fig. 1.12 (a) Discretisation.

In finite element method, the displacements at the nodes are treated as primary
unknowns. These nodal displacements are obtained by solution of simultaneous equations
which arise when conditions of minimum total potential energy of the structure are applied. If
nodal displacements are known, then other dependant quantities can be found at any location
in the structure.
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The simultaneous equations mentioned above are obtained by assembly procedure which
consists of adding element stiffness matrices to the structure stiffness matrix. Obviously, the
first task is to develop standard stiffness matrix of a typical element. Consider a triangular
element shown in Fig. 1.12(b). The element has three nodes. In plane stress situation, the
nodes undergo displacements u and v in x and y directions respectively. Thus, the element
displacement vector for element is

1

2

3

v3

v3

u2

y2

v1

u1

( ) { }b �e

1

2

3

Fy3

Fx2

Fy2

Fy1

Fx1

( ) { }c fe

1

2

3

s21 = ?

( ) = 1 imposedd u1

Fx3

s11 = ?

s31 = ?

s41 = ?

s51 = ?

s61 = ?

Fig. 1.12. Two dimensional region and triangular element.

  {δe} = {u1 v1 u2 v2 u3 v3}
T ...(1.94)

and corresponding matrix of nodal forces is
 {fe} = {Fx1 Fy1 Fx2 Fy2 Fx3 Fy3}

T ...(1.95)
The element stiffness matrix relates nodal forces to nodal displacements as

 {fe} = [se]{δe} ...(1.96)
Stiffness matrix [se] is to be developed. The coefficients of stiffness matrix of a discrete

element structure are easily found by imposing one displacement of unit value at a time, while
restraining other displacements. The forces required to keep the element in that displaced
state are the required coefficients. Let us imagine that the triangular element exists as a
separate entity and nodal displacement u1 = 1 is imposed as shown in Fig. 1.12d. Is it, then,
possible to obtain the coefficients s11, s21, ..., s61? The members of the skeletal structure are
simple straight members and the standard formulae in structural mechanics are used to
calculate stiffness coefficients. But, for a triangular element, there are no such standard
formulae available to calculate coefficients. Thus, the idea of obtaining stiffness coefficients
using approach used in stiffness method can not succeed.

The stiffness matrix is also seen as a means of expressing strain energy in the element
in quadratic form vide Eq. 1.76 (d). If it is possible to express strain energy in the element as

Ue = 
1

{ } [ ] { }
2

T
e eXδ δ ...(1.97)

then, the matrix [X] is certainly the stiffness matrix. This matrix may be a single matrix or
may be product of two or more matrices. Often, integration of matrices may also be involved.
Thus, for example, if energy is expressed as

Ue = 
1

{ } [ ] [ ][ ] { }
2

T T
e eX Y X dA⎡ ⎤δ δ⎣ ⎦∫ ...(1.98)

then, stiffness matrix is

 [se] = [ ] [ ][ ]TX Y X dA∫ ...(1.99)
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To implement this strategy of obtaining stiffness matrix via strain energy expression,
the variation of displacements over element region is expressed in terms of nodal displacements
using shape functions. This helps in writing strains and stresses at any point within element.
Finally, the strain energy in element is expressed in quadratic form and hence element stiffness
matrix is found.

The potential of the loads acting on element is also expressed in terms of nodal
displacements of the element. The total potential energy of the entire structure is the sum of
the potential energies of all elements. Obviously, this quantity π is the function of the
displacements of all nodes of the structure. The total potential energy of the structure is
minimised with reference to each component of nodal displacements and a set of equations in
unknown displacements is obtained. Actually, these equations are obtained by assembly
procedure mentioned earlier. The solution of these equations is obtained using any standard
method of solution. Once, the nodal displacements are found, it is easy to calculate strains and
stresses at any point in the structure.

In summary, the finite element method aims at determining deformed state of the
structure in terms of nodal displacements using energy minimisation principle.

As mentioned earlier, nodes are imaginary and nodal forces do not really exist. Yet, in
the earlier stages of the development of finite element method, the nodal forces were considered
and were shown as the net effect of the stresses acting on element sides. The concept of nodal
forces is useful for a beginner who can study and understand the finite element method on
lines of stiffness matrix method, considering force-displacement relations and joint equilibrium
conditions. The present day books, however, do not mention nodal forces and present the finite
element method in terms of energy minimisation process.

1.3.6 Finite Strip Method

The finite strip method has emerged as a popular, powerful and computationally economic
method of structural analysis. General concept of the method is discussed with reference to a
rectangular thin plate shown in Fig. 1.13. The plate is
discretised into strips and not into elements. The method
is a semi-analytical method. For a plate with two opposite
edges simply supported, the displacement (w) variation
over the strip region is expressed using sine functions in
x-direction and beam functions in y-direction. Each strip
has two nodal lines and each nodal line is associated with

w and 
w
y

∂
∂

 per harmonic. The method employs minimum

potential energy principle. The resulting m × n equations
are decoupled into m sets of n equations each, where m
is the number of harmonics used. Each set of equations
is solved independently. The harmonic decoupling of equations results in great computational
economy. The method has been used for analysis of annular sector plates, folded plates, box-
girders, axi-symmetric shells and solids. Mindlin plates also have been analysed.

The advantage of harmonic decoupling is not available for other combinations of boundary
conditions at x = 0 and x = L edges. To overcome this difficulty, a new spline finite strip
method has been developed. In this method, nodes are introduced on nodal lines. The coefficients

for w and w
y

∂
∂

 are unknowns at each node. Spline functions are used along nodal lines to

describe deflection variation over strip region. Harmonic wise analysis is not required.

L

S.S. S.S.

y

x

Nodal lines Strip

Fig. 1.13. Rectangular plate
discretised into strips.
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1.3.7  Finite Difference Energy Method

This is a variational approach. It is also known as variational finite difference method.
It uses minimum potential energy principle. The structure is discretised into elements. An
element is associated with nodes some of which lie
outside element domain. For beam and plate bending
problems, only deflection w is unknown at a node.
The derivatives of the displacement appearing in
energy expression are related by corresponding finite
difference operator. The bending curvatures are
treated as constant over element region and hence
integration is not required to evaluate stiffness
matrix.

For a typical beam element shown in Fig. 1.14, the element displacement vector is
composed of w1, w2 and w3. The bending curvature at the centre of element is written as

χ = � 
2

2 2
1d w

dx h
= − [w1 � 2w2 + w3]

This forms the basis for further calculations. The method is computationally economic
since integration is not required and the number of unknowns is less than the number of
unknowns in finite element method for identical mesh.

1.3.8 Discrete Energy Method

Discrete energy method is a variational approach. It is based on application of minimum
total potential energy theorem. For a plate subjected to membrane-bending action, the
discretisation is into two types of elements namely type A and type B elements (Fig. 1.15).
Bending and extensional energies are calculated for type A elements, while twisting and inplane
shear energies are calculated for type B elements. The regions of type A and type B elements
are overlapping. Curvatures and strains are treated as constant over element region.
Derivatives appearing in strain and curvature expressions are replaced by finite difference
operators. The method is computationally economic. The number of unknowns is less compared
to the number in finite element method for identical mesh. The method has been applied for
analysis of folded plates, box-girders, shallow shells and also for non-linear analysis of plates
and shells.

h h h

y v( )

x u( )

h

�

u

vA

B

Fig. 1.15. Type A and B Elements.

1 2 3

W1
W3

W2 Element

h h h h

Fig. 1.14. Element and associated node.
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1.4 BOUNDARY ELEMENT METHOD

Boundary element method is a numerical approach for analysis of two and three
dimensional problems. In this method, the governing differential equation of the problem is
transformed into an integral identity [16] which is applicable over boundary or surface. For a
two dimensional problem only boundary of the structure is discretised into one dimensional
elements. For three dimensional solid the surface is discretised into 2D surface elements. The
interior of the structure i.e. structure domain is not discretised. Thus, the dimensionality of
the problem is reduced by one. The integrals on boundary or surface are found using numerical
integration process. The method is based on application of Green�s theorem and Betti-Maxwell
theorem. For applying the method, the knowledge of fundamental solution (Kelvin solution)
for unit load applied at a point in infinite domain is necessary. The primary unknowns are
displacements and tractions at nodes located on boundary or surface. The coefficient matrix of
resulting equations is neither symmetric nor banded. Hence, it is to be stored in full form.
Once unknowns at boundary nodes are found, it is possible to calculate quantities of interest
at any location within structure.

The method involves complex mathematical expressions and is not as popular as finite
difference and finite element methods.

1.5 RAYLEIGH-RITZ METHOD AND FINITE ELEMENT METHOD

Rayleigh-Ritz method is a classical method of structural analysis. It is a variational
approach and uses energy minimization principle to predict the deflected shape of structure.
The displacement variation over entire structure is described in terms of certain functions.
Each function is associated with unknown constant. These constants are primary unknowns.
The constants do not have any physical meaning. They are merely mathematical constants.
They can be treated as nodeless variables. Each function φi must satisfy kinematic boundary
conditions. The total potential energy of the structure is expressed in terms of unknown
constants and then principle of minimum total potential energy is applied. This yields a set of
simultaneous equations. The solution gives the values of the constants. The displacements
are then available in terms of functions which are continuous over entire structure. Hence,
displacements, strains, stresses can be calculated at any location within structure using
appropriate coordinate of the location. Force boundary conditions may not be satisfied. The
displacement solution can be exact provided all terms appearing in true solution are included
in assumed functions. In other cases solution is approximate. The method can be applied only
to a structure of regular shape. It is difficult to prescribe displacement variation over arbitrarily
shaped structure. The coefficient matrix in simultaneous equations is symmetric, but fully
populated.

The finite element method started in real sense since around 1960. The advent of
computers helped in accelerating the growth of the method by leaps and bounds.

The finite element method is also a variational method and uses energy minimisation
principle to predict the deflected shape of the structure. The structure is divided into zones or
elements and the displacement variation is prescribed piecewise over each element of the
structure in terms of displacement parameters of the nodes attached to that element. The
displacement parameters have physical meaning such as deflection, slope of the tangent,
rotation of the normal etc. The nodal displacement parameters are primary unknowns. The
total potential energy of the structure is the sum of the potential energies of all elements.
Application of principle of minimum potential energy results in a set of simultaneous equations.
The solution gives values of nodal parameters. To calculate displacements and other dependant
quantities within element, the displacement parameters at nodes of the element are used
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along with the shape functions and constitutive relations. It is, thus, seen that finite element
method is a particular case of Rayleigh-Ritz method. This realisation came at a later stage.

The coefficient matrix of equations is symmetric and banded, as against fully populated
matrix in Rayleigh-Ritz method. The finite element method is appealing to the engineers as
the nodal parameters have physical meaning and engineers can draw immediate conclusions
about the deflected shape of the structure. The force boundary conditions are not necessarily
satisfied. The kinematic boundary conditions are applied by providing suitable data. The shape
function chosen to describe displacement variation over element region need not a-priori satisfy
kinematic boundary conditions.

The method can be applied to an arbitrarily shaped structure since it is always possible
to discretise the structure into finite elements. This is the great advantage of the finite element
method over Rayleigh-Ritz method.

1.6 STIFFNESS MATRIX METHOD AND FINITE ELEMENT METHOD

Stiffness matrix method is used for analysis of skeletal or discrete element structures.
Finite element method, on the other hand, is used to analyse continuum structures.

The stiffness method can be treated as a special case of finite element method.
Joint displacements in skeletal structure and nodal displacement parameters in

continuum structure are treated as primary unknowns.
Joints and members in skeletal structure are actual. Whereas, elements and nodes in

continuum structure are notional, imaginary. The elements of continuum structure are attached
to each other not at nodes only, but all along the common edge.

The members of skeletal structure have two nodes-one at each end of member. The
elements in continuum structure generally have more than two nodes associated with it.

The stiffness matrix of a member of skeletal structure is found easily using standard
formulae of structural mechanics. The stiffness matrix of an element of a continuum structure
is to be found by expressing strain energy in quadratic form.

Joint equilibrium conditions are used to formulate equations in unknown joint
displacements, in stiffness matrix method. In finite element method, the conditions of minimum
total potential energy are used to formulate equations in unknown nodal displacements.

The coefficient matrix is symmetric and banded in both methods.
The theory for both methods can be written in concise matrix notations and hence both

methods are amenable to computer usage.

EXERCISES I

1. Starting from governing differential equation, obtain exact solution of single span beams shown
in Figs. 1.16a to 1.16 f. For all beams span is L and flexural rigidity is EI. Origin is at left end of
the beam.

q/unit

x

q/unit

( )a

( )b
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q/unit

( )c

q/unit

( )d

q/unit

( )e

q/unit

( )f

Fig. 1.16. Beams for Exercise I.

2. Obtain trigonometric series solution for beams shown in Fig. 1.17a to 1.17c. For all beams span
is L and flexural rigidity is EI.

( )a

q/unit

q/unit

( )b

( )c

P

a

Fig. 1.17. Beams for Exercise 2.

3. Obtain nodal point deflections for beams shown in Fig. 1.18a and 1.18b by finite difference method.
Span of the beam is L and flexural rigidity is EI. Beams are divided in six equal parts.

W1
W2 W3

W4

W5

q/unit
q/unit

W1
W2 W3

W2

W1

( )a ( )b

Fig. 1.18. Beams for Exercise 3.
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4. For beams in Figs. 1.19a to 1.19c, assume deflection function w(x) as given below and obtain
Rayleigh-Ritz solution.

( )a

q/unit

( )b

( )c

W

x

L/4

L/2

q/unit

P

3 /4L

Fig. 1.19. Beams for Exercise 4.

(a) w(x) = A1 sin 3
3sinx xA

L L
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

(b) w(x) = A1 sin 2
2sinx xA

L L
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

(c) w(x) = A1 sin 2
2sinx xA

L L
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
5. Analyse the continuous beam shown in Fig. 1.20 by stiffness matrix method. For all beams,

flexure rigidity is EI.

4 m

60 kN/m

4 m 5 m

2 m 2 m

A
B

C D

10 kN/m

100 kN 100 kN

Fig. 1.20. Beam for Exercise 5.

6. Write points of similarity and contrast between :
(a) Analytical method and numerical method
(b) Rayleigh-Ritz method and finite element method
(c) Stiffness matrix method and finite element method
(d) Finite difference method and finite difference energy method
(e) Finite difference method and finite element method
(f) (Standard) finite element method and Galerkin finite element method

7. Starting from governing differential equation, obtain exact solution for beams described below.
2

02( ) 0 and at 0
d w

q x EI M x
dx

⎡ ⎤
= − = =⎢ ⎥

⎢ ⎥⎣ ⎦
Hint :
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(a) A simply supported beam of span L and flexure rigidity EI is subjected to clockwise moment
at left end.

(b) A propped cantilever AB of span L and flexure rigidity EI has prop support at A and is clamped
at B. It carries clockwise moment M0 at A.

(c) A cantilever AB of span L and flexure rigidity EI has free end at A and is clamped at B. It
carries clockwise moment M0 at A.

8. A simply supported beam ABC has supports at A and C. AB = BC = L/2. It is subjected to distributed
load which varies linearly from zero intensities at A and C and maximum intensity of q/unit
length at B.
Obtain solution in the form of infinite trigonometric series.

9. A clamped beam carries concentrated load P at the centre of span. Assume

w(x) = A 21 � cos x
L
π⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
and obtain Rayleigh solution. Compare deflection at centre with the exact value

w(x = L/2) = PL3/(192 EI)
10. A clamped beam of span L carries uniformly distributed load of q/unit length on entire span.

Assume

w(x) = A 21 � cos x
L
π⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
and obtain Rayleigh solution. Compare deflection at centre with exact value of

w(x = L/2) = qL4/(384 EI)
11. A cantilever beam ABC is clamped at A and is free at C. AB = BC = L/2. It carries a point load P

at free end. The flexural rigidity of AB and BC parts are 2EI and EI respectively. Assume
w(x) = Ax2

and find deflection at free end using Rayleigh approach.
12. A cantilever AB is clamped at A and is free at B. It carries distributed load which varies linearly

from q/unit length at A to zero at B. Assume
w(x) = Ax2 + Bx3 + Cx4 + Dx5

and obtain Rayleigh-Ritz solution.
13. A simply supported beam ABC has supports at A and C. AB = BC = L/2. Beam supports a point

load P at B. The flexural rigidity of AB and BC parts are EI and 2EI respectively. Assume

w(x) = 1 2
2sin sinx xA A

L L
π π⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
and obtain Rayleigh-Ritz solution.

14. A clamped beam of 6 m span carries distributed load of 40 kN/m on entire span. Divide the beam
in six equal parts and obtain deflections at nodal points using finite difference method. Use
symmetry.

15. A clamped beam ABC of 6 m span carries distributed load of 50 kN/m on entire span. AB = BC =
3 m. The flexural rigidities of AB and BC parts are EI and 2EI respectively. Divide the beam in
six parts and obtain deflections at nodal points using F. D. method. Use flexural rigidity = 1.5 EI
at B.

16. A propped cantilever ABC has prop support at A and is clamped at C. AB = BC = 3 m. The
cantilever carries distributed load of 60 kN/m on entire span. The flexure rigidity of AB and BC
are EI and 2EI respectively. Divide the beam in six parts and obtain deflections at nodal points
using finite difference method.

17. A simply supported beam of 6 m span carries a point load of 100 kN at the centre of span. Divide
the beam in six parts and obtain nodal point deflection using F.D. method. Use symmetry. Replace
point load by distributed load of 100 kN/m over a length of 1 m around centre of beam.
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18. Governing differential equation of thin plate bending phenomenon is written as

( )4 4 4

4 2 2 4
,

2
q x yw w w

Dx x y y
∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

Convert g.d.e. to a difference equation using square mesh (h × h).

ANSWERS TO EXERCISES I

1. (a) w = 
3 4 31

12 24 24
qLx qx qL x

EI
⎛ ⎞

− + +⎜ ⎟⎜ ⎟
⎝ ⎠

(b) w = 
3 5 371

36 120 360
qLx qx qL x

EI L
⎛ ⎞

− + +⎜ ⎟⎜ ⎟
⎝ ⎠

(c) w = 
3 4 31

16 24 48
qLx qx qL x

EI
⎛ ⎞

− + +⎜ ⎟⎜ ⎟
⎝ ⎠

(d) w = 
2 2 3 41
4 6 24

qL x qLx qx
EI

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠

(e) w = 
2 2 3 4 51

12 12 24 120
qL x qLx qx qx

EI L
⎛ ⎞

− + −⎜ ⎟⎜ ⎟
⎝ ⎠

(f) w = 
2 2 3 51

60 40 120
qL x qLx qx

EI L
⎛ ⎞

− +⎜ ⎟⎜ ⎟
⎝ ⎠

2. (a) w = 
4

5 5
1,3,

4 1 sin
m

qL m x
LEI m=

⎡ ⎤
π⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠π ⎣ ⎦

∑ m = 1, 3, 5, 7 ...

(b) w = 
4

4 4
1,2,3

sinm

m

qL m x
LEI m=

⎡ ⎤π⎛ ⎞⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥π ⎣ ⎦

∑

where, qm = 
2q
mπ (m = 1, 3, 5, 7 ...)

qm = −
π

2q
m

(m = 2, 4, 6 ...)

(c) w = 
3

4
1,2

2 sin sin
m

PL m a m x
L LEI =

⎡ ⎤
π π⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠π ⎣ ⎦

∑ m = 1, 2, 3, 4, ...

3. (a) w1 = 0.006752 qL4/(EI)
w2 = 0.011574 qL4/(EI)
w3 = 0.013310 qL4/(EI)

(b) w1 = 0.001461 qL4/(EI)
w2 = 0.002466 qL4/(EI)
w3 = 0.002687 qL4/(EI)
w4 = 0.002054 qL4/(EI)
w5 = 0.000882 qL4/(EI)



34 FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS

4. (b) w = 
4

5
4 1 3sin sin

243
qL x x

L LEI
π π⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦π

(b) w = π π⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦π

3

4
1 22 sin sin
8

PL x x
L LEI

(c) w = 
4

5
1 22 sin sin
8

qL x x
L LEI
π π⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦π

5. (a) θA = � 106.725/(EI)
θB = 53.449/(EI)
θC = � 27.071/(EI)
MAB = 0, MBA = � 79.914
MBC = 89.914, MCB = � 50.347
MCD = 50.343, MDC = � 58.828
(All moments in kN m units)
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