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Introductory Notes and Fluid Properties

I.0. Fluid Mechanics
Fluid mechanics is a physical science concerned with the behaviour of fluid at rest and in

motion. It combines the two separate approaches�the empirical hydraulics and the classical
hydrodynamics developed by the hydraulicians and the mathematicians respectively. Hydraulics
is mainly concerned with the motion of water. It is an applied science consisting of an enormous
amount of experimental data which have been accumulated over a period of many centuries. The
hydraulicians relied heavily on the field observations and laboratory tests. The data thus obtained
are usually reduced to empirical formulas. Barring a few exceptions, these formulas are generally
presented in a form such that they are not dimensionally homogeneous. Their applicability is limited
to flow conditions similar to those for which these formulas were derived.

On the other hand, hydrodynamics is essentially a mathematical science dealing with flow
analysis based on the concept of an ideal fluid�a fictitious fluid in which both fluid viscosity and
fluid compressibility are assumed absent. The mathematical solutions of flow problems involving
an ideal fluid thus have limited applicability to the motion of real fluids, even to those with small
viscosity like water and air.

It is possible to experience applications of fluid mechanics in daily life. Some of the examples
are :

(i) The flight of birds in the air and the motion of fish in the water are governed by the laws
of fluid mechanics.

(ii) The cricket ball bowler depends upon circulation principle to provide the ball with desired
spin and flight.

(iii) The dentated golf ball is designed to traverse longer distance with a minimum effort
exerted by a golf player.

(iv) The circulation of blood in veins and arteries follows the law of fluid resistance.
(v) The human heart is a fine example of a pump delicately designed by nature to work

continuously non-stop for many decades.
(vi) The designs of aeroplanes and ships are based on the theory of fluid mechanics.

(vii) The oil and gas pipelines, the water supply systems are designed on the principles of
fluid mechanics.

We live in an environment of air and of water to such an extent that almost every thing we
do is related in someway to the laws of fluid mechanics.

I.1. Historical Development of Fluid Mechanics
The following paragraphs briefly deal with certain important contributions made by various

distinguished investigators since the dawn of history. The entire period of development has been
divided into three parts depending upon the extent and the type of contribution made during the
period. These are : Ancient and Medieval Period, Eighteenth and Nineteenth century period and
Twentieth century period which marks the advent of fluid mechanics.
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I.1.1. Ancient and Medieval Period Developments. The important contributions to
hydraulics made upto the end of the seventeenth century have been covered here. The main
contributors who influenced the course of future developments may be regarded as Archimedes,
Leonardo da Vinci, Torricelli, Descartes, Mariotte, Pascal, Huygens. Isaac Newton and the Bernoulli
brothers�Jakob and Johann. The major contributions of some of these are described briefly as
under :

The recorded history of hydraulics1 begins with Archimedes (287�212 B.C.). The most
significant contribution of this Greek genius is his discovery of the principle of buoyancy and
floatation. The development in the field of hydraulics was delayed until the experimental and
observational approach gained a prominent place in the study of mechanics. No important
contribution was made by any individual till the second half of the 15th century.

It was the Italian genius, Leonardo da Vinci (1452�1519), who first advocated the
experimental approach to understand the flow behaviour. His basic premise was that, �When dealing
with water, we must begin with experiment and try through it to discover the reason�. As a result of
his observations he was first to sketch and comment upon many hydraulic phenomena such as,
profiles of free jet, formation of eddies at abrupt expansions and in wakes, velocity distribution in
a vortex, hydraulic jump etc. He was also first to propose streamlining of bodies and the centrifugal
pump. Credit also goes to Vinci for being the first to quantitatively state the principle of Continuity.

Evangelista Torricelli (1608�1647) was also an Italian who generalized the analysis of
trajectories of projectiles. His major contribution is the principle of efflux, which is now commonly

written as V = 2gh . The discovery of barometer is also attributed to him.

Isaac Newton (1642�1727) was the first Englishman to have earned an eminent place
amongst the scientists of his time. His approach was that of a mathematician while his predecessors
investigated nature from philosophical point of view. In the �Principia� (1687) he enunciated concisely
the three basic laws of motion now named after him. It is these basic laws which form the basis of
analysis of problems of mechanics. He carried out extensive research on fluid resistance, and was
first to report on the fact that in viscous flow the shear is proportional to the relative velocity of the
adjacent zone. The statement of this fact is now known as the law of viscosity and bears his name.
Newton was also first to introduce the use of coefficient of contraction in problems of efflux.

The direct and indirect contributions of two mathematicians of Basel, Switzerland, who
happened to be brothers were also significant to the advancement of physical science. The eldest,
Jakob Bernoulli (1654�1705), was a professor of physics at the University of Basel, who trained
his younger brother Johann Bernoulli (1667�1748). Johann then worked with a French
mathematician, taught mathematics in Holland and succeeded his brother as professor.

The four essential steps emerged as a result of evolution of mathematical physics in the
17th century are :

(i) the use of plotted curve to describe a phenomenon ;
(ii) the expression of the curve in equation form ;

(iii) the determination of its area and slope ; and
(iv) the application of these procedures to practical problems.
It is not known as to who accomplished the first step, but it was definitely Descartes who

accomplished the second step, Leibnitz (1846�1916, Germany) the third and the Bernoullis the
fourth.

Of the contemporary mathematicians, to whom the credit for laying the foundation of
hydrodynamics goes, two belonged to the Bernoulli School at Basel. The first one was Daniel
Bernoulli (son of Johann) ; the second one was his close friend Leonardo Euler and the third one
was d� Alembert of France.

1. History of hydraulics, by Hunter Rouse and Simon Ince, Dover publications, Inc., New York, 1963.
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I.1.2. 18th and 19th Century Developments. Eighteenth and nineteenth centuries saw a
tremendous advancement in the field of hydraulics and hydrodynamics. It was during this period
that most of the experimental hydraulics was developed at the hands of the French, the Italian and
the German engineers and hydraulicians. Noteworthy amongst them were Poleni, Pitot, Chezy,
Borda, Venturi, Weber, Fourneyron, Belanger, Russel, Reech, Hagen, Poiseuille, Weisbach, Darcy,
Bazin, Kutter, Manning and Froude. It was in the early 18th century when Daniel Bernoulli along
with Leonhard Euler and d�Alembert founded the mathematical science of hydrodynamics. Others
who significantly contributed to the development of hydrodynamics are Lagrange, Laplace, Navier,
Stokes, Helmholtz, Kirchhoff, Boussinesq, Reynolds, Thomson (Lord Kelvin), Strutt (Lord Rayleigh)
and Joukowsky. The important contributions of some of these distinguished investigators have
been described in the following paragraphs.

Daniel Bernoulli (1700�1782) was a Swiss mathematician who published a treatise named
�Hydrodynamica� dealing with various aspects of hydrostatics and hydraulics. He introduced for
the first time the word �Hydrodynamics� to encompass various topics of fluid statics and dynamics.
He was first to use piezometer openings in the walls of conduits for pressure indication. His energy
principle utilized only two terms, namely, the pressure and the velocity. Bernoulli�s principle used
for evaluating pressure seemed to indicate the constancy of pressure and velocity heads. He showed
both experimentally and analytically that the pressure would become negative if the velocity
increased sufficiently.

Leonhard Euler (1707�1783) was also a Swiss mathematician who worked mainly on
hydrodynamics and hydraulic machinery. He was the first to explain the role of fluid pressure in
fluid flow. Euler investigated the motion of a fluid under the action of an external force, rightly
regarding the isotropic pressure as a function of space only ; formulated basic equations of motion
(now known as Euler�s equations of acceleration or motion). Assuming the fluid to be incompressible,
flow to be steady and irrotational and utilizing the concept of a force potential he combined his
three equations of acceleration to yield a single relationship involving pressure, velocity and elevation
heads. This equation of Euler in its present familiar form is attributed to Bernoulli. Euler also
contributed significantly to the hydrodynamics theory of centrifugal machinery. Analysing the
performance of reaction turbines, he expressed for the first time the basic relationship by equating
the torque to the change in the moment of momentum as the fluid is passed through the rotating
part.

Jean le Rond d� Alembert (1717�1783), was a French mathematician first to introduce
concepts of components of fluid velocity and acceleration and also the differential expression of
continuity. Assuming similar condition in the rear of a body as in the front, the summation of the
elementary pressures exerted on each part of the body surface led to the paradoxical result of a
zero longitudinal force on the body. d�Alembert, however, left it on of future investigators to explain
this anomaly between the theory and the reality. This is the paradox of zero resistance to steady
non-uniform motion, known as d� Alembert�s paradox.

Joseph Louis Lagrange (1736�1813) was a self-trained French mathematician who
succeeded Euler as the world�s leading mathematician. In the course of analysis of fluid motion, he
introduced concepts of velocity potential and stream function which became of fundamental
importance in describing the flow pattern. Lagrange was first to derive an equation for velocity of
propagation of a wave of infinitesimal height in channel of finite depth (V = gy ).

Merquis Giovanni Poleni (1683�1761) is the only Italian who deserves a special mention
for his contribution to the experimental hydraulics of the early 18th century. His major contributions
were three-fold : (1) Based on measurements he obtained the coefficient of contraction for a sharp-
edged orifice to be 0.62, a significant improvement over the value of 1/ 2  proposed by Newton. (2)
He also experimented with short tubes (mouth-pieces) attached to the orifice and found that a
maximum rate of discharge was obtained with an intermediate length of tube. (3) His last
contribution was his treatment of the discharge through rectangular sharp- crested weirs. He
considered the discharge as occurring in a series of horizontal elements, the velocity of each being
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assumed proportional to the square root of its depth below the liquid surface. The same approach
was later used for deriving the discharge relationship for sharp-crested weirs, and hence the basic
weir equation is often named after Poleni.

Henri de Pitot (1695�1771) was a French engineer whose principal contribution is the
invention of a device (known after him as the Pitot-tube) for measuring fluid velocity. The original
Pitot tube consisted of two parallel tubes mounted on a slender frame containing a scale and four
petcocks ; one of the tubes being straight and the other bent through 90° at its lower end.

Antoine Chezy (1718�1798) was also a French engineer who contributed significantly to
the understanding of the resistance in uniform open-channel flow. Credit goes to Chezy for not only
presenting the first but also the most lasting resistance formula�later to be known by his name.

Jean Charles Borda (1733�1799) was a French military engineer who devoted himself to
experiments in hydraulics and hydraulic machinery. His resistance studies verified the prevalent
theory that the drag of an immersed body varied with the square of the relative velocity and showed
that it would depend upon a still higher power if surface wave were produced. Borda was first to
introduce the concept of elementary stream-tubes. He showed that not only the contraction of jet
but also loss of energy must be taken into account in obtaining an expression for discharge. Making
use of the momentum principle, he found that for the particular case of a re-entrant tube (i.e. the
Borda mouth-piece) the coefficient of contraction has a value of 0.5.

Venturi�s published work in Paris in 1797 reported his findings on various forms of
mouthpieces fitted to the orifice. He demonstrated the effect of eddies formed at abrupt changes in
section and, incidentally the change in discharge which would result from their elimination. Venturi
observed that the replacement of the cylindrical tube with two conical sections essentially eliminated
the eddies and increased the rate of flow, but it still produced the local reduction in pressure. This
form of boundary is now used to measure flowrate in pipes and is rightly known as the venturimeter.

Giorgio Bidone (1781�1839) was an Italian hydraulician who is credited with having
discovered the hydraulic jump. He was the first to study it systematically and to attempt its analysis.

Giuseppe Venturoli (1768�1816) also an Italian hydraulician, derived the elementary
back water equation for rectangular channels. Through graphical integration, Venturoli succeeded
in plotting various branches of the surface profile.

Claude Burdin (1790�1893), a French engineer, coined the word �turbine� and developed
one with free efflux of water.

Benoit Fourneyron (1802�1867) improved upon Burdin�s original device and developed a
successful hydraulic turbine. More than hundred similar turbines were built by him for various
parts of the world.

John Scott Russel (1808�1882), a Scottish engineer, was the first to study the problems
of unsteady, non-uniform open-channel flow without discontinuity. He studied the effects of waves
on the resistance of ships and proposed a reverse-curve form of bow which he believed would reduce
the wave effect to a minimum.

A French contemporary of Russel, Ferdinand Reech (1805�1880) advocated the
practicability of model tests and developed similitude principles based on Newton�s laws of motion.
Reech was first to express what is now known as the Froude criterion of similitude.

Gotthilf Heinrich Ludwig Hagen (1707�1884), a German hydraulic engineer made
original contributions to the resistance of pipe flow. Based on extensive and accurate experiments
on flow through small diameter tubes, he reasoned that the flow took place in series of cylindrical
layers, the velocity of which varied linearly (an assumption which later proved wrong) from zero at
the wall to a maximum at the centre. Hagen proposed an expression for the resistance to flow in
small diameter tubes (i.e. laminar flow) based on the above assumption. He also carried out
experiments on resistance of pipes in turbulent flow and correlated his measurements by means of
a resistance equation.
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Jean Louis Poiseuille (1799�1869), a French physician and not an engineer, was interested
in experimental physiology. He conducted research on pumping power of the heart, the movement
of blood in the veins and capillary vessels and the resistance to flow through tubes. He carried out
accurate experiments on very small diameter tubes and presented an empirical relationship for
the discharge in terms of the head loss, the tube diameter and the tube length. The resistance law
for laminar flow was later named after Poiseuille rather than Hagen, and it still continues to be
known by his name.

Julius Weisbach (1806�1871), a German hydraulician, wrote a treatise on hydraulics for
engineering application which even now can be considered a textbook on hydraulics. Weisbach not
only incorporated the best available experimental information, but in many cases supplemented it
with the results of his own experiments. He advocated the use of the non-dimensional coefficient,
and was first to express the resistance equation for pipes in the form h = fLV2/2gD. Weisbach also
modified the weir equation to include the velocity of approach and to eliminate the successive
approximations involved in the determination of discharge he proposed instead and empirical
equation of the type later adopted by Bazin.

Antoine Charles Bresse (1822�1883), a French engineer, accomplished integration of
the equation of gradually varied open-channel flow and prepared tables of function, now known as
Bresse�s back water function, for general use. He also presented a correct formulation of the
momentum characteristics of the hydraulic jump.

Henry Philibert Gaspard Darcy (1803�1858), also a French engineer, conducted studies
on the flow of water in both pipes and permeable soils. His experiments included pipes of different
sizes, materials and in various states of deterioration. His greatest contribution was his conclusive
demonstration of the fact that the resistance depended upon the type and the condition of the
boundary material. As a result of his studies on pipe flow, Darcy�s name is commonly associated
with that of Weisbach in designating the present-day resistance equation first formulated by
Weisbach. On the basis of his filteration studies, Darcy concluded that the loss of head through a
filter bed was proportional to the rate of flow rather than to its square root as was then generally
believed.

Henri Emile Bazin (1829�1917), a French engineer and an associate of Darcy, conducted
extensive experiments on open-channel resistance, propagation of waves and flow over weirs. Based
upon his experiments in canals of various materials and shapes, Bazin proposed a formula of
resistance in open-channel flow. He also carried out experiments for measurements of velocity
distribution at various cross-sections with different linings. From these tests, he noted that the
depth of point of maximum velocity varied with the relative width of cross-section, approaching
zero as the width-depth ratio exceeded 5. Bazin�s subsequent studies on discharge over vertical
and inclined weirs included the precise determination of nappe profile and the distribution of velocity
and pressure through the nappe. As a result of these studies he introduced a new dimensional term
in the weir-discharge equation proposed by Weisbach.

Two Swiss engineers Emile Oscar Ganguillet (1818�1894) and Wilhelm Rudolf Kutter
(1818�1888) are known for their contribution to the open-channel resistance. On the basis of
several hundred experiments, they expressed the Chezy�s coefficient C as a function of a roughness
factor n, hydraulic radius R and the channel slope S.

Robert Manning (1816�1897), an Irish engineer, proposed in 1889 a relationship for open-
channel flow of the form, V = K R2/3 S1/2, which was in better agreement with the available data
than the earlier ones. The present-day formula named after Manning  was neither recommended
nor ever devised in full by Manning himself. He also did not suggest use of Kutter�s n�a coefficient
now associated with the Manning�s formula.

William Froude (1810�1879), an English engineer, developed and perfected the towing-
tank techniques for testing of model ships. Froude believed that �Experiments duly conducted on
small scale model will give results truly indicating of the performance of the full size ships�. He
considered the total resistance to be made up of the skin friction resistance and the resistance due
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to other factors such as waves. It is interesting to note that Froude�s name has been inseparably
associated with a law of similarity and a non dimensional number, which were neither originated
nor even used by him.

Lousi Marie Henry Navier (1785�1836), a French engineer, derived through a purely
mathematical analysis equations of motion for a viscous flow. His name is, therefore, most frequently
associated with the present day equations for viscous flow. He however, did not identify the fluid
viscosity as a variable affecting the flow but instead considered molecular spacing.

George Gabriel Stokes (1819�1903), a British mathematician, was the one whose name
becomes finally associated with that of Navier in designating the equations of motion for a viscous
fluid. His paper �On the Theories of Internal Friction of Fluids in motion� published in 1845 contained
the derivations of what are now known as the Navier-Stokes equations. The general coefficient ε
appearing in Navier�s equations was replaced by the dynamic viscosity µ. Stokes also derived an
expression for the terminal velocity of fall of spheres, which is now known as the Stokes� law.

Osborne Reynolds (1842�1912), a British engineer, was : (1) the first to demonstrate the
phenomenon of cavitation and attribute the accompanying noise to the collapse of vapour bubbles,
just as in a kettle beginning to boil ; (2) the first to correlate the length and time scales in the study
of distorted models ; and (3) the first to introduce the viscosity into a parameter now bearing his
name, demarcating the limit between laminar and turbulent flows. Reynolds demonstrated
experimentally in 1888 that the velocity at which eddy motion (i.e. turbulent flow) began did indeed
vary with the tube diameter and fluid characteristics in such a manner as to yield a fairly definite
value of this parameter (now known as the Reynolds number). The most important contribution of
Reynolds was his application and extension of Navier-Stokes equations to turbulent flow. His lasting
contribution, however, was the derivation of the equations for motion�now known as the Reynolds
equations for turbulent flow.

I.1.3. 20th Century Developments�Advent of Fluid Mechanics. Until the early 20th
century the two distinctly divergent approaches namely, the experimental hydraulics and the
theoretical hydrodynamics had developed to such an extent that the apparent gap between theory
and the practical reality was bothering the genius amongst the hydraulicians and the
hydrodynamists. The emergence of aeronautics at a rapid pace also hastened the activities of
engineering talent towards bridging the gap between theory and the fact. This was brought about
by a new concept of boundary layer originated by Prandtl of Germany.

Ludwig Prandtl (1875�1953) is regarded as the founder of the present-day fluid mechanics.
He realized the need for better correlation between theory and experiment in problems of fluid
flow. Prandtl conducted his first experiments on the flow of air while he was employed as a engineer
in a large machinery firm. Later he joined as a faculty member of Polytechnic Institute, Hannover
and continued his research on flow of air. Within three years he presented a paper containing his
findings before the Third International Congress of Mathematicians in 1904. In the eight-page
paper he introduced the concept of boundary layer according to which the motion of fluids of low
internal resistance (i.e. low viscosity) can be divided into two interdependent zones : (i) very close
to the fixed boundaries, there is a transition layer in which the fluid velocity changes from zero at
the boundary to practically the same value as in the free-stream at the edge of this layer. It is in
this layer that effects of viscosity are predominant, and (ii) away from the boundary lies the zone of
free-stream across which there is hardly any change in velocity and within which viscous effects
are negligible. The flow in this part can be analysed on the basis of potential flow theory. The layer
in the vicinity of the fixed boundary and to which the viscous effects are confined was given the
name of �boundary layer�.

The emergence of the theory of boundary layer has come to play a vital role not only in
aeronautics but also in hydraulics and other related fields. This has enabled a much rapid
development of the science of motion of fluids known as the fluid mechanics.

As a result of his pioneering research on flow of low-viscosity fluids, Prandlt was invited as
Professor and Director of Research Institute at the University of  Göttingen. At Göttingen, he and
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his students further worked on the boundary layer theory, analyzed the phenomena of turbulence
and drag and evolved dynamic principles of aerofoil behaviour. The first of his students to achieve
recognition was Paul Richard Heinrich Blasius (1833�) of Berlin. He published in 1908 an
analytical solution for velocity distribution and resistance of laminar boundary layer wherein
Pandtl�s qualitative theory was quantitatively verified by laboratory experiments.

Theoder von Karman (1881�1963) was perhaps the most illustrious alumnus of the
Göttingen Institute where he worked under Prandtl. Karman was gifted with a combination of
rare physical insight and mathematical ability. His primary contributions to fluid mechanics have
been in the fields of form drag turbulence and surface resistance and the analogy between the
sound and gravity waves. He investigated the problem of eddy formation behind circular cylinders
and provided an analytical solution of what has since been known as the Karman vortex trail.
Karman and Prandtl contributed to the analysis of velocity distribution and resistance to turbulent
flow in pipes as well as long flat surfaces. The resulting logarithmic equations for resistance and
velocity distributions are now known by their joint names.

Other notable investigators associated with the Göttingen Institute were : Walter Ludwig
Christian Schiller (1882�) whose primary interest was in the field of pipe resistance. Walter
Gustav Johannes Tollmein (1900�) distinguished himself by his analysis of flow stability and
turbulent diffusion ; Hermann Schlichting (1907�) contributed greatly to the analysis of stability
and boundary layer development. Carl Wieselberger (1887�1941) contributed significantly on
the phenomena of drag ; Otty Flachspart (1898�1957) contributed on drag and particularly on
wind pressures on buildings and Johann Nikuradse (1894�) contributed in the field of pipe
resistance and is known for his famous experiments on artificially roughened pipes.

Credit goes to Mortiz Weber (1871�1951) of Berlin to put the general principles of similitude
in their present form. It was he who specifically named the Frode and Reynolds numbers associated
Cauchy�s name with elastic similarity and introduced a capillarity parameter in his paper presented
in 1919. The capillarity parameter W is subsequently named as the Weber number.

Geoffrey Ingram Taylor (1886�), a British physicist while employed as a meteorologist
at the University of Cambridge, studied, eddy motion in the atmosphere. He published a series of
papers dealing with the fundamental analysis of fluid turbulence by methods of statistics. Taylor
presented his theory of diffusion by continuous movements and related the diffusive and dissipative
characteristics of turbulent motion.

I.2. Systems of Measuring Physical Quantities
Any system of measurement is based on well defined units for certain basic quantities such

as mass, length, time, temperature etc. The units for other quantities are derived from basis units
by virtue of the relationship that exists among the quantities concerned. There is, however, an
element of flexibility in making a choice for basic quantities. In the absolute system of units mass,
length and time are considered the basic quantities and the corresponding units have been named
as the basic or base units. The gravitational system of units, which has so far been used in engineering
practice, considers force, length and time as basic quantities. While using the gravitational system
of units, it is to be noted that the unit of force is not a universal constant, but varies from place to
place owing to its dependence on the local acceleration due to gravity.

The metric (MKS) gravitational system of units was in engineering use in India for over
past five decades. With growing acceptance of International System (SI) of units, the MKS units
have been replaced by the SI units. In this book, SI units have been used alongwith the MKS to
familiarize the reader with the new units.

I.2.1. Absolute (Coherent) and Gravitational Systems of Units. The basic or base units
(mass or force, length and time) are inter-related to each other by Newton�s second law of motion.
This law states that a mass moving by virtue of an applied force will be accelerated and that the
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component of force in the direction of the acceleration is proportional to the product of the mass
and the acceleration. Thus

F ∝ m.a

= 1
Cn

m.a ...(1)

where F = force in the direction of acceleration,
m = mass
a = acceleration, and

Cn = constant of proportionality known as Newton�s constant.
If we select the units such that one unit of force acting on one unit of mass produces one unit

of acceleration, the proportionality constant Cn will be unity. For this case we can write Newton�s
second law in the conventional form, F = m.a, expressing that the force equals mass multiplied by
acceleration. The proportionality constant Cn will be unity only when the absolute system of units
is used, that is when the system of measuring units is coherent.

A coherent system of units may be defined as the one in which the product or quotient of any
two unit quantities involved in the phenomenon is the unit of the resultant quantity. As examples
of this statement, in any coherent system the quotient of unit length and unit time gives unit
velocity and similarly the product of unit mass and unit acceleration gives unit force. Any absolute
system of units is essentially a coherent system.

I.2.2. SI Units2. In the International System (SI) of units the base quantities are mass,
length, time and the thermodynamic temperature and the corresponding base units are kilogram
(kg), metre (m), second (s) and Kelvin (K) respectively. From these base units the derived unit of
force is newton (N) which is the force required to accelerate 1 kg mass at the rate of 1 m/s2, and is
obtained from Eq. (1).

1 N = 
1

Cn
 × 1 kg (mass) × 1 m/s2

from which the Newton�s constant is

Cn = 
1 kg (mass) m

N.s2 ...(2)

I.2.3. MKS Gravitational Units. This system has the base quantities as force, length,
time and thermodynamic temperature and the corresponding base units are kilogram (kg), metre
(m), second (s) and Celsius (C). In the gravitational system, unit force is proportional to the product
of unit mass and acceleration due to gravity. Unit force of one kilogram is defined as the force
required to accelerate one kg mass at the rate of 9.81 m/s2. Thus from Eq. (1), we obtain

1 kg (force) = 
1

Cn
 × 1 kg (mass) × 9.81 m/s2.

Cn = 9.81 
kg (mass) . m
kg (force) . s2 ...(3)

Comparing Eqs. (2) and (3), 1 kg (force) = 9.81 newton (N) ...(4)
The derived unit of mass is called metric slug in analogy to slug�the British gravitational

unit of mass. It is defined as the mass which will be accelerated at the rate of 1 m/s2 when acted
upon by a force of 1 kg. Equation (1) may be used to determine the Newton�s constant.

2. �The International System of Units� Editors Chester H. Page and Paul Vigoureux, London, Her
Majesty�s Stationery Office 1973.
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1 kg (force) = 1
Cn

 × 1 metric slug × 1 m/s2.

Cn = metric slug m
kg (force) s2

...(5)

Comparing Eqs. (3) and (5),
1 metric slug = 9.81 kg (mass) ...(6)

Table 1 shows SI and MKS (gravitational) units of various quantities used in fluid mechanics.

Table 1. SI and MKS (gravitational) units

System of units

Quantity SI MKS (gravitational)

Unit Symbol Unit Symbol

Mass kilogram kg metric-slug m slug
Length metre m metre m
Time second s second s
Thermodynamic Kelvin K Celcius C

temperature
Area square metre m2 square metre m2

Volume cubic metre m3 cubic metre m3

Velocity metre per second m/s metre per second m/s
Acceleration metre per second m/s2 metre per second m/s2

square squared
Force newton N kilogram kg
Moment of force metre newton Nm metre kilogram kgm
Pressure newton per square N/m2 (Pa) kilogram per square kg/m2

metre (pascal) metre
Density kilogram per cubic kg/m3 metric slug per cubic m slug/m3

metre metre
Specific weight newton per cubic N/m3 kilogram per cubic kg/m3

metre metre
Dynamic viscosity kilogram per metre kg/ms kilogram second per kgs/m2

second Pas square metre
Surface tension newton per metre N/m kilogram per metre kg/m
Work, energy joule J = Nm kilogram metre kgm
Power watt W = J/s kilogram per metre kg/ms

= Nm/s second

The conversion factors from MKS to SI, MKS to FPS and MKS to CGS units appear in
Appendix E.

I.3. System
In the most general terms, a system may be defined as that region of space occupied by the

quantity of fluid under consideration. The fluid contained within the system is separated from the
surroundings by a boundary. The system may contain either a constant or a variable mass. Its
boundaries may be fixed or deformable. It may be in motion or at rest with respect to a chosen
co-ordinate system. The region outside the system�s boundary is known as the surroundings. A
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system diagram shows the system�s boundary and significant interactions between the system and
its surroundings. If the surroundings of importance are forces then the system diagram reduces to
the familiar �free-body diagram�.

I.3.1. Closed and Open Systems. A system is said to be a closed system if the same body
of fluid remains within the system during a process. The process is then called a non-flow process.
In such a process, work and heat may be transferred across the boundary but no fluid crosses the
boundary. In Fig. 1 (a) dotted lines indicate the systems boundary and only the mass transfer has
been considered.

Expansion

valve

Compressor

Condenser

Evaporator

Refrigeration unit

a Closed system( )

( )1

( )1

m1

( )2 ( )2

Draft

tube

Reaction

turbine

System’s

boundary

m2

Water turbine

a Open system( )

Fig. 1. Closed and open systems.

An open system is defined as one in which the fluid enters and/or leaves the system, and the
process referred to as a flow process. In an open system fluid mass, momentum, energy and
machinery all cross the boundary. Fig. 1 (b) shows such a system consisting of a water turbine. The
mass rate of flow m1 at (1)�(1) is the same as mass rate of flow m2 at (2)�(2).

I.4. Control Volume
A control volume is an open-system which has its boundary fixed with respect to a fixed

coordinate system. The control volume is thus, an arbitrary volume fixed in space and bounded by
a closed surface which is known as the control surface. The fluid may enter and leave control
volume by crossing the bounding surface (control surface) enabling transfer of mass, momentum
and energy.

I.5. Free-body Diagram
As already pointed out, a free body diagram is a closed system in which the interactions

between the system and its surroundings are the forces. The concept of a free-body diagram helps
in cultivating a rational approach in respect of listing various forces which act on the system.

Consider the curved surface AB shown in Fig. 2 which closes an opening in the tank. The
curved surface AB thus supports a liquid column contained in ABCD. The problem is pertaining to
the statics of fluids, and the free-body of liquid ABCD must be in static equilibrium. The conditions
of static equilibrium dictate that the algebraic sum of the force components in mutually perpendicular
directions must be zero, and so also the algebraic sum of the moments of forces in the respective
planes be zero, that is the forces must be co-planar.

The main problem is, therefore, of evaluating the forces acting on the free-body (magnitude,
direction and their location). By the application of the above-stated principles of static equilibrium
the unknown forces may be obtained. In Fig. 2, the forces acting on the free-body ABCD are :

(i) Weight W, of the liquid mass contained in ABCD.
(ii) Hydrostatic pressure force FH2

 exerted on the liquid by the tank wall.
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Tank wall

D C

FH2

D A

W E
H

FH1

G

A�

B� B

F�V

F�H

Resultant

reaction F�

Fig. 2. Free-body diagram for ABCD.

(iii) Hydrostatic pressure FH1
 exerted on the free-body liquid by the surrounding liquid, and

(iv) The resultant reaction force F′ (having components FH′ and FV′) exerted by the curved
surface AB on the liquid.

The evaluation of hydrostatic forces is dealt with in Chapter II (refer articles 2.5 and 2.6).

PROPERTIES OF FLUID

1.0. Introduction
Matter can be distinguished by the physical form of its existence. These forms known as

phases, are solid, liquid and gas.
Solid, Liquid and Gas

The liquid and gaseous phases are usually combined and given a common name of fluid,
because of the common characteristics exhibited by liquids and gases. Solids differ from liquids
and liquids from gases on account of their molecular structure (spacing of molecules and the ease
with which they can move). The spacing of molecules is large in a gas, smaller in a liquid and
extremely small in a solid. Very strong intermolecular attractive forces exist in solids which give
them the property of rigidity. These forces are weaker in liquids and extremely small in gases.
Definition of a Fluid

The word fluid means a substance having particles which readily change their relative
positions. A fluid may be defined as substance which deforms continuously under the action of
shear stress, regardless of its magnitude.
Distinction between a Liquid and a Gas

A fluid may be either a liquid or a gas. The molecules of a liquid are very closely spaced as
compared to those of a gas. While a liquid has a free surface and occupies a certain volume in a
container, a gas does not possess a free surface and fills the entire space of the container regardless
of its size. For all practical purposes, a liquid is incompressible while a gas is compressible and
expands unless contained or enclosed in a container. In the words of Sir Oliver Lodge �A solid has
volume and shape, a liquid has volume but no shape, a gas has neither.� A vapour is a gas whose
temperature and pressure are such that it is very near to the liquid phase, and hence the steam is



12 FLUID MECHANICS

considered as a vapour. A gas may be defined as a superheated vapour. Air is regarded as a gas on
account of its state being normally very far from that of liquid air.

1.2. Density
The density of a substance is defined as the mass per unit volume and is denoted by the

symbol  ρ (Greek letter rho). It has the dimension [ML�3]. The expansion or contraction of the
substance results in a change in density. The density of liquids may be considered as constant
while that of gases will be subjected to changes depending on the pressure and temperature. The
fluid density at a point is defined by

ρ = Lim
0∆V →

∆
∆

m
V

where ∆m = mass contained in a small volume ∆V.
Specific Gravity. The specific gravity represents a numerical ratio of two densities, and

water is commonly taken as a reference substance. Thus

Specific gravity of a substance = 
Density of the substance

Density of water
.

It is also called the relative density.

1.3. Specific Weight
It is the weight of a given substance per unit volume, and is commonly denoted by symbol γ

(Greek letter gamma). The specific weight represents the force exerted by gravity on a unit volume
of fluid and, therefore, must have the units of force per unit volume. It is related to the density by
the following expression

γ = ρg.
The specific weight  of fresh water under normal conditions is 1000 kg/m3 in MKS units and

9.81 × 103 N/m3 in SI units.
Specific Volume. It is the volume occupied by a unit mass of fluid. It is commonly applied

to gases. The specific volume is reciprocal of the density, i.e. v = 1/ρ.
Example 1.1. Calculate the mass density, specific weight and weight of 1 litre of petrol, if its

specific gravity is 0.72.
Solution. Volume of petrol

= 1 litre = 1000 cu. cm.
= 1 × 10�3 m3

Specific gravity = Mass density of petrol
Mass density of water

0.72 = Mass density of petrol
1000 (kg / m )3

∴ Mass density of petrol, ρ
ρ = 0.72 × 1000

= 720 kg/m3

Specific weight of petrol, γ
= weight of 1 m3 of petrol
= ρg
= 720 × 9.81
= 7063.2 N/m3
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Weight of 1 litre of petrol = γV
= 7063.2 (N/m3) × 10�3 (m3)
= 7.0632 N.

Example 1.2. Ten litres of a liquid of specific gravity 1.3 is mixed with 6 litres  of a liquid of
specific gravity 0.8. If the bulk of the liquid shrinks by 1.5% on mixing, calculate the specific gravity,
density, volume and weight of the mixture.

Solution. Weight of 10 litres of liquid of specific gravity 1.3
= 10 × 10�3 × 9810 × 1.3 N = 127.53 N

Weight of 6 litres of liquid of sp. gr. 0.8
= 6 × 10�3 × 9810 × 0.8 = 47.1 N

Total volume of liquids before mixing
= 10 + 6 = 16 litres

Upon mixing the bulk shrinks by 1.5%
∴ New total volume = 0.985 × 16 = 15.76 litres
Weight of equal volume of water = 15.76 × 10�3 × 9810 = 154.6 N
Weight of mixture = 127.53 + 47.1 = 174.63 N

(i) Specific gravity of mixture = Wt. of mixture
Wt. of equal vol. of water

 = 174 63.
154.6

= 1.128.

(ii) Density of mixture = Mass
Volume 15.76 10�3=

×
174 63 9 81. / .  = 1128 kg/m3.

(iii) Volume of mixture = 15.76 litre.
(iv) Weight of mixture = 174.63 N.
Example 1.3. If 5 m3 of a certain oil weighs 40 kN, calculate the specific weight, mass density,

specific volume and relative density of the oil.

Solution. Specific weight γ = Weight
Volume

kN
5 (m )3=
40 ( )  = 8 kN/m3

Mass density ρ = 
Mass

Volume
 = 

W g
V
/

 = γ
g

= ×8 10
9 81

3 3

2
( )

. ( )
N/m

m/s
 = 815.49 kg/m3

Specific volume, v = 1
ρ

 = 
1

815 49.
 = 1.23 × 10�3 m3/kg

Relative density = density of oil
density of water 1000.00

= 815 49.  = 0.81549.

1.4. Viscosity
Among all the fluid properties, viscosity is the most important and is recognised as the only

single property which influences the fluid motion to a great extent. The viscosity is the property by
virtue of which a fluid offers resistance to deformation under the influence of a shear force. For a
given fluid, the rate of deformation is dependent upon the magnitude of shear force. The molecular
friction or shear resistance within the fluid opposes such continuous deformation.

Let us consider a fluid contained in between two parallel plates as shown in Fig. 1.2, the
bottom one being kept stationary while the top one moves at a constant speed U under influence of
the applied shearing force F.
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1 2 3 4

b

U
Moving plate

F

Velocity

distribution

(Linear)
y

Stationary

plate

d�

0

Fig. 1.2. Fluid motion between parallel plates, bottom plate stationary, top one moving.

Initially when the top plate is about to start moving all the fluid particles are at rest. The
position of fluid particles lying along the vertical line 0�1 changes with time once the motion
starts. The fluid particles sticking to the moving plate move with the same velocity U while those
adhering to the bottom stationary plate are at rest. The velocity of the intermediate particles vary
from 0 to U. If the gap separating the two plates is small, the velocity distribution will be linear
(straight line) as shown,  and the fluid particles originally lying on line 0�1 after a certain time,
say t = ∆t, will occupy the positions indicated by the line 0�2, and at times t = 2∆t and 3∆t they will
lie along the lines 0�3 and 0�4 respectively. The maximum deformation of fluid takes place at
y = b, the magnitude of which in unit time is U, and the zero deformation occurs at y = 0, the bottom
plate  being stationary. The time rate of deformation is, therefore,  equal to U/b. The rate of angular
deformation dθ/dt is given by

b
d
dt

θ  = U or y
d
dt

θ
 = u

∴ d
dt

U
b

u
y

θ = =

where u is the velocity at a distance y from the stationary plate.
If A is the area of the moving surface and F is the force required to move the surface at a

constant velocity, it has been established that the shear stress F/A is directly proportional to the
time rate of deformation, thus,

F
A

∝ d
dt

θ

or
F
A

 = µ d
dt

θ
 = µ U

b
 = µ u

y

where µ is the proportionality constant and is called coefficient of viscosity. It is also known as the
dynamic viscosity or simply viscosity. The shear stress which is usually denoted by the symbol τ
(Greek letter tau) may be expressed as

τ = µ U
b

 = µ d
dt

θ
 = µ u

y
...(1.2)

Equation (1.2) states that the rate of angular deformation is proportional to the shear stress.
Equation (1.2) in a differential form is expressed as

τ = µ du
dy

...(1.3)

For a linear velocity distribution, du/dy, is a constant. But if the gap separating the parallel
surfaces is large, the velocity distribution can no longer be assumed linear.
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In case of a non-linear velocity distribution such as shown
in Fig. 1.3, the rate of deformation is not constant, but changes
from point to point. The shear stress, which depends on the rate
of deformation will therefore not be constant throughout the fluid.

In Eq. (1.3), 
du
dy

 represents the rate of shear deformation

or rate of shear strain and is often called the velocity gradient. It
relates the shear stress with the viscosity. Equation (1.3) is known
as the Newton�s law of viscosity or Newton�s law of fluid friction.
It may be noted here that when the fluid is at rest, no tangential
forces exist and hence no fluid deformation takes place. In other
words, as the velocity gradient, dy/dy is zero in a fluid at rest, no
tangential or shearing force ever exists.

According to Newton�s law of viscosity, for a given shear stress acting on a fluid element, the
rate at which the fluid deforms is inversely proportional to the viscosity. This implies that for a
constant shear stress the rate at which deformation takes place is larger for fluids of low viscosity.
For solids, the resistance to shear deformation is due to modulus of elasticity whereas for fluids,
the resistance to rate of shear deformation is on account of the viscosity. It is thus seen that the
Hook�s law for solids is analogous to the Newton�s law of viscosity.

1.4.1. Newtonian and Non-Newtonian Fluids
A fluid which obeys Eq. (1.3) is known as a Newtonian fluid. Newtonian fluids have a certain

constant viscosity, i.e.. the viscosity is independent of the shear stress. Many common fluids such
as air, water, light oils and gasoline are Newtonian fluids under normal conditions. However, there
are certain fluids which exhibit non-Newtonian characteristics�shear stress is not linearly
dependent upon the velocity gradient. Non-Newtonian fluids, therefore, do not follow Newton�s law
of viscosity. Common examples of Non-Newtonian fluid are : human blood, lubricating  oils, clay
suspension in water, molten rubber, printer�s ink, butter and sewage sludge. The following chart
gives the classification of fluids :

Fluids

Newtonian Non-Newtonian

Time-dependentTime-independent
Dilatant
Bingham plastic
Pseudoplastic

( )
( )

( )

i

ii

iii

Thixotropic
Rheopectic

( )
( )

i

ii

A general relationship between shear stress and velocity gradient (rate of shear strain) for
non-Newtonian fluid may be written as :

τ = A du
dy

nF
HG
I
KJ  + B ...(1.4)

where A and B are constants which depend upon the type of fluid and conditions imposed on the
flow (shear stress).

The fluids which obey Eq. (1.4) are called power-law fluids. The additive constant B is zero
for the fluids except Bingham plastic. Based on the value of power index n in Eq. (1.4), the non-
Newtonian fluids are classified as :

y

dy
u + du

u

du

dy

u

Fig. 1.3. Non-linear velocity
distribution.
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(a) Dilatant, if n > 1, (example�quicksand, butter, printing inks)
(b) Bingham plastic, if n = 1, (e.g., sewage sludge, drilling muds)
(c) Pseudoplastic, if n < 1, (e.g., paper pulp, polymeric solutions such as rubbers, suspensions

paints)
A Newtonian fluid is a special case of power law fluid having n = 1 and B = 0, and the

constant A varying only with the type of fluid.
Time-independent fluids : In case of time-independent fluids, the rate of deformation or

the velocity gradient depends only upon the shear stress, and is a single valued function of the
latter. The viscosity of Newtonian fluids is independent of the shear stress, whereas in case of non-
Newtonian fluids, the viscosity is a function of shear stress.

Time-dependent fluids : The rate of deformation and the viscosity depend upon both the
shear stress and the duration of its application.
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t

Newtonian
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Fig. 1.4. Plot of τ versus du
dy

. Fig. 1.5. Plot of log µ versus log τ.

Figs. 1.4 and 1.5 illustrate the shear or viscous characteristics of different fluids. Fig. 1.4
illustrates the shear stress-velocity gradient relationship for various type of fluids. The Newtonian
fluids are characterised by linear relationship between the shear stress and the velocity gradient.
They are represented by a straight line like OA passing through the origin and inclined at an angle
α with the horizontal such that µ = tan α.

The Bingham plastic fluids require a certain minimum shear stress τy known as the yield
stress before they start flowing and exhibit a linear relationship between the shear stress and the
velocity gradient as shown by the straight line PQ. The dilatant and pseudoplastic fluids are shown
by curves marked OC and OB respectively.

Fig. 1.5 illustrates the viscosity µ and shear stress τ relationship for different fluids on log-
log scale. For Newtonian fluids this relationship is a straight line parallel to τ-axis indicating that
viscosity is independent of stress. For non-Newtonian fluids, the fact that the viscosity is a function
of the shear stress can be noticed.

Thixotropic fluids are those which show an increase in apparent viscosity with time. Lipstic
and certain paints and enamels exhibit thixotropic behaviour. The apparent viscosity may be defined

as µapp = 
τ

du dy/
. Those fluids which show a decrease in the apparent viscosity with time are called

rheopectic. Rheopectic fluids are much less common than thixotropic fluids. Gypsum suspensions
in water and bentonite solutions are examples of rheopectic fluids. Thixotropy is an important
property of paints and enamels. When subjected to high shear by the brush during application of
paint, the apparent viscosity is reduced so that the paint covers the surface smoothly, and brush
marks disappear subsequently.
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1.4.2. Some Common Newtonian Fluids
The air and water both have relatively low viscosities, the viscosity of oils is much higher

and the glycerine is the most viscous of the better known fluids (approximately one thousand times
as viscous as water) having colourless appearance and is readily miscible with water, making it
useful for laboratory purposes by providing glycerine-water solutions of any desired viscosity. At
ordinary temperatures, a comparison of absolute viscosities of a few common fluids shows that
water is about 50 times more viscous than air. As compared to water, castor oil is 1000 times more

viscous, crude oil is 10 times more viscous and the gasoline is about 
1
3

 times viscous than water.

Ideal Fluid. An ideal fluid is a conceptual fluid which is assumed non-viscous and
incompressible. It is a concept that permits a fluid to possess nonexistential properties, like zero
viscosity (inviscid fluid) and constant density implying zero compressibility. Such a concept was
used by mathematicians for simplifying analysis of fluid motion. Truely speaking, there is no fluid
that exists in nature that possesses zero viscosity and zero compressibility (i.e., bulk modulus of
elasticity having infinite value).

Real Fluid. All fluids that exist in nature are real fluids possessing properties like, viscosity,
elasticity, surface tension and vapour pressure. Such fluids are viscous and compressible. Common
examples are air, water, other gases and liquids.

1.4.3. Kinematic Viscosity
In the analysis of many fluid-flow problems, the dynamic viscosity divided by the density is

commonly found to exist. This ratio of dynamic viscosity and mass density is called the kinematic
viscosity and is denoted by the Greek letter ν (nu), thus

Kinematic viscosity ν = Dynamic viscosity
Mass density

µ
ρ

It is known as kinematic viscosity, because it can be defined dimensionally by only length
and time dimensions, mass or force dimensions being not involved.

1.4.4. Dimensions of Dynamic and Kinematic Viscosities
The dimension of dynamic viscosity µ may be obtained by using Eq. (1.3)

µ = 
τ

du dy/
The fundamental dimensions are the mass (M), length (L) and time (T).
The dimensions of other quantities can be derived easily.
Writing the dimension of shear stress and velocity gradient, the dimension of the dynamic

viscosity can be determined.

Dimension of shear stress = Dimension of force
Dimension of area

 = MLT
L

�2

2

L
NMM

O
QPP
= ML�1T�2

Hence, dimension of [µ] = [ / ]
/

�2

�1
MLT L

LT L

2L
NMM

O
QPP
 = [ML�1T�1] ...(1/4 a)

dimension of µ in F-L-T system will be

[µ] = 
F L

LT L
/

/�1

2L
NMM

O
QPP  = [FL�2T] ...(1.4 b)

the dimension of kinematic viscosity may be found as :

 Dimension of [v] = 
Dimensions of
Dimensions of

[ ]
[ ]
µ
ρ

L
NM

O
QP  = 

ML T
ML

�1 �1

�3

L
NMM

O
QPP

 = [L2 T�1] ...(1.5)

The unit of measurement of viscosity µ, may be obtained using Eq. (1.4 b).
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In MKS system, the viscosity is expressed as kg s/m2 ; in CGS system, it is expressed by
dyne-s/cm2, and is called a poise ; and FPS it is measured in lb-sec/ft2. In SI units it is expressed as
N s/m2. The unit of viscosity may be converted from one system to another by using the above
definitions and basic conversion factors.

(i) From FPS to CGS :  1
1

2
b
ft

� s
 = 

453.6 981
(30.48)2

× dyne s
cm2

−
 = 479 

dyne s
cm2

−
 = 479 poise.

(ii) From FPS to MKS : 1
1b s

ft2
−

 = 
453.6 / 1000

(0.3048)2
kg s

m2
−

 = 4.87 kg s
m2

−

(iii) From MKS to SI : 1 kg s
m2

−  = 
1000 981

100 2
×

( )
dyne s

cm2
−

 = 98.1 dyne-s/cm2 = 98.1 poise.

 1 kg-s/m2 = 9.81 N-s/m2 = 9.81 Pa.s

98.1 poise = 9.81 N-s/m2 ; 1 poise = 1
10

 N-s/m2 = 0.1 N-s/m2 = 0.1 Pa.s

The conversion factors of units are given in Appendix E.
Based on the dimensions of the kinematic viscosity [L2T�1] the unit of ν in F.P.S. system is

ft2/sec, in C.G.S., it is cm2/s and is called the stoke and in M.K.S. and SI units, it is expressed as
m2/s. These units can be converted from one system to the other using the same procedure as
above :

1 ft2/sec = ( . )30 48
1

2
 cm2/s = (30.48)2 stokes = 930 stokes.

 1 stoke = 1 cm
sec

2
 = 1

100
F
HG
I
KJ  m

2/s = 10�4 m2/s.

1.4.5. Variation of Viscosity with Temperature
The variation of viscosity with changes in temperature may be understood by knowing the

factors contributing to viscosity. The viscosity of a fluid depends upon its intermolecular structure.
In gases, the molecules are widely spaced resulting in a negligible intermolecular cohesion, while
in liquids the molecules being very close to each other, the cohesion is much larger. The viscosity of
a fluid is due to intermolecular cohesion and transfer of molecular momentum in a direction normal
to the flow. In liquids, this momentum transfer is small as compared to the force of cohesion between
the molecules and, therefore, the viscosity is primarily dependent upon the magnitude of
intermolecular cohesive force. With the increase of temperature, the cohesive force decreases rapidly
resulting in the decrease of viscosity. Thus, the viscosity of liquids decrease with the increase of
temperature.

Poiseuille developed a formula for determining the kinematic viscosity of water at any
temperature T,

ν = 0 0179
1 0 0337 0 000221 2

.
. .+ +T T

in which ν is the kinematic viscosity in cm2/s and T is the temperature in degree centigrade.
In case of gases, the viscosity is mainly due to transfer of molecular momentum in the

transverse direction brought about by the molecular agitation. The contribution to the viscosity by
the intermolecular cohesive force being negligible due to large spacing of molecules. As the molecular
agitation increases with the rise of temperature the viscosity of gases also increases with temperature
rise.

The viscosity of a fluid may thus be considered to be composed of two parts :
1. that due to intermolecular cohesion, and
2. that due to transfer of molecular momentum, and thus
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Viscosity of a flowing fluid = contribution from intermolecular cohesion + contribution from
transfer of molecular momentum.

Table 1.1 gives viscosity of air at different temperatures. For water and other liquids see
Tables 1.5 and 1.6. Table 1.7 deals with properties of the standard atmosphere.

Table 1.1. Density and Viscosity of Air at Atmospheric Pressure

Density ρ Dyn. viscosity, µ
Temperature degree C kg/m3 105µ, N-s/m2

0 1.29 1.71
20 1.202 1.81
40 1.125 1.90
60 1.059 2.00

100 0.945 2.18
150 0.833 2.39
200 0.745 2.58
300 0.615 2.95
400 0.524 3.28
500 0.456 3.58

The viscosity of gases, like that of liquids, changes with temperature but is practically
unaffected by pressure. The kinematic viscosity, depending as it does on density, varies with both
temperature and pressure. The following equation, given by Holman, may be used for determining
the value of µ at different temperatures :

µ = 1.7150 × 10�4 (1 + 0.00275 T � 3.4 × 10�7 T2) (poise)
in which µ is in poise and T in degrees centigrade. The viscosity in kg s/m2 and Ns/m2 are given by :

µ = 1.7500 × 10�6 (1 + 0.00265 T � 3.4 × 10�7 T2) (kg-s/m2

µ = 1.715 × 10�5 (1 + 0.00275 T � 3.4 × 10�7 T2) (N-s/m2).
Example 1.4. Calculate the velocity gradient at distances of 0, 100, 150 mm from the boundary

if the velocity profile is a parabola with the vertex 150 mm from the boundary, where the velocity is
1 m/s. Also calculate the shear stresses at these points if the fluid has a viscosity of 0.804 N-s/m2.

Solution. Let the equation of the parabolic velocity profile be
u = Ay2 + By + C ...(1)

where A, B and C are constants to be determined from the following
boundary conditions :

(i) u = 0 at y = 0
(ii) u = 1 m/s, at y = 0.15 m

(iii) du/dy = 0 at the vertex, i.e., y = 0.15 m
Boundary condition (i) gives C = 0 and from (ii), we obtain

1 = A(0.15)2 + B(0.15) ...(2)

and from (iii), du
dy

 = 2Ay + B,

or 0 = 2A(0.15) + B ...(3)
Solving Eqs. (2) and (3), A = � 44.4 and B = 13.33
Eq. (1) for the velocity profile now becomes

u = � 44.4y2 + 13.33y.

150
mm

O
u

y
1 m/s
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The velocity gradients and the shear stresses the desired points may be obtained as below :

(a) At y = 0 mm,
du
dy

 = � 2 × 44.4 × 0 + 13.33 = 13.33 sec�1

Shear stress τ = µ
du
dy

 = 0.804 (13.33) = 10.8 N/m2

(b) At y = 100 mm, du
dy

 = � 2 × (44.4) × (0.1) + 13.33 = 4.45 sec�1

  τ = 0.804 (4.45)
   = 3.575 N/m2

(c) At y = 150 mm,  du
dy

 = � 2 × (44.4)(0.15) × 15 + 13.33 = 0

 τ = µ du
dy

 = 0.

Example 1.5. Two horizontal plates are placed 12.5 mm apart, the space between them
being filled with oil of viscosity 14 poise. Calculate the shear stress in the oil if the upper plate moves
with a velocity of 2.5 m/s.

Solution. 1  poise = 1 dyne-s/cm2 = 1
98 1.

 kg-s/m2 = 0.1 N-s/m2

Shear stress  τ = µ
du
dy

Relative velocity between the plates, du = 2.5 m/s.
Distance between the plates, dy = 1.25 cm = 0.0125 m
Viscosity of the oil, µ = 14 poise

 = 14
98 1.

 = 0.143 kg-s/m2 = 1.4 N-s/m2

(since 1 Poise = 0.1 N-s/m2)
Substituting in the formula,

τ = 0.143 × 2 5
0 0125

.
.

 = 28.55 kg/m2 = 280.0 N/m2.

Example 1.6. A rectangular plate 1.2 m × 0.4 m, weighing 970 N slides down a 45° inclined
surface at a uniform velocity of 2.25 m/s. If the 2 mm gap between the plate and the inclined surface
is filled with oil, determine its viscosity.

Solution. The sliding plate will attain the uniform velocity when the fore causing the motion
(i.e. the component of the plates weight along the inclined surface) balances the fluid resistance
offered by the oil filled in the gap.

 W sin 45° = µ du
dy

 . A

= µ V
2 10 100/ ( )×

 × 1.2 × 0.4

or 970 sin 45° = µ 2 25 10
2

3. ×  × 1.2 × 0.4

∴ µ = 970 1 2
0 54 103

×
×

/
.

 = 2.54 Ns/m2 = 25.4 Poise.
45°V

=
2.

25
m

/s
W = 970 N

2 mm gap

filled with oil

Plate
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Example 1.7. A piston 796 mm diameter and 200 mm long works in a cylinder of 800 mm
diameter. If the annular space is filled with a lubricating oil of viscosity 5 cP, calculate the speed of
descent of piston in vertical position. The weight of piston and the axial load are 9.8 N.

Solution. Viscosity of oil
= 5 cP = 5 × 10�2 Poise
= 0.5 × 10�2 N-s/m2 = 5 × 10�3 N-s/m2.

From Newton�s law of viscosity, the shear stress

τ = µ du
dy

...(i)

Shear stress developed by the vertical descent of the piston

= Shear force weight of piston etc.
Piston area in contact with oil

( . . )i e

= 
9 8

0 796 0 20
.

. .π × ×
 = 19.61 N/m2.

Velocity gradient when the piston attains a constant velocity of V (m/s) in the annular gap of
2 mm

du
dy

 = V
2 10× �3

.

Substituting in the Newton�s law, Eq. (i)

19.61 = 5.1 × 10�3 × V
2 10× �3

from which, V = 7.841 m/s.
Example 1.8. A cylinder of 150 mm radius rotates concentrically inside a fixed cylinder of

155 mm radius. Both cylinders are 300 mm long. Determine the viscosity of the liquid which fills the
space between the cylinders if a torque of 0.98 N-m is required to maintain an angular velocity of
60 r.p.m.

Solution. The torque is transmitted through the fluid layers to the
outer cylinder.

Tangential velocity of the inner cylinder = rω

= r
2
60
πn

= 0.15 × 
2 60

60
π ×

 = 0.943 m/s.

For the small space between the cylinders, the velocity profile may be assumed to be a
straight line, then

du
dy

 = 0 943
15 5 15 0

100

.
( . � . )

 = 188.6 per sec.

Torque applied = Torque resisted
 0.98 = τ × Area × Lever arm = τ × (2π × 0.15 × 0.30) × 0.15

 τ = 
0 98

2 0 045 0 15
.

. .π × ×
 = 23.15 N/m2

or µ = ρ
du dy/

 = 23 15
188 6

.
.

 = 0.123 N-s/m2.

w

9.8 N

796
mm

800
mm
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Example 1.9. A circular disc of a diameter �d� is slowly rotated  in a liquid of large viscosity
�µ� at a small distance �h� from a fixed surface. Derive an expression for torque �T� necessary to maintain
an angular velocity �ω�.

Solution. Consider an element of disc at a radius r and having a width dr.
Linear velocity at this radius = rω

Shear stress τ = µ du
dy

Torque = Shear stress × Area × r
= τ × 2πr dr × r

= µ du
dy

. 2πr2 dr.

Assuming the gap h to be small so that the velocity distribution may be assumed linear.

du
dy

 = 
r
h
ω

∴ Torque, dT, on the element

dT = µ r
h
ω  . 2πr2 dr = 

2πµω
h

r3dr

Total torque,   T = 2
0

2 πµω
h

d /z  r3 dr = 
2πµω

h
r

d4

9

2

4

/

 = 
µπ ωd

h

4

32
.

Example 1.10. A space 25 mm wide between two large plane surfaces is filled with glycerine.
What force is required to drag a very thin plate 0.75 sq metre in area between the surfaces at a speed
of 0.5 m/s (i) if this plate remains equidistant from the two surfaces, (ii) if it is at a distance of 10
mm from one of the surfaces ? Take µ = 0.785 N-s/m2.

Solution. Total force required to drag the plate
= Sum of the forces on either side of the plate

∴ F = F1 + F2.
Case I. When the plate is located midway between

the surfaces.
Since the space between the surfaces is small, the

velocity distribution may be considered as straight line.
The shear force on the upper side of the plate

 F1 = τ1 × Area of the plate

= µ du
dy
F
HG
I
KJ1

 × 0.75 = 0.785 × 
0 5

2 5 2 100
.

. / ×
F
HG

I
KJ  × 0.75 = 23.5 N

The force on the bottom side of the plate

F2 = µ du
dy
F
HG
I
KJ2

 × Area of plate = 0.785 
0.5

2.5/2 100×
F
HG

I
KJ  × 0.75 = 23.5 N.

∴ The total resistance force (which is equal to the force required to drive it) experienced by
the plate = F1 + F2 = 47.0 N.

Case II. When the plate is located at a distance of 10 mm from one of the surfaces.
Force on the upper side of the plate

F1 = µ
du
dy
F
HG
I
KJ  × 0.75 = 0.785 

0.5
1.5 / 100
F
HG

I
KJ  × 5 = 19.60 N.

�

dr

Stationary

surface r

dd

1.25 cm

1.25 cm

2.5 cm
0.5 m s/

Velocity distribution

F

0.5 m s/
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Force on the bottom side of the plate

F2 = µ du
dy
F
HG
I
KJ  × 0.75 = 0.785 

0 5
1 100

.
/
F
HG

I
KJ  × 0.75 = 29.40 N

Total force required = F1 + F2 = 49.0 N.
Example 1.11. Lateral stability of a long shaft 150 mm in diameter is obtained by means of

a 250 mm stationary bearing having an internal diameter of 150.25 mm. If the space between bearing
and shaft is filled with a lubricant having a viscosity 0.245 N-s/m2, what power will be required to
overcome the viscous resistance when the shaft is rotated at a constant rate of 180 r.p.m. ?

Solution. Circumferential velocity of the shaft
 V = rω

= r . 2
60
πn  = 

15 2
100

/
 × 

2 180
60

π ×
 = 1.412 m/s

Velocity gradient,

du
dy
F
HG
I
KJ  = 

1.412
0.025

2 100×
 = 1.13 × 104 sec�1

Shear stress on the shaft

   τ = µ du
dy
F
HG
I
KJ  = 0.245 × 1.13 × 104

  = 2.77 × 103 N/m2 = 2.77 kN/m2

Shear force on the shaft

F = τ . 2πrl = 2.77 × 103 × 2 × π × 15 2
2 100

.
×

 × 25
100

 = 327.5 N

Torque to be overcome by the shaft = Shear force × Radius of shaft
T = F . r

 = 327.5 × 15
2 100×

 = 24.6 N-m.

Power corresponding to this torque at a speed of n = 180 r.p.m.

P = 2
60
πn  × T = 2 180

60
π ×  × 24.6

 = 463.0 N-m/s = 463.0 W = 0.463 kW.
Example 1.12. A cylinder 0.25 m in radius and 2 m length rotates coaxially inside a fixed

cylinder of the same length and 0.30 m radius. Olive oil of viscosity 4.9 × 10�2 Ns/m2 fills the space
between the cylinders. A torque 4.9 N-m is applied to the inner cylinder. After constant velocity is
attained, calculate the velocity gradient at
the cylinder walls, the resulting r.p.m., and
the power dissipated by fluid resistance
ignoring end effects.

Solution. The surface area of the
outer cylinder is larger than that of the inner
one, since the former has a larger radius.
Accordingly the shear force and the velocity
gradient at the outer cylinder will be less
than the respective quantities on the inner
one. The velocity profile  through the fluid

25 cm

Clearance

0.0125 cm

�

Shaft

15 cm dia.

Bearing

V

XX

T Driving( )
0.25 m

T Resisting( )
Fixed

cylinder

rad 0.3 m

XX

V

h

Velocity

distribution

Olive oil
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will  be non-linear as indicated in the figure, since the gap between the inner and outer cylinders is
comparatively larger.

The torque of 4.9 Nm is transmitted from inner cylinder to the outer one through fluid
friction (viscous effect). Let r be the radial distance of any fluid layer.

Then 4.9 = τ × (2πrl) × r = τ.2πr × 2 × r

= τ.4πr2 = µ du
dy

. 4πr2

= 4.9 × 10�2 × 4πr2 du
dy

∴ du
dy

 = 
100
4 2πr

 = 7 95
2

.
r

.

The velocity gradients at the inner at outer cylinders are :

du
dy i

F
HG
I
KJ  = 7 95

0 25 2
.

( . )
 = 127.2 sec�1

and  
du
dy
F
HG
I
KJ0

 = 7 95
0 30 2

.
( . )

 = 88.3 sec�1.

Substituting  (� dr) for dy in the equation for du/dy since velocity decreases as r increases.
Integrating,

du
V

0z = � 7.95 dr
r20 30

0 25

.

.z
∴ Velocity of inner cylinder,

 V = 7.95 
1

0 30

0 25

r
L
NM
O
QP .

.

 = 5.30 m/s

speed of inner cylinder,  ω = 
V
r

 = 
5 3

0 25
.
.

 = 21.2 rad/sec.

 n = 
60
2

ω
π

 = 
60 21.2×

2π
 = 202.4 r.p.m.

Assuming the velocity profile to be linear for an approximate calculation
V = 127.1 × 0.05 = 6.35 m/s

and n = 242.5 r.p.m.
Since this result differs from the former by nearly 20%, the approximation is not satisfactory

in this case.
The power dissipated in fluid friction

= 
2

60
πnT

 = 
2 202 4 4 9

60
π × ×. .

 = 104.0 Nm/s = 104.0 W.

Example 1.13. The lower end of a vertical shaft of diameter 10 cm rests in a foot step bearing
(length 100 mm). The clearance between the lower end of the shaft and the bearing surface is 0.5
mm. If the shaft has to run at 750 rpm, find the torque required to keep the shaft in motion. Find
also the power required. Take dynamic viscosity as 1.5 poise. (RGPV, 2013 June)

Solution. Torque required to keep the shaft in motion
= shear force on shaft × its radius

Shear stress, τ = µ d
dy

µ
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Referring to the figure, the foot-step bearing and the
shaft is shown. The plan of the shaft and the bearing surface
shows the velocity distribution in the annular clearance.

The shear stress on the shaft�s outer surface is given
by the Newton�s law of viscosity, and will be calculated with
the data given :

µ = 1.5 poise = 1.5 × 0.1 (N.s/m2)
(10 poise = 1 Ns/m2)

Speed of rotation of shaft, N = 750 rpm
Velocity of rotation, V = Rω

= 
5

100
2 750

60
× ×π

 (m/s)

= 3.928 m/s
The bearing surface being stationary, the velocity is zero, and

du = V � O = 3.928 m/s
dy = clearance = 0.5 mm = 0.5 × 10�3 m

Shear stress, τ = 0.15 × 
3 928

0 5 10 3
.

. × −

= 1178.57 N/m2

Shear force on the shaft surface of area 2πRl
F = τ. 2πRl = 1178.57 × 2π ×

(10 × 10�2) × (5 × 10�2)
= 18.689 N

Torque exerted on the shaft
= F.R = 11.689 × (5 × 10�2)
= 0.9344 Nm

Power required = Torque × ω = 0.9344 × 2 750
60

π ×

= 73.35 Nm/s = 73.35 W ...(i)
To this, there is also the contribution of the shear force exerted on the shaft bottom.
To evaluate this, it is necessary to assume the velocity distribution at the bottom end of the

shaft, as shown in the bottom-most sketch. The velocity at the shaft axis zero and it varies radially,
there being a triangular velocity distribution with maximum velocity equal to Rω. Consider the
sectorial sketch in the plan, an element of shaft at a radius r, having thickness dr, the sector angle
being dθ.

Shear force on this element of area rdθ.dr is (dy being 0.5 mm)

dF = τ × area of element = µ rω
0 5 10 3. × −  × rdθ dr

Torque exerted on this elementary area situated at radius r

dT = dF.r = µω θr d dr2

30 5 10. × − .r

= 2µω × 103 r3 dθdr
To get the total torque exerted on this shaft bottom, we integrate the expression for dT

T = 
0

2

0

πz z dT
R

 = 2µω × 103 

0

2

0

3
π

θz zRr dr d

dr
r

d� R

V = R�

Velocity

distribution

Bearing

surface

dy =

0.5 mm

dz

dy =

0.5 mm

Velocity distribution

on shaft bottom

Shaft

surface

100 mm

Shaft of

10 cm dia.

Clearance

0.5 mm

filled with oil

Foot-step

bearing

N = 750 rpm
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= 2 × 103 µω
0

2 4

0
4

π
θz r

d
R

 = 2 × 103 µω
0

2 4

4

πz R
dθ

= 2 × 103 µω 0
40

2
4

π R

= 
2

4

4µωR
. 2π = πR4µω

Power reqd. by the shaft bottom = T.ω
= πR4µω2

= π × (5 × 10�2)4 × 0.15 × 
2 750

60

2π ×F
HG

I
KJ  Nm/s

= π × 625 × 10�8 × 0.15 (25 π)2 Nm/s
= 1962.5 × 10�8 × 0.15 × 6162.25 Nm/s
= 0.01814 Nm/s = 0.1814 W ...(ii)

∴ Power required to keep the shaft in motion
= 73.35 + 0.1814 = 73.5314 W

The contribution of the torque and therefore of power required by the shaft bottom to the
total power

= 
0 01814
73 5314
.
.

 = 0.0002466 or 0.0247%

and is negligible.
Example 1.14. A 90 mm diameter shaft rotates at 1200 rpm in a 100 mm long journal

bearing of 90.5 mm internal diameter. The annular space in the bearing is filled with oil having a
dynamic viscosity of 0.12 Pa.s. Estimate the power dissipated.

Solution. Torque exerted on the rotating shaft due to viscous resistance offered to it by the
journal bearing :

T = Shear force exerted on the shaft × radius of shaft

= µ du
dy
F
HG
I
KJ  A × r = µ du

dy
. πd L . r

Assuming linear variation of velocity in the annular
space, as shown, the velocity gradient (du = v = rw, dy =
0.25 mm)

du
dy

 = 
V

0 25 10. �3×
 = 

( / )
. �3

2 60
0 25 10

πr N
×

= 2π 90 10
2

×F
HG

I
KJ

�3
 × 

1200
60

 = 36π × 102 m/s/m

∴ T = 0.12 (N.s/m2) (36π × 102) (π × 90 × 10�3 × 100 × 10�3) × 45 × 10�3

 = 1.728 N.m
Power dissipated in overcoming viscous friction

P = 
2

60
π πNT = × ×2 1200 1.728

60
= 217.06 N.m/s = 217.06 W.

Annular space

0.25 mm oil filled

Journal bearing

90.5 mm, 100 mm

long

�

Shaft

90 mm�
V = r�

0.25
mm
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Example 1.15. A thin plate of large area is placed midway in a gap of height h filled with oil
of viscosity µ0 and the plate is pulled at a constant velocity V. If a lighter oil of viscosity µ1 is then
substituted in the gap, it is found that for the same velocity V, the drag force will be the same as
before if the plate is located unsymmetrically in the gap but parallel to the walls. Find µ1 in terms of
µ0 and the distance from the nearer wall to the plate.

Solution. Case (i) When the liquid of viscosity µ0
fills the gap. Since the plate is placed midway in the gap,
the velocity profile on both the sides of the plate will be
symmetrical, thus

du
dy

 = 
V

h
V
h/ 2

2= .

The shear force on the upper and the bottom side
of the plate will be same, and hence the drag force on the
plate

F1 = µ µ0 0
du
dy

du
dyu b

F
HG
I
KJ +

F
HG
I
KJ

L
N
MM

O
Q
PP A = µ µ0 0

2 2V
h

V
h

+L
NM

O
QP A = 

4 0V A
h
µ

where A is the area of plate.
Case (ii) When the liquid of viscosity µ1 fills the gap. Let the plate be placed at a distance of

y from the bottom wall as shown.
The velocity gradients for the upper and bottom

sides of the plate are :

du
dy u

F
HG
I
KJ  = 

V
h y( � )

and
du
dy b

F
HG
I
KJ  = 

V
y

.

Now, the drag force on the plate

F2 = µ µ1 1
du
dy

du
dyu b

F
HG
I
KJ +
F
HG
I
KJ

L
N
MM

O
Q
PP A = µ µ1 1

V
h y

V
y( � )

+
L
NM

O
QP A = 

µ1VhA
y h y( � )

.

But since the drag forces F1 and F2 are equal, we have

4 0 1V A
h

VhA
y h y

µ µ=
( � )

or µ1 = 4µ0
y
h

1 �
y
h

L
NM
O
QP

Example 1.16. A vertical gap 23.5 mm wide of infinite extent contains oil
of specific gravity 0.95 and viscosity 2.45 N-s/m2. A metal plate 1.5 m × 1.5 m × 1.5
mm weighing 49 N is to be lifted through the gap at a constant speed of 0.1 m/s.
Estimate the force required.

Solution. Let the plate be placed midway in the gap. The velocity gradient

du
dy

 = 
0.1

1.10 100×
 = 9.09 sec�1.

Viscous resistance to be overcome by the plate
= Shear force on the plate
= Sum of the shear force acting on each face

V

V

�0

1
2 h

1
2 h

h

V

V
h

( )h–y

y

�1

2.35 cm

0.1 m s/

1.175
cm
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= 2 . µ du
dy

. A

= 2 × 2.45 × 9.09 × (1.5 × 1.5)
= 100.1 N

Total force required
= Immersed weight of the plate + Viscous resistance
= (49.0 � 0.95 × 9810 × 1.5 × 1.5 × 0.0015) + 100.1
= 118.0 N.

Example 1.17. Through a very narrow gap of height h, a thin plate of a very  large extent is
being pulled at constant velocity V. On one side of the plate is oil of viscosity µ and on the other side
oil of viscosity Kµ. Calculate the position of the plate so that drag force on it will be a minimum.

Solution. Let the thin plate be placed at a distance y from one of the surfaces as shown. The
drag force per unit area of the plate

F = Sum of shear forces per unit area on both the faces of plate

= µ du
dy u

F
HG
I
KJ  + Kµ du

dy b

F
HG
I
KJ

where the subscripts u and b refer to the upper and bottom
sides of the plate, thus

F = µ V
h y( � )

 + Kµ V
y

For the drag force to be minimum,

dF
dy

 = 0

dF
dy

 = µV
1

2( � )h y
 � Kµ V

y2  = 0

or µ
µK

h y hy
y

= +2 2

2
2�  = h

y

2

2  + 1 � 2 h
y

or h
y

2

2  � 2 
h
y K

+
F
HG

I
KJ1 �

µ
µ

 = 0.

Solving the quadratic equation for h/y

h
y  = 

2 4 4

2

±
F
HG
I
KJ�

µ
µK

 = 1 ± 
µ
µK

Since h/y cannot be less than unity, using the plus sign

h
y

 = 1 + 
µ
µK

or y = 
h

K
1 + µ

µ
Example 1.18. Calculate the approximate viscosity of the oil for the following case :
Solution. When the constant velocity of 0.5 m/s is attained, the viscous resistance to the

motion is equal to the component of the weight of plate along the slope.

h

�

V

y k�

V
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V = 0.5 m/s �

13

12

5Weight

W = 150 N

1 m × 1 m Square plate

0.15 cm oil film

Inclined plane

Component of weight along the slope

= W sin θ = 150 × 5
13

 = 56.6 N

Viscous resistance = µ . 
du
dy

 . A = µ . 0 5
0 15 100

.
( . / )

 (1 × 1) = 333.5 µ

Hence 333.5 µ = 56.6

∴  µ = 56 6
333 5

.
.

 = 0.0173 × 9.81 = 0.17 N-s/m2 = 0.17 Pa.s.

1.5. Surface Tension
The molecules of a liquid are held together by a force of attraction known as cohesion, the

magnitude of which is very small, yet it enables the liquid to withstand a small tensile stress. The
liquid molecules exert an attractive force upon all other molecules with which it comes into contact.
The force of attraction between the molecules of two different liquids which do not mix or between
the liquid molecules and molecules of solid boundary containing the liquid, is known as adhesion.

At surface of contact between a gas and a liquid (like
air and water) or between two different immiscible (liquids
that do not mix with each other) liquids, molecular attraction
introduces a force which causes the interface (i.e. the contact
surface) to behave like a membrane under tension. Within
the body of a liquid a molecule is attracted equally in all
directions by the other molecules surrounding it, but at the
liquid-air interface or at the contact surface between two
immiscible liquids the upward and downward attractions are
unbalanced, giving rise to the phenomenon of surface tension. The liquid-air interface behaves as
if it were an elastic membrane under tension. This surface tension is the same everywhere on the
surface, and acts in the plane of the surface normal to any line in the surface. As shown in Fig. 1.6,
a liquid molecule at the free surface will be exerted upon by a smaller force from the free surface
side, giving rise to a resultant downward force acting at right angles to the free surface. This
imbalance of molecular force gives rise to surface tension. It is a force which exists on the surface of
a liquid when it is in contact with another fluid or a solid boundary. Its magnitude depends upon
the relative magnitude of cohesive and adhesive forces. Surface tension is a force in the liquid
surface and acts normal to a line of unit length drawn imaginarily on the surface. Thus, it is a line
force. It represents surface energy per unit area (unit surface energy), and is denoted by Greek
letter σ (sigma). It has dimensions [FL�1] or [MT�2] and is expressed in kg/m in MKS units and N/
m in SI units.

A small needle gently placed on the liquid surface will not sink and will be supported by the
surface tension. This is made possible by the localised curvature and depression caused by the
needle.

Free-surface

Fig. 1.6. Intermolecular force near
a free surface.
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1.5.1. Effect of temperature
As the surface tension depends

directly upon the intermolecular cohesion,
and since cohesion is known to decrease with
temperature rise, the surface tension
decreases with the rise of temperature. Its
value for water-air contact (free-surface of
water) reduces from 0.00745 kg/m (0.0731
N/m) at 17.8°C to 0.00596 kg/m (0.0585 N/m)
at 100°C.

1.5.2. Capillary action
The molecules of a solid surface

attract liquid molecules with a greater force
than that which exist between the liquid
molecules (except mercury). Because of this,
most of the liquids completely wet the surface. The extent of wetting will depend upon the relative
magnitude of the forces of adhesion and cohesion. If the adhesive force is greater than that of
cohesion, the liquid tends to spread out and wet the surface. If the cohesive force is greater than
the adhesive force, a small drop of the liquid placed on the solid surface will remain in the drop
form e.g. a small mercury drop retains its almost spherical shape while resting on a solid surface.
Mercury does not wet the surface because of its greater cohesion. If water drops are placed on a
solid surface, they will completely spread out over the surface and will wet it. This is due to the fact
that the adhesion between the molecules of water and the solid surface is greater than the cohesion
between the water molecules.

The free surfaces of mercury and water will, therefore, behave differently at places where
they come in contact with a solid surface. When a glass tube is dipped vertically into water, the
water rises in the tube. If the glass tube is placed in mercury, the surface of mercury inside the
tube will be lower than the outside level. Fig. 1.7 exhibits, what is known as the capillary action.
The rise of water in the tube is called the capillary rise and the fall of mercury is termed as the
capillary depression. The phenomenon of rise and fall of liquid in a capillary tube is known as
capillarity. Its magnitude depends upon the diameter of tube, the specific weight of the liquid and
its surface tension, and may be obtained by the following analysis. If the angle of contact between
the liquid and the solid surface is θ, the water in the glass tube will continue to rise until the
vertical component of the surface tension force (T cos θ) which acts over the wetted length
(circumference of the tube) at the free surface equals the weight of the water column. Thus

T cos θ = 
πd2

4
hy

where T = σπd. Substituting this value of T, the capillary rise h is given by

h = 
( cos )4 θ σ

γd
...(1.6)

For pure water and clean glass surface, θ is almost equal to zero, but under actual conditions
the water is neither pure nor the glass is clean. For water in contact with glass and air, Gibson has
obtained the value of θ as 25° 32′, and that of σ = 0.0075 kg/m (0.0735 N/m). If h and d are expressed
in mm. Eq. (1.6) reduces to

h = 27 07.
d

 mm ...(1.7)

A similar analysis for glass tube placed in mercury shows that the mercury is depressed by
an amount h given by Eq. (1.6). For mercury Gibson has obtained θ = 128° 52′ and the specific

d

T T

�

h

d

h

�

Mercury

TT
Water

Fig. 1.7. Capillary action in a glass tube.
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gravity and the surface tension may be taken as 13.55 and 0.53 kg/m (5.2 N/m) respectively. With
h and d both expressed in mm, Eq. (1.6) for glass-air contact becomes

h = 9 6.
d

 mm ...(1.8)

Glass tubes are commonly used for measuring pressure of flow, and in order that they give
correct pressure observations, it is necessary that the rise of water or any other liquid should not
be influenced by the capillary action. To ensure this, the diameter of tube should be large enough
so that the capillary rise is negligible.

Table 1.2 gives the values of h for glass tubes of different diameter for water and mercury as
calculated from the above equation.

Table 1.2

Capillary rise or depression, h in mm

Tube diameter, d in mm 2 5 10 15 20 25

1. Water 13.4 5.4 2.7 1.8 1.3 1.1

2. Mercury 4.8 1.9 1.0 0.6 0.5 0.4

From this table it is obvious that if a smaller tube is used for pressure measurement, the
height of liquid in the tube which indicates pressure of flow will not represent the correct pressure,
as it includes the capillary rise. For this reason, the diameter of tube should never be less than 1
cm.
Liquid drop, jet and soap bubble :

In case of a liquid drop or inside a jet, the action of the surface tension is to increase the
pressure inside, in relation to the outside pressure. In a liquid drop of diameter d, if ∆p is the
difference of pressure between the inside and outside of the drop, then using Fig. 1.8 (a).

∆p . πd2/4 = σπd

∆p = 
4σ
d

...(1.9)

and in case of a liquid jet of diameter d and of unit length, we have from Fig. 1.8 (b).
 2σ = ∆p . d

 ∆p = 
2σ
d

...(1.10)

A soap bubble in air has two surfaces in contact with air, one inside and the other outside,
Fig. 1.8 (c). The forces that act on the hemispherical section are same as those for the drop, but the
surface tension force is twice as great. The pressure difference is given by

p

��d

( ) Forces on hemispherical
section of liquid drop

a

�p

�

�

( ) Process on half-cylindrical
section of liquid jet

b ( ) Two surfaces of a
soap bubble

c

Inner

surface

Outer

surface

Fig. 1.8
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 ∆p . 
πd2

4
 = 2πdσ

or ∆p = 
8σ
d

...(1.11)

A soap solution has a high value of σ, which causes a soap bubble to be larger in diameter for
small pressure of blowing.

Example 1.19. A soap bubble 25 mm in diameter has inside pressure of 20.0 N/m2 above
atmosphere. Calculate the tension in the soap film.

Solution. Using Eq. (1.11), ∆p = 
8σ
d

∴ Surface tension in soap film σ = 
∆p d.

8

  = 20
8

 (25/1000) = 0.0625 N/m.

Example 1.20. If the surface tension of water in contact with air is 0.075 N/m, what correction
need be applied toward capillary rise in the manometric reading in tube of 3 mm diameter.

Solution. Assuming the manometer tube made of glass, for water-air-glass contact gibson
has determined the angle of contact θ as 25° 32′, and surface tension σ = 0.0075 kg/m. The capillary
rise is given by Eq. (1.6) as

h = 
( cos )4 θ σ

γd

= 4 25 533 0 075
9810 3 1000

cos . .
( / )

° ×
×

 = 0.009198 m = 9.198 mm

However for pure water and clean glass, θ = 0°, and the capillary rise,

h = 4σ
γd

= 4 0 075
9810 3 1000

×
×

.
( / )

 = 0.01019 m = 10.19 mm

Note. From the above two values of h, it can be seen that the effect of impure water and
unclean glass is reflected in decrease in the value of capillary rise.

Example 1.21. Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter,
when immersed in (i) water and (ii) mercury. The temperature of the liquid is 20°C and the values of
surface tension of water and mercury at 20°C in contact with air are 0.0736 N/m and 0.51 N/m
respectively. The angle of contact for water is zero and that for mercury 130°.

Solution. The capillary effect is given by Eq. (1.6),

h = ( cos )4 θ σ
γd

For water : σ = 0.0736 N/m γ at 20°C = 9790 N/m3

θ = 0°, d = 4 × 10�3 m

h = 
4 0 0 0736
9790 4 10

cos .
�3

° ×
× ×

 = 7.51 × 10�3 m

 = 7.51 mm (rise of water)
For mercury : σ = 0.51 N/m γ = 13.6 × 9790 = 133 kN/m3

θ = 130°, d = 4 × 10�3 m
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∴ h = 4 130 4 51
133 10 4 103

× ° ×
× × ×
cos .

�3
 = � 2.46 × 10�3 m

 = � 2.46 mm (depression).
Example 1.22. A U-tube is made of two capillaries of diameter 1.0 mm 1.5 mm respectively.

The tube is kept vertically and partially filled with water of surface tension 0.0736 N/m and zero
contact angle. Calculate the difference in the levels of miniscii caused by the capillarity.

Solution. Capillary rise in a circular tube is given by Eq. (1.6),

h = 
4σ θ

γ
cos
d

According to the data given
θ = 0°, σ = 0.0736 N/m

(i) Capillary rise in 1.0 mm tube

 h1 = 
4 0.0736 1

9810 1.0 10�2
× ×

× ×
 = 0.030 m

 = 30 mm
(ii) Capillary rise in 1.5 mm tube

 h2 = 4 0.0736 1
9810 1.5 10�2

× ×
× ×

 = 0.020 m

 = 20 mm.
∴ The difference in levels of water in the two limbs caused by the surface tension effect

y = h1 � h2 = 30 � 20 = 10 mm.
Example 1.23. The diameters of the two glass limbs of a differential U-tube manometer were

found to be 5 mm and 6 mm respectively. In an experiment the differential pressure readings of 50,
100, 250, 400 and 500 mm were indicated by the manometer. Determine the percentage error caused
by the capillary effect. Take surface tension of water as 0.0736 N/m and the angle of contact as zero.

Solution. Capillary rise in
(i) 5 mm tube (ii) 6 mm tube

h1 = 
4

1

σ θ
γ
cos
d

h2= 4 4 0 0736 1
9810 6 102

σ θ
γ
cos .

�3d
= × ×

× ×

= 
4 0 0736 1

9810 5 10
× ×

× ×
.

�3  = 0.006 = 0.005 = 5 mm

= 6 mm
∴ Capillary effect = h1 � h2

= 6 � 5 = 1 mm.
Percentage Errors :

(i) When pressure difference is 50 mm, % error = ± 1
50

 × 100 = ± 2%

(ii) When pressure difference is 100 mm, % error = ± 1
100

 × 100 = ± 1%

(iii) When pressure difference is 250 mm, % error = ± 1
250

 × 100 = ± 0.4%

(iv) When pressure difference is 400 mm, % error = ± 1
400

 × 100 = ± 0.25%

(v) When pressure difference is 500 mm, % error = ± 1
500

 × 100 = ± 0.20%.

1 mm 1.5 mm

yy
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Example 1.24. Determine the absolute pressure and the gauge pressure that would exist
within :

(i) a spherical droplet of water 5 mm in diameter
(ii) a jet of water 5 mm in diameter.
Surface tension of water at the prevalent temperature is 0.0736 N/m and the barometer read-

ing stands at 750 mm of mercury. Take specific gravity of mercury as 13.55 and specific weight of
water as 9810 N/m3.

Solution. Case (i) For a spherical droplet of water, Eq. (1.9) gives differential pressure
within the drop as compared to the outside atmosphere as

∆p = 4σ/d = 4 × 0.0736/5 × 10�3 = 58.86 N/m2

This being the pressure measured above the local atmospheric one, it represents the gauge
pressure.

Local atmospheric pressure = 13.55 × 750 mm water = 9810 × 13.55 × 750 × 10�3 N/m2

= 99.67 kN/m2 = 99.67 kPa.
Absolute pressure inside the droplet

= Gauge pressure + Local atmospheric pressure
= 58.86 + 99.67 × 103 = 99.73 kPa

Case (ii) For the liquid jet, the differential pressure is

 ∆p = 
2 2 0 0736

5 10
σ
d

= ×
×

.
�3  = 29.43 N/m2 = 29.43 Pa

Absolute pressure inside the liquid jet
= 29.43 + 99.67 × 103 N/m2 = 99.7 kN/m2.

Example 1.25. In measuring the unit surface energy of a mineral oil (sp. gr. = 0.85) by the
bubble method, a tube having an internal diameter of 1.5 mm is immersed to a depth of 12.5 mm in
the oil. Air is forced through the tube forming a bubble at the lower end. What magnitude of unit
surface energy will be indicated by a maximum bubble pressure intensity of 147.15 Pa ?

Solution. Specific weight of the mineral oil
γ = 0.85 × 9810 = 8338.5 N/m3

Pressure at a depth of 12.5 mm = γh = 8338.5 × 12 5
1000

.  = 104.2 N/m2 = 104.2 Pa

Pressure difference between inside and outside of the bubble
 ∆p = 147.15 � 104.2 = 42.95 Pa

Using Eq. (1.9), the unit surface energy

σ = 
∆p d.

4
 = 4 × 1.5

103
 = 16.1 N/m.

Example 1.26. Air is introduced through a nozzle into a tank of water to form a stream of
bubbles. If the bubbles are intended to have a diameter of 2 mm, calculate by how much the pressure
of the air at the nozzle must exceed that of the surrounding water. Assume that surface tension is
71.6 mN/m.

Solution. The pressure at the tip of the nozzle must be
the same as the excess pressure inside the air bubble. The
difference in pressure between inside and outside of the bubble
is given by Eq. (1.9),

∆p = 4 4 10
2 10

σ
d

= × ×
×

71.6 �3

�3

 = 143.23 N/m2 = 143.23 Pa.

Air

Water

Bubbles

of 2 mm dia.
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1.6. Vapour Pressure
All liquids possess a tendency to

vaporise when exposed to air or gaseous
atmosphere. The vaporisation takes place due
to liquid molecules escaping from the free
surface. The rate at which this vaporisation
occurs depends upon the molecular energy of
the liquid (which is dependent upon the
nature of liquid and its temperature) and the
condition of the atmosphere adjoining it.
Consider a liquid contained in a sealed
container, Fig. 1.9. Let a constant temperature be maintained within the container. Some of the
liquid molecules have sufficient energy to break away from the liquid surface and enter the air
space in the vapour state, see Fig. 1.9 (i). After a certain time, the air will contain enough liquid
molecules to exert a partial pressure of air on some of the molecules forcing them to rejoin the
liquid surface, Fig 1.9 (ii). Eventually, when equilibrium condition is established, the rate at which
the molecules are leaving the liquid surface will be the same as the rate of return of molecules. In
this condition the air above the liquid is saturated with liquid vapour molecules and the pressure
exerted on the liquid surface is called the vapour pressure. A liquid with a high vapour pressure
evaporates readily and is known as a volatile liquid. The boiling of a liquid is closely related to its
vapour pressure. When the pressure impressed on the liquid surface is brought slightly below the
vapour pressure limit, the liquid starts boiling. This means that the boiling can be achieved either
by raising the temperature of the liquid so that its vapour pressure rises or by lowering the pressure
of the overlying air below the vapour pressure of the liquid.

The vapour pressure depends upon the molecular activity which is a function of tempera-
ture, as such it depends upon the temperature and increases with it. Table 1.3 gives the  vapour
pressure of some important liquids, while Table 1.4 shows the vapour pressure of water at differ-
ent temperatures.

Table 1.3. Vapour Pressure at 20°C

Liquid N/m2 (Pa)

Water 2.345 × 103

Kerosine 3.310 × 103

Benzene 10.000 × 103

Petrol 30.400 × 103

Mercury 0.160

Table 1.4. Vapour Pressure of Water

T(°C) N/m2(Pa) m of water

 0 0.610 × 103 0.063
10 1.230 × 103 0.125
15 1.62 × 103 0.165
20 2.345 × 103 0.239
30 4.27 × 103 0.437
40 7.400 × 103 0.762
50 12.36 × 103 1.275
60 20.0 × 103 2.075
80 47.5 × 103 4.960

100 101.5 × 103 10.790

( )i ( )ii ( )iii

Fig. 1.9
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The low vapour pressure of mercury, as evidenced from Table 1.3 (along with its high den-
sity) makes it very suitable for use in barometers and other pressure measuring devices. The vapour
pressure of mercury is so low that there is an almost perfect vacuum above the mercury column in
a barometer.

The problem of cavitation, encountered in hydraulic structures like spillways and sluice
gates, and hydromachinery such as turbines and pumps, is a direct result of local pressures being
equivalent to or less than the vapour pressure of the liquid. When such a situation develops, vapour
bubbles or cavities are formed in the flow. The unsteady nature of these bubbles and their ultimate
collapse is responsible for the high pressure which often leads to vibrations, noise, pitting and
erosion of metal parts of machines and concrete surfaces of hydraulic structures.

Tables 1.5 and 1.6 show the properties of some common fluids and that of water respec-
tively. Table 1.7 deals with the properties of standard atmosphere.

Table 1.5. Properties of some common fluids at 20°C and atmospheric pressure

Specific Dyn. visco- Kin. visco- Surface Vapour Bulk
Density, ρ wt., γ sity 105 µ sity 107 v tension* σ pressure, pv Modulus of

Elasticity,
Ev

kg/m3 N/m3 Ns/m2(Pa.s) m2/s N/m N/m2(Pa) N/m2(Pa)

Air 1.235 12.12 1.853 150.0 � � �

Benzene 888.0 8650.0 65.3 7.43 0.0255 1.0 × 104 1.035 × 109

Carbon 159.40 15.64 × 103 96.5 6.04 0.0265 1.305 × 104 1.105 × 109

tetrachloride

Castor oil 960.0 9410.0 8.04 × 104 1.0 × 104 0.0392 � 1.44 ×  109

Ethyl 788.9 7730.0 119.7 15.0 0.0216 5.78 × 103 1.206 × 109

alcohol

Glycerine 1270.0 12.45 × 103 9.04 × 104 6.3 × 103 0.0490 1.37 × 104 4.35 × 109

Kerosine 800.0 7850.0 188.0 22.9 0.0235 � �

Mercury 13.53 × 103 13.28 × 104 155.0 1.16 0.5100 0.173 2.62 × 1010

Water 998.0 8.9 × 103 100.0 10.0 0.0735 2.39 × 103 2.11 × 109

*In contact with air.
Table 1.6. Properties of water at different temperatures

Temperature Density, ρ Specific Dyn. Kin. Surface Vapour Bulk
T degree C wt., γ viscosity viscosity tension* pressure modulus

105 µ 107v 103σ pv of Elasticity
10�6 Ev

kg/m3 N/m3 N-s/m2 m2/s N/m N/m2 (abs) N/m2 (Pa)
(Pa.s) (Pa)

0 1000.0 9810.0 179.3 17.93 75.7 611.0 2016.0
5 1000.0 9810.0 155.5 15.30 74.9 883.0

10 1000.0 9810.0 131.2 13.20 74.2 1229.0
15 999.0 9800.0 113.8 11.50 73.6 1618.0
20 990.0 9780.0 100.1 10.00 72.9 2340.0 2110.0
25 997.0 9770.0 90.0 9.02 72.2 3217.0
30 996.0 9760.0 79.9 8.09 61.2 4270.0
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35 994.0 9750.0 71.9 7.30 70.5 5585.0
40 992.0 9730.0 65.1 6.62 69.6 7300.0
45 990.0 9710.0 59.3 6.04 68.7 9510.0
50 988.0 9690.0 55.0 5.53 68.0 12.36 × 103 2286.0
55 985.0 9660.0 50.7 5.21 67.1 16.03 × 103

60 983.0 9640.0 46.6 4.82 66.0 20.45 × 109

65 981.1 9620.0 43.6 4.50 65.3 24.90 × 103

70 978.1 9600.0 40.7 4.17 64.4 31.05 × 104

75 975.2 9560.0 38.0 3.90 63.6 38.55 × 103

80 971.6 9520.0 35.6 3.68 62.7 47.60 × 103

85 968.3 9500.0 33.5 3.46 61.8 57.30 × 103

90 964.0 9450.0 31.5 3.28 60.9 69.20 × 103

95 961.0 9425.0 29.9 3.01 59.9 84.75 × 103 2138.0
100 959.0 9400.0 28.4 2.90 59.0 101.30 × 103

*In contact with air.
Table 1.7. Properties of standard atmosphere

Pressure Density Kin. viscosity Velocity of
absolute sound

Altitude Z Temperature
km T N/m2 (Pa) kg/m3 m2/s m/s

degree C
10�3 p ρ 105 ν C

0 15 101.2 1.225 1.45 341.0
0.3 13.3 97.6 1.193 1.49 339.2
0.6 11.1 94.6 1.156 1.52 338.0
0.9 9.1 91.2 1.125 1.56 337.4
1.2 7.2 87.7 1.090 1.59 337.3
1.5 5.2 83.2 1.085 1.64 335.0
3.0 � 4.7 70.6 0.910 1.85 329.0
4.5 � 14.6 68.2 0.775 2.10 322.5
6.0 � 23.6 47.5 0.667 2.42 316.0
7.5 � 34.4 38.7 0.555 2.70 310.0
9.0 � 44.3 31.4 0.460 � 303.4

10.5 � 54.2 25.0 0.382 � 297.0
11.0 � 55.3 22.5 0.363 � 296.0
11.3 � 55.3 21.6 0.347 � 296.0

1.7. Properties of Gases
Gases are highly compressible fluids and are characterised by change in density. The change

in density is achieved by both change in pressure and change in temperature. The absolute pres-
sure p, the specific volume v and the absolute temperature T are related by the equation of state.
For a perfect gas, the equation of state per unit weight is

pv = RT ...(1.12)
where R = a gas constant, the value of which depends upon the particular gas.

For air the value of the gas constant R is 287 N-m/kg-K or (J/kg-K) in SI. Equation (1.12)
may also be written as
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p = ρRT ...(1.13)
which may be used to compute the density if the gas constant R is known. The absolute tempera-
ture (T) is measured in °K (Kelvin), and is related to temperature in Celcius  by the equation

T = 273 + Tc, where Tc = Temperature in °C.
Another fundamental equation for a perfect gas is

pvn = p1v1
n = p2v2

n = constant ...(1.14)
in which n may have any value from zero to infinity depending upon the process to which the gas is
subjected. By combining Eqs. (1.12), (1.13) and (1.14) the following useful relationship can be ob-
tained :

T
T

p
p

n n
2

1

2

1

1

=
F
HG
I
KJ

( � )/

 = 
v
v

n
1

2

1F
HG
I
KJ

�

 = ρ
ρ

1

2

1F
HG
I
KJ

n �

...(1.15)

Example 1.27. One cubic metre of air at 40°C and pressure 0.105 × 106 N/m2 is compressed
adiabatically to 0.5 m3. What are the temperature and pressure of the gas ? If the process had been
isothermal, what would be the temperature and pressure ?

Solution. The gas constant for air, R = 287 N-m/kg °K
From the equation of state, pv = RT
Substituting the given data,

0.105 × 106 v1 = 287(273 + 40), from which v1 = 1.17 m3/kg
For adiabatic process, pvk = constant

 p2(0.5)1.4 = 0.105 × 106(1.17)1.4

 p2 = 0.277 × 106 N/m2.
Also,  0.277 × 106(1.17 × 0.5) = 287(273 + T2)

 T2 = 292°K.
If the process is isothermal, T2 = 40°C.

 pv = constant

and  p = 
0 105 10 1

0 5

6.
.

× ×
 = 52.5 × 103 N/m2.

1.7.1. Isothermal Process
The compression and expansion of a gas may take place according to various laws of thermo-

dynamics. If the temperature is kept constant, the process is known as isothermal and the value of
n is unity. Eq. (1.13) is then written as : p/ρ = constant.

1.7.2. Isentropic Adiabatic Process
If the process is such that no heat is added to or withdrawn from the gas (the case of zero

heat transfer), it is said to be an adiabatic process. An isentropic process is the one in which there
is no friction and hence is a reversible process. An isentropic adiabatic process is accompanied by a
decided change in temperature. The value of the exponent n in Eq. (1.14) is then denoted by k, the
ratio of specific heats at constant pressure and constant volume. The ratio k is called the adiabatic
constant for the gas. Eq. (1.14) then changes to :

p/ρk = constant.
For actual gases the exponent k is nearly constant over a wide range of states. If the process

is adiabatic but not frictionless, it is described by an equation like Eq. (1.14) with an exponent
slightly different from k. The exponent is smaller than k for expansion and is larger than k for
compression.
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1.8. Incompressible and compressible Fluids
Fluid mechanics deals with both incompressible and compressible fluids, that is, with fluids

of constant and variable densities. Although there is no such thing in reality as an incompressible
fluid, this term is applied where the change in density with pressure is so small as to be negligible.
This is usually the case with all liquids. Gases, too, may be considered incompressible when the
pressure variation is small compared with the absolute pressure.

In liquid pipelines at times of sudden or rapid valve closure, a high pressure wave is gener-
ated giving rise to the phenomenon of water hammer. In water hammer problems, it is, therefore,
necessary to consider the compressibility of liquid.

The flow of air in a ventilating system is a case where a gas may be considered incompres-
sible, because the pressure variation is so small that the change in density is of no importance. But
in case of a gas or steam flowing through a pipe line at high velocity, the drop in pressure may be
so great that the resulting change of density cannot be ignored. For an aeroplane flying at or less
than 400 kmph, the air may be considered to be of constant density. But as an object moving
through the air approaches the velocity of sound, which is around 1150 kmph, the pressure and
density adjacent to the body become significantly different from those of the air at some distance
away. Under such circumstances, the air must be treated as a compressible fluid.

1.8.1. Compressibility
The compressibility is the measure of change in volume (or density) when a substance is

subjected to pressure. The reciprocal of coefficient of compressibility β is known as the bulk modu-
lus of elasticity. Thus

Coefficient of compressibility = Percentage change in volume for a given change in pressure.
or β = 1/Ev

A fluid may be compressed by the application of pressure, thereby reducing its volume and
giving rise to a volumetric strain. Such a compressed fluid will expand to its original volume when
the applied pressure is withdrawn. This property of compressibility of a fluid is expressed by the
bulk modulus of elasticity. If by applying a pressure dp, the decrease in the fluid volume is dV,
then the bulk modulus of elasticity is defined as

Ev = � dp
dV V/

...(1.16)

where V = original fluid volume. The negative sign indicates a decrease in volume with the increase
in pressure. Since most of the liquids have a comparatively high value of bulk modulus of elasticity,
the compressibility is very close to zero and hence the liquids are considered practically
incompressible under ordinary conditions. The bulk modulus of elasticity of fluid is not a constant
but increases with increasing pressure. Tables 1.5 and 1.6 indicate Ev-values for some common
fluids and water respectively.

As the density is equal to the mass divided by volume, we have

ρ = 
m
V

Since the mass m of a certain volume V is constant, differentiating ρ,

dρ = d m
V
F
HG
I
KJ  = � 

mdV
V 2  = � ρ dV

V

 � 
dV
V

d= ρ
ρ

...(1.17)

From Eqs. (1.16) and (1.17),

Ev = ρ dp
dρ

...(1.18)
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(i) For an isothermal process, p/ρ = constant.

∴ dp
dρ

 = constant = p
ρ

and the bulk modulus Ev = p ...(1.19)
(ii) If the process is isentropic,

p
kρ

 = constant.

Differentiating, dp = constant. kρk � 1 dρ = kρk � 1 dρ p
kρ

= k dρ
ρ

p

∴ dp
dρ

 = k
p
ρ
F
HG
I
KJ

and the bulk modulus,  Ev = ρk
p
ρ
F
HG
I
KJ  = kp ...(1.20)

The velocity of sound through a fluid medium is expressed by

C = dp
dρ

...(1.21)

Small pressure disturbances travel through the fluid medium at a velocity which depends
upon bulk modulus and the density of the fluid. Using Eqs. (1.18) and (1.21),

C = 
Ev

ρ
...(1.22)

in which C is the sonic velocity or the velocity of sound in the fluid medium.
The values of the bulk modulus Ev for air and water at standard atmospheric conditions are:

Fluid Value of Ev (N/m2)
1. Air (isothermal process) 100 × 103

2. Air (isentropic process) 140 × 103

3. Water 2.11 × 109

The bulk modulus is also designated by E.
In the present age of high speed flight, the compressibility of fluid has assumed paramount

importance. The Mach number M, which is the ratio of the velocity of flow V (or the velocity of a
body) to the velocity of sound in the fluid medium (M = V/C) is a measure of the compressibility
effects. If M < 1, the compressibility effects are of little importance, and when the Mach number
exceeds unity (M > 1), the compressibility of the fluid affects the flow phenomena to an appreciable
extent. Thus the Mach number offers a criterion to decide whether or not the fluid be assumed
incompressible in the flow analysis. In case of an incompressible fluid, E = ∞ and so also is the sonic
velocity C = ∞ resulting in a zero Mach number. It has been found through experience that if M ≤
0.2, the effects of compressibility are negligible. For air at room temperature, M = 0.2 corresponds
to V = 70 m/s.

The Mach number of flow is also used to describe the flow as subsonic if M < 1, supersonic if
M > 1, and hypersonic if M > 5.

Example 1.28. The volume of a liquid is reduced by 1.2% by increasing the pressure from
0.40 MPa to 12.3 MPa. Estimate the modulus of elasticity of the liquid.

Solution. The modulus of elasicity is given by

Ev = � 
dp

dV V/
 = �

(12.3 � 0.40)
1.2
100

−FHG
I
KJV V/

= 991.7 MPa.
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Example 1.29. A liquid with a volume of 0.2 m3 at 300 kPa is subjected to a pressure of 3000
kPa and its volume is found to decrease by 0.2%. Calculate the bulk modulus of eleasticity of the
liquid.

Solution. Bulk modulus of elasticity of a fluid is defined by Eq. (1.16),

Ev = � 
dp

dV V/
Pressure increase,  dp = 3000 � 300 = 2700 kPa

Resulting dcrease in volume, dV/V = 0.2% = � 
0 2
100

2
1000

. (� )=

∴ Bulk modulus of the liquid

EV = � 2700
2 1000(� / )

 = 13.5 × 105 kPa.

Example 1.30. A cylinder contains 0.75 m3 of gas at 20°C and 2.5 bar pressure. After
compression, the volume gets reduced to 0.15 m3. Determine final pressure and bulk modulus of
compressed gas if compression takes place under :

(i) Isothermal conditions
(ii) Adiabatic conditions (n = 1.4) (RGPV, June 2013)
Solution. (i) Isothermal conditions :
Equation of state, for a perfect gas Eq. (1.12) gives
pv = RT, which for isothermal conditions, T is constunt, hence = constant
or p1v1 = p2v2, where v1 and v2 are volumes per unit weight pressure after compression, i.e.,

p2 = p1
v
v

1

2
 = 2.5 × 

0 75
0 15
.
.

 = 12.5 bar

∴ Final pressure is 12.5 bar.
Bulk modulus of compressed gas, Ev is given by Eq. (1.16) :

Ev = � 
dp

dv v/
 = � 

p p
v v v

2 1

2 1 1

−
−( )/

 = � 
12 5 0 75

0 15 0 75 0 75
. .

( . . )/ .
−

−
 = 12.5 bar

1 bar = 105 N/m2 = 105 Pascal
Ev = 12.5 × 105 N/m2

(ii) Adiabatic compression :
For a perfect gas, Eq. (1.14) gives another relationship

pvn = constant

or p1v1
n = p2v2

n, ∴ p2 = p1
v
v

n
1

2

F
HG
I
KJ

= 2.5 
0 75
0 15

1.
.

.4F
HG
I
KJ  = 23.79 bar

∴ Final pressure after compression = 23.79 bar
Bulk modulus of compressed gas

Ev = � dp
dv v/

 = � 23 79 2 5
0 15 0 75 0 75

. .
( . . )/ .

−
−

 = 26.6125 bar

= 26.61 × 105 N/m2

Example 1.31. Determine the velocity of sound at 20°C and 101.2 kN/m2 in (i) air, (ii) water,
and (iii) mercury. Use table 1.5 for ρ and Ev.
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Solution. The velocity of sound in a fluid medium is given by

 C = Ev/ρ .

(i) The thermodynamic process involving air may be considered as adiabatic and frictionless
(isentropic) for which, Ev = kp. The velocity of sound then becomes

C = kp/ρ

Using the equation of state p = ρRT, the above equation may be written

C = kRT
in which R has the dimensions (L2/T2θ).

For air, k = 1.4, R = 287 J/kg °K.

Making substitutions, C = 1.4 287 (273 20)× × +  = 343.0 m/s.

(ii) From table 1.5, for water,
ρ = 998.0 kg/m3

Ev = 2.11 × 109 N/m2

 C = Ev/ρ  = 1470 m/s.

(iii) From table 1.5, for, mercury,
 ρ = 13530 kg/m3

 Ev = 2.62 × 1010 N/m2

C = Ev/ρ  = 1392 m/s.

Example 1.32. For determining the depth of sea at a place, a charge was exploded at 100 m
below the sea water surface. The first reflected wave was recorded after 2.5 seconds at the surface.
Calculate the depth assuming the sea has a flat bottom. Average value of bulk modulus of elasticity
of sea water is 1.96 × 109 N/m2 and its specific weight is 10 × 103 N/m3.

Solution. Ev = 1.96 × 109 N/m2, ρ = 104/9.81 = 1020 kg/m3.

Velocity of sound in sea water = Ev/ρ  = 1385 m/s

Let the depth of sea below the sea water surface be d m. The distance travelled by the
reflected sound wave

 = (d � 100) + d = 2d � 100
Time taken by the first reflected wave to reach the surface is

2.5 = 
2 100

1385
d �

from which d = 1781.25 m.
Example 1.33. At standard atmospheric conditions, determine the increase in pressure

necessary to cause :
(i) 1% reduction in the volume of water,

(ii) 1% reduction in the volume of air subjected to isentropic compression,
(iii) 1% reduction in the volume of air when subjected to isothermal compression.
Take the volume of the bulk modulus of elasticity the same as given in Ex. 1.22.
Solution. From Eq. (1.16), Ev = � dp/dV/V

Reduction of volume by 1% results in, � dV/V = 1
100

 = 0.01
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(i) Increase in pressure of water to produce 1% reduction in its volume
dp = 1.96 × 109 × 0.01 = 1.96 × 107 N/m2

= 19.6 MN/m2 = 19.6 MPa.
(ii) For air subjected to isentropic process, the bulk modulus is given by Eq. (1.20) :

 Ev = kp = 1.4 × 101.3 × 103 = 1.42 × 105 N/m2 = 142 kPa.
∴ Increase in pressure, dp = 142 × 103 × 0.01 = 1.42 × 103 N/m2 = 1.42 kPa.

(iii) For air under isothermal process, Eq. (1.19) gives the bulk modulus,
 Ev = p = 101.3 kN/m2

∴ Increase in pressure, dp = 101.3 × 103 × 0.01 = 1.01 × 103 N/m2 = 1.01 kPa.
From the values, it is evident that the increase in pressure of water to cause 1% reduction in

its volume is extremely large, being about 15,000 times greater, as compared to that required for
air for similar reduction in volume. Liquids are, therefore, considered incompressible, unless sub-
jected to sudden and large pressure changes.

Example 1.34. To measure the depth of sea, a device employed takes the form of a solid steel
vessel with a partition having a recess and a valve. The upper portion of the vessel is filled with
water and the lower one with mercury. When the vessel is lowered, the seawater penetrates into the
lower part of the vessel through a small orifice and forces the mercury up through the valve. The
compressibility of water reduces its volume. Determine the depth of the sea if the upper part of the
vessel contains 600 g of mercury when the device reaches the bottom. The volume of water in the
upper part of the vessel is 1000 cm3. Assume the specific weight of water constant and equal to 1050
kg/m3. Take Bulk modules of elasticity of water Ev = 2.13 × 104 kg/cm2. Neglect the compressibility
of mercury.

Solution. Ev = � 
∆

∆
∆
∆

p
V V

p
V V/ (� / )

=

  V = 1000 cm3 ; weight = volume × density
600 g = ∆V × (13.6 × 1 gm/cm3)

where  ∆V = change in volume of water

or ∆V = 600
13 6.

 = 44.12 cm3

�
∆V
V

F
HG
I
KJ  = 44 12

1000
.  = 0.04412

Making substitutions,

2.13 × 104 = ∆p
0 04412.

or  ∆p = 938.67 kg/cm2

From the pressure-depth relationship,

h = 
∆p

seaγ
=

×
938.67

(1/100) 10502  = 8939.74 m

∴ Depth of the sea = 8939.74 m

OBJECTIVE TYPE QUESTIONS

Select the correct answer(s)
1. A fluid is defined as a substance which�

(a) takes the shape and volume of the container into which it is poured
(b) is highly compressible
(c) has a constant shear stress throughout
(d) deforms continuously under the action of a shear stress.

Water

Mercury

Valve
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2. An ideal fluid is one which�
(i) is compressible (ii) is non-viscous and incompressible

(iii) has low density (iv) is elastic and viscous.
3. Fluid continuum is a concept in which�

(a) fluid is non-homogeneous (b) fluid density is very low
(c) fluid particles are very closely spaced
(d) fluid particles are widely scattered in space.

4. Viscous deformations in fluid flow are�
(i) inversely proportional to the dynamic viscosity

(ii) directly proportional to the dynamic viscosity
(iii) independent of shear stress and kinematic viscosity
(iv) dependent on the pressure.

5. The Newton�s law of viscosity is a relationship between�
(a) shear stress and pressure (b) viscosity and temperature of fluid
(c) shear stress and velocity gradient (d) pressure and viscosity

6. A Newtonian fluid is one which�
 (i) has a specific weight of 1 newton/m3

(ii) has a linear relationship between the shear stress and the resulting rate of deformation
(i.e. velocity gradient)

(iii) is non-viscous and incompressible
 (iv) has a high viscosity.

7. Viscosity of liquids�
(a) decreases with decrease in fluid temperature
(b) increases with decrease in fluid temperature
(c) does not change with fluid temperature
(d) is dependent of pressure.

8. Viscosity of gases�
(i) decreases with decrease in fluid temperature

(ii) increases with decrease in fluid temperature
(iii) does not change with fluid temperature
(iv) is dependent on pressure.

9. The dimensions of dynamic viscosity µ are�
(a) ML�1T�2 (b) ML�1T�1

(c) MLT�2 (d) ML2T�1

10. In case of solid mechanics, the law similar to Newton�s law of viscosity is�
(i) Hooke�s law (ii) Newton�s second law of motion

(iii) Archemede�s principle (iv)  Newton�s first law
11. The following numerical values represent the magnitude of kinematic viscosity (in m2/s) of

water at different temperatures�
(a) 6.62 × 10�7 (b) 10.0 × 10�7 (c) 17.93 × 10�7.
If the temperatures involved are 0, 20 and 40 degree C, identify the above values with the
corresponding temperature.
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12. Match the kinematic viscosity of each liquid choosing the correct value from column B�
Col. (A) Col. (B)

Name of liquid Kinematic viscosity in m2/s
(i) Water (a) 150 × 10�7

(ii) Glycerine (b) 10 × 10�7

(iii) Air (c) 6.3 × 10�4.
13. The following table shows the dynamic viscosity of air in N s/m2 at atmospheric pressure at

different temperatures�
(i) 2 × 10�5  (ii) 1.90 × 10�5

(iii) 1.81 × 10�5  (iv) 1.715 × 10�5

If the temperatures involved are 0, 20, 40 and 60 degree C, identify each viscosity value
with its temperature.

14. MKS unit of 1 kg force is equal to how many newtons�
(a) 0.981 (b) 98.1 (c) 9.81 (d) 981.

15. To convert the MKS unit of dynamic viscosity (kg s/m2) into poise, the multiplying factor
is�
(i) 89.1 (ii) 981

(iii) 98.1 (iv) 9.81.
16. 1 poise is equal to

(a) 1 dyne s/cm2 (b) 98.1 dyne s/cm2

(c) 1 dyne s/m2 (d) 1 kg s/m2

(e) 1 kg s/cm2.
17. To convert the MKS unit of viscosity (kg s/m2) into its SI equivalent (N s/m2) multiply by�

(i) 98.1 (ii) 981
(iii) 9.81 (iv) 0.981.

18. One stoke is equal to�
(a) 1 cm2/s (b) 1 m2/s
(c) 1 ft2/s (d) 1 mm2/s.

19. The FPS unit of kinematic viscosity, ft2/s, is equal to how many stokes�
(i) 93 (ii) 930

(iii) 9.30 (iv) 9300.
20. Surface tension is a phenomenon due to�

(a) cohesion only (b) viscous force
(c) adhesion between liquid and solid molecules
(d) difference in magnitude between the forces due to adhesion and cohesion.

21. Weight of liquid that rises in a capillary tube is supported by�
(i) the friction between the tube wall and the liquid

(ii) the atmospheric pressure
(iii) the vertical component of force due to surface tension
(iv) the curvature of the miniscus.

22. The capillary depression in mercury is on account of�
(a) adhesion being greater than cohesion
(b) surface tension being larger than the viscosity
(c) cohesion being greater than the adhesion
(d) vapour pressure being small.
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23. The capillary rise or depression in a small diameter tube is�
(i) directly proportional to the diameter

(ii) inversely proportional to the surface tension
(iii) directly proportional to the surface tension
(iv) inversely proportional to the diameter.

24. The following are the values of surface tension in N/m for certain liquids :
(a) 0.5100 (b) 0.0735 (c) 0.0235
If the liquids involved are water, kerosene and mercury, identify the above values with the
corresponding liquid.

25. The pressure within a soap bubble is�
(i) the same as that of the surrounding atmosphere

(ii) greater than the external pressure
 (iii) less than the external pressure
(iv) equal to the vapour pressure.

26. The following expressions give the pressure difference between inside and outside of a bubble,
a liquid drop and a liquid jet (not in that order, necessarily) :

(a)
2σ
d

(b)
8σ
d

(c)
4σ
d

.

Identify each of thee above values with the corresponding item.
27. An incompressible flow is one in which�

(a) the temperature of fluid remains constant
(b) the density does not change with pressure
(c) the fluid is non-viscous
(d) the fluid compressibility is non-zero.

28. A measure of the effect of compressibility in fluid flow is the magnitude of a dimensionless
parameter known as�
(i) Reynolds number (ii) Mach number

(iii) Weber number (iv) Froude number
(v) Strouhl number.

29. Gas-flows can be treated as incompressible when the Mach number is less than�
(a) 0.5 (b) 1.0
(c) 0.2 (d) 0.1
(e) 0.05.

30. For air flow at room temperature to be incompressible, the fluid velocity must not exceed�
(i) 100 m/s (ii) 70 m/s

(iii) 50 m/s (iv) 25 m/s.
31. Density, pressure and temperature in a gas flow are related by the�

(i) First law of thermodynamics  (ii) Newton�s law of viscosity
(iii) Equation of state (iv) Equation of motion.

32. A perfect gas is the one�
(a) which is incompressible and viscous
(b) which obeys the equations of state
(c) which follows the Newton�s law of gravity
(d) which exists in isothermal flows only.
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33. A fluid-flow process is isothermal only when�
(i) the fluid pressure does not change

 (ii) the density change is small
(iii) the fluid temperature remains constant
(iv) there is no heat transfer.

34. An adiabatic fluid-flow is one in which�
(a) the fluid temperature does not vary
(b) the heat is neither added to nor withdrawn from the gas (the case of zero heat transfer)
(c) the pressure remains constant
(d) the heat transfer has a non-zero value.

35. An isentropic adiabatic process of fluid-flow is one in which�
(i) the heat-transfer is non-zero

(ii) there is no friction and the process is reversible
(iii) there is no change in the temperature
(iv) the process is irreversible.

36. The following table shows the vapour pressure of certain liquids at 20 degree C�
(a) 3100 (b) 0.0163
(c) 239 (d) 337.
If the liquids happen to be water, kerosene, mercury and petrol, identify these with their
respective values.

37. Mercury is used in barometers on account of�
(i) its high density (ii) negligible capillarity effect

(iii) very low vapour pressure (iv) its low compressibility.
38. Spherical shape of droplets of mercury is due to�

(a) high density (b) high surface tension
(c) high adhesion (d) low vapour pressure.

39. Arrange the �evaporability� of the following liquids in the decreasing order of magnitude�
(a) Kerosene (b) Petrol
(c) Mercury (d) Water.
(Note. Evaporability is directly proportional to the vapour pressure).

40. Arrange the following fluids in the decreasing order of their compressibility�
(a) water (b) air at 1 atm. pressure
(c) a gas at 5 atm. pressure (d) air at 0.5 atm. pressure.
(Note. Compressibility is the reciprocal of the bulk modulus of elasticity).

41. Capillary rise of water in a glass tube depends primarily on its diameter and the angle of
contact. Arrange the following sizes of glass tube in increasing order of capillary rise of
water.
(a) 5 mm (b) 2 mm
(c) 10 mm (d) 1 mm

42. Glass tubes of the same diameter are dipped vertically in vessels containing different liquids.
Arrange the following liquids such that the capillary effect in the respective tubes is in the
decreasing order of magnitude�
(a) kerosene (b) water (c) mercury.
(Note. The capillary effect for the same tube but different liquids is proportional to σ/γ.)
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43. Vapour pressure of a liquid is due do�
(i) the pressure of flow

(ii) the molecules of liquid which hang over the free-surface
(iii) the pressure of air above the free surface
(iv) the existence of free-surface.

44. The unit of dynamic viscosity of a fluid is
(a) m2/s (b) N.s/m2

(c) Pa.s/m2  (d) kg.s2/m2.

ANSWERS TO OBJECTIVE TYPE QUESTIONS

1. (e) 2. (ii) 3. (c) 4. (i) 5. (c)
6. (ii) 7. (b) 8. (i) 9. (b) 10. (a)

11. (a) : 0°C, (b) : 20°C, (c) : 40°C 12. (i) (b), (ii) (c), (iii) (a),
13. (i) 60°C, (ii) 40°C, (iii) 20°, (iv) 0°C 14. (c) 15. (iii)
16. (i) 17. (iii) 18. (a) 19. (ii) 20. (d)
21. (iii) 22. (c) 23. (iii), (iv)
24. (a) mercury, (b) water, (c) kerosene 25. (ii)
26. (a) jet, (b) bubble, (c) drop 27. (b) 28. (ii) 29. (c)
30. (ii) 31. (iii) 32. (b) 33. (iii) 34. (b)
35. (ii) 36. (a) petrol, (b) mercury, (c) water, (d) kerosene
37. (iii), (i) 38. (b) 39. (b), (a), (d), (c), 40.  (d), (b), (c), (a)
41. (c), (a), (b), (d) 42. (b), (c), (a) 43. (ii) 44. (b).

REVIEW QUESTIONS

1. Distinguish between solids, liquids and gases.
2. Is there any analogy of Hooke�s law in fluids ? If so, state the parallel law in fluids.
3. Explain why the following statements are right or wrong :

(i) Ideal fluid can sustain a shearing stress when in motion.
(ii) Fluids cannot sustain shearing stress when at rest.

(iii) Molecular viscosity may be expressed in gm sec�1 cm�1 or dyne sec�2.
4. Enunciate Newton�s law of viscosity and distinguish between Newtonian and non-Newtonian

fluids.
5. Explain why petrol evaporates more readily than water at ordinary temperature ?
6. Explain how certain insects are able to walk on the surface of water ?
7. Under what conditions is the miniscus between two liquids in a class tube : (i) concave

upwards and (ii) concave downwards ?
8. Comment on the role of capillary action in (i) an oil lamp and (ii) a fountain pen.
9. Why is it necessary in winter to use a lighter oil for automobiles than in summer ? To what

property does the term light  refer ?
10. Will the viscous resistance to the flow of honey be greater or lesser than the viscous resistance

to the flow of water ?
11. Is the pressure intensity, (a) within a soap bubble (b) within a drop of liquid, probably

greater than, equal to or less than that of the surrounding medium ?
12. Explain what do you mean by capillarity ?
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13. Cite examples where surface tension effects play a prominent role.
14. Answer briefly the following questions : (i) define a fluid from mechanics point of view, (ii)

can a fluid sustain (a) tension (b) volumetric compression (c) shear ? In each case state the
relationship between the applied stress and the corresponding shear developed.

15. To what type of flow is the Newton�s law of viscosity applicable ? Can it be used to determine
shear stress in turbulent flow ?

16. Classify the fluids on the basis of existence of interface (Free-surface).
17. What are the characteristic fluid properties to which the following phenomena are

attributable, viz :
(i) rise of sap in a trees, (ii)  spherical shape of a drop of liquid,

(iii) cavitation, (iv) flow of a jet of oil in an unbroken stream,
(v) water hammer ?
Express the quantities involved in the metric system and also in terms of fundamental
units.

18. Explain the property of fluids on the basis of molecular motion.
19. Define Newtonians fluids.

PROBLEMS

1.1. If the equation of velocity profile is u = 3y2/3 (u in cm/s, y in cm), what is the velocity gradient
at the boundary and at 10 cm from it ?

1.2. A plate 2.5 × 10�5 m distant from a fixed plate moves at 0.60 m/s and requires a force of 1.96
N/m2 to maintain this speed. Determine the fluid viscosity of the substance that fills the
space between the plates.

1.3. A piston 12 cm dia and 15 cm long moves down in a 12.04 cm dia cylinder. The oil filling the
annular space has a viscosity of 8.0 × 10�2 Ns/m2 and the weight of the piston is 9.81 N. Find
the speed with which the piston slides down.

1.4. If two coaxial cylinders 10 cm and 9.75 cm in dia and 25 cm high have a certain liquid filled
in between, find the viscosity of the liquid which produces a torque of 0.98 Nm upon the
inner cylinder when the outer one rotates at the rate of 90 rpm.

1.5. If the velocity distribution over a plate is given by u = 2
3

y � y2

in which u is the velocity in m/s at a distance y metres above the plate, determine the shear
stress at y = 0 and y = 0.15 m. Take µ = 0.863 Ns/m2.

1.6. Derive the dimensions of :
(i) dynamic viscosity, and (ii) kinematic viscosity
and hence obtain their units in (i) MKS, (iii) FPS and (iii) SI systems.

1.7. A piece of pipe 0.5 m long weighing 9.81 N and having internal diameter of 5.25 cm is
slipped over a vertical shaft 5.0 cm in diameter and allowed to fall. Calculate the approximate
velocity attained by the pipe if a film of oil of viscosity 0.196 Ns/m2 is maintained between
pipe and shaft.

1.8. A piece of pipe of 5.25 cm internal diameter and 15 cm long slides down a vertical shaft of
5.0 cm diameter at a constant speed of 0.1 m/s. A vertical force 14.7 N is required to pull the
pipe back up the shaft at the same constant speed. Calculate the approximate viscosity of oil
which fills the small gap between the pipe and shaft.

1.9. A Newtonian fluid is filled in the clearance between a shaft and concentric sleeve. When a
force of 490 N is applied to the sleeve parallel to the shaft the sleeve attains a speed of 70



50 FLUID MECHANICS

cm/sec. If 2450 N force is applied, what speed will the sleeve attain ? The temperature of the
sleeve remains constant.

1.10. A very large thin plate is centred in a gap of width 6 cm with different oils of unknown
viscosities above and below, the viscosity of one being twice that of the other. When the
plate is pulled at a velocity of 30 cm/sec, the resulting force on one square metre of plate due
to viscous shear on both sides is 29.4 N. Assuming viscous flow and neglecting all end effects,
calculate viscosities of the oils.

1.11. Two coaxial cylinders with the gap in between completely filled with a viscous fluid, one
cylinder rotating while the other one remains stationary, show that the shear stress on the
inner cylinder is always greater than that on the outer one. Indicate the velocity profiles for
(a) inner cylinder rotating while outer one is stationary, and (b) outer cylinder rotating
while the inner one is kept stationary.

1.12. A rotating viscometer consists of a disc pivoted above a stationary boundary, the fluid to be
tested filling the very small space between the parallel surfaces. Means are available to
measure the driving torque and the rotational speed of the disc. Determine by integration of
the expression for shear stress over the lower surface of the disc., the torque-speed ratio
which would be obtained for a liquid having a viscosity of 0.15 Ns/m2 with a disc having 20
cm diameter and a boundary spacing of 0.19 cm.

1.13. (a) On a plot of shear stress versus velocity gradient represent a Newtonian and non-
Newtonian fluid.
(b) Two large parallel flat plates are placed 1.25 cm apart. A 0.25 cm thick plate of 0.2 m2

area is being towed in glycerine filled between the above plates with a constant force of 9.81
N. Calculate the towing speed of the plate when it is held equidistant from the two parallel
plates. Take µ = 0.01 cm (mass) per cm sec.

1.14. A shaft of diameter 74.9 mm rotates in a bearing of diameter 75 mm and of length 75 mm.
The annular space between the shaft and the bearing is filled with oil having a coefficient of
viscosity of 0.2 stokes and the specific gravity 0.94. Determine the power in overcoming
viscous resistance in this bearing at 1400 rpm.

1.15. Calculate the maximum capillary rise of water (20°C) to be expected in a vertical glass tube
1 mm in diameter. The surface tension at 20°C is 0.0718 N/m.

1.16. Derive an equation for theoretical capillary rise between vertical parallel plates.
1.17. Calculate the maximum rise of water (20°C) to be expected between two vertical, clean glass

plates spaced 1 mm apart.
1.18. What force is necessary to lift a thin wire ring 2.5 cm in diameter from a water surface at

20°C ? Neglect the weight of ring.
1.19. A soap bubble 5 cm in diameter contains a pressure (in excess of atmosphere) of 20.07 N/m2.

Calculate the tension in the soap film.
1.20. Determine the velocity of sound in air at (i) 20°C and 101.2 kN/m2, and (ii) 267°C and 706.0

kN/m2 and find out the ratio of the two velocities.
1.21. Calculate the dynamic viscosity of standard air using table 1.7. Comment upon the effect of

pressure on the dynamic viscosity.
1.22. Compute kinematic viscosity of air at atmospheric pressure using table 1.1. What conclusions

can be drawn regarding the effect of temperature on the viscosity (both dynamic and
kinematic) ?

1.23. A cubical block weighing 196.2 N and having a 20 cm edge is allowed to slide down on an
inclined plane surface making an angle of 20° with the horizontal on which there is a thin
film of oil having a viscosity of 2.16 × 10�3 Ns/m2. What terminal velocity will be attained by
the block, if the film thickness is estimated to be 0.025 mm ?
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1.24. In a stream of glycerine in motion at a certain point the velocity gradient is 0.25 per second.
The mass density of fluid is 1268 kg per cubic metre and the kinematic viscosity is 6.30 ×
10�4 m2/s. Calculate the shear stress at the point.

1.25. Calculate the capillary effect in millimeter in a glass tube of 4 mm diameter when immersed
in (i) water and (ii) in mercury. The temperature of the liquids is 20°C, and the value of
surface tension of water and mercury at 20°C in contact with air respectively 0.07357 N/m
and 0.490 N/m. The contact angle for θ = 0°, and for mercury θ = 130° 24′.

ANSWERS

1.1. ∞, 0.9275 s�1. 1.2. 81.8 × 10�6 Ns/m2.
1.3. 0.434 m/s. 1.4. 0.7. Ns/m2.
1.5. 0.574 N/m2, 0.316 N/m2.
1.6. (i) FTL�2, kgs/m2, lbs/ft2, Ns/m2. (ii) L2T�1, m2/s, ft2/s, m2/s,
1.7. 1.515 m/s. 1.8. 3.72 Ns/m2

1.9. 3.5 m/s. 1.10. 0.98 and 1.96 Ns/m2

1.12. 2/3978. 1.13. 1.275 m/s.
1.14. 199.75 kW 1.15. 2.932 cm.

1.16. h = 
2σ θcos

r dw
1.17. 1.466 cm.

1.18. 11.28 × 10�2 N. 1.19. 0.1293 N/m.
1.20. 343 m/s, 465.5 m/s, 1.354.
1.21. 1.18 × 10�6 msl/m-s (1.775 × 10�5 kg/n-s), 1.50 × 10�6 msl/ms (1.50 × 10�6 kg/m-s).
1.22. 13.3 × 10�6 m2/s, 7.85 × 10�6 m2/s. 1.23. 19.4 m/s.
1.24. 19.94 × 10�2 N/m2. 1.25. 7.5 mm in water, and 2.47 mm in mercury.
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