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Introduction

is chapter deals with basic ideas about the open-loop and closed-loop control systems. The

differential equations describe the dynamic operation of control systems. The Laplace transform

transforms the differential equation into an algebraic equation, the solution is obtained in the transform
domain. The time domain solution is determined by taking the inverse Laplace transform.
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CONTROL SYSTEM

A control system is a combination of elements arranged in a planned manner wherein each
element causes an effect to produce a desired output. This cause and effect relationship is
governed by a mathematical relation.

If the aforesaid mathematical relation is linear the control system is termed as linear
control system. For a linear system the cause (independent variable or input) and the effect
(dependent variable or output) are proportionally related and principle of superposition is
applicable throughout the operating range of a system.

In a control system the cause acts through a control process which in turn results into
an effect.

There may be variety of systems based on the principle mentioned above but all the
systems have many features in common and as such common approach for the study and
analysis of control systems is possible.

Control systems are used in many applications for example, systems for the control of
position, velocity, acceleration, temperature, pressure, voltage and current etc.




n LiINEAR CONTROL SYSTEMS

AN EXAMPLE OF CONTROL ACTION

Control of a room temperature is achieved by switching ON and switching OFF of a power
supply to a heating appliance. Thus power supply to an appliance is switched ON, when the
room temperature is felt low and switched OFF, when the desired temperature is reached.

The above system can be modified, if the duration of application of power is
predetermined to achieve the room temperature within desired limits.

However, a further refinement can be made by measuring the difference between the
actual room temperature and the desired room temperature and this difference being the
error is used to control the element which in turn controls the output, i.e. room temperature.

The above description indicates that in the former case the output (room temperature)
has no control on the input and the control action is purely based on a sort of predetermined
calibration only, where as in the latter case the control action is affected by a feedback
received from the output to the input.

OPEN-LOOP CONTROL SYSTEM

Having explained the concept of control action, a control '”F;“t v Outcput
;‘ystelrnZ clan be described by a block diagram as shown in A%Eég
ig. 1.2.1.

The input 7 controls the output ¢ through a control Fig: 1.2.1. Open-loop control system.
action process. In the block diagram shown in Fig. 1.2.1, it is observed that the output has no
effect on the control action. Such a system is termed as open-loop control system.

In an open-loop control system the output is neither measured nor fedback for
comparison with the input. Faithfulness of an open-loop control system depends on the
accuracy of input calibration.

CLOSED-LOOP CONTROL SYSTEM

In a closed-loop control system the output
has an effect on control action through a
feedback as shown in Fig. 1.3.1 and hence
closed-loop control systems are also termed
as feedback control systems. The control
action is actuated by an error signal e which Measuring
is the difference between the input signal r element
and the output signal c. This process of
comparison between the output and input
maintains the output at a desired level through control action process.

Input Error Output
c

] Comparator e Control

Action

Fig. 1.3.1. Closed-loop control system.

The control systems without involving human intervention for normal operation are
called automatic control systems.
A closed-loop (feedback) control system using a power amplifying device prior to

controller and the output of such a system being mechanical i.e. position, velocity,
acceleration is called servomechanism.
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Comparison of Open-Loop and Closed-Loop Control System

depends on the calibration of the input. Any
departure from pre-determined calibration
affects the output.

. The open-loop system is simple to construct
and cheap.

. The open-loop systems are generally stable.

. The operation of open-loop system is affected
due to the presence of non-linearities in its

Open-Loop Closed-Loop

1. The accuracy of an open-loop system 1. As the error between the reference input

and the output is continuously measured
through feedback, the closed-loop system
works more accurately.

. The closed-loop system is complicated to

construct and costly.

. The closed-loop systems can become

unstable under certain conditions.

. In terms of the performance the closed-loop

system adjusts to the effects of non-

elements. linearities present in its elements.

USE OF LAPLACE TRANSFORMATION IN CONTROL SYSTEMS

The control action for a dynamic control system whether electrical, mechanical, thermal,
hydraulic etc. can be represented by a differential equation and the output response of such
a dynamic system to a specified input can be obtained by solving the said differential
equation. The system differential equation is derived according to physical laws governing a
system in question.

In order to facilitate the solution of a differential equation describing a control system,
the equation is transformed into an algebraic form. The differential equation wherein time
being the independent variable is transformed into a corresponding algebraic equation by
using Laplace transformation technique and the differential equation thus transformed is
known as the equation in frequency domain. Hence, Laplace transform technique
transforms a time domain differential equation into a frequency domain algebraic equation.

LAPLACE TRANSFORM

In order to transform a given function of time f (¢) into its corresponding Laplace transform
first multiply f (¢) by e, s being a complex number (s = ¢ + jo). Integrate this product w.r.t.
time with limits as zero and infinity. This integration results in Laplace transform of f (¢),
which is denoted by F' (s) or Lf (¢).
The mathematical expression for Laplace transform is,
Lf(#)=F (s) t=0

or F(s) = J:f(t) e St dt ..(1.1)

The term “Laplace transform of f(¢)” is used for the letter f (¢).
The time function f (¢) is obtained back from the Laplace transform by a process called
inverse Laplace transformation and denoted as £! thus
LYLf®l =t [F )] =f@)
The time function f (¢) and its Laplace transform F (s) are a transform pair.
Table 1.5 gives transform pairs of some commonly used functions and Laplace
transform pairs for some functions are derived here under.
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1.5.1 Derivation of Laplace transform

1. Laplace transform of e%

Le® = Jme“t et dt = Jme(“’s)t dt = _ L
0 0 (s—a)
1
(s—a)
As the inverse Laplace transform is denoted by the letter £1 and, therefore, the

Le¥ = ...(1.2)

inverse Laplace transform of is e and expressed as below,

(s—a)

L‘l{ ! }=e‘” ...(1.3)

(s—a)
2. In the function f (t) =eputa=0
e =e% =1 Hence,f(t)=1

Therefore, using Eq. (1.2) £[1] = (s=0)

1
or L[1] = ; ...(1.4)

and o [ﬂ =1 ...(1.5)

3. In the function f(¢) = e put a =jo
e = ¢/ Hence, f (¢) = e/

. 1
Therefore, using Eq. (1.2) Le/® = 5o
e/® = (cos wt + j sin wt)
1 s+ jo

L(cos ot +j sin wt) = — =
J (s—jo) (s2+0?)
Separating into real and imaginary parts,
s

L cos 0t = m ...(1.6)
. ()
Lsin ot = m .17
and 1 {ﬁ} = cos ot ...(1.8)
S“+Wm®
L_l |:(20)2):| = Sin wt ...(1.9)
ST+ M

4. In the function f(#) = e“ put a = (- o0 + jo)
. et = o0+ jo) ¢

Hence, f(t) =e-o+jot
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Therefore, using Eq. (1.2)
1 1

—o+jo)t — =
e = ) Gro— e
e+t — o0t (cos it + j sin ot)

1 _ (s+o)+ jo
(s+0)—jo (s+0)?+n
Separating into real and imaginary parts,

(s+a)

(s+a)? +w?

)

Le~* (cos t +j sin ot) =

Le=% - cos ot =

Le_o‘t . Sin ot="95 o
(s+0)? + o

and

L_l{ (s+0)

ﬁ =e_°¢'COS(Dt
s+a)+w

© .
1 |:(+)2+2:| =e - gin ot
S+ O ()

5. In the function f () = e puta = 1
: et = el t = ¢! Hence, f(t) = e

1
Therefore, using Eq. (1.2) Lol = ;¢

(s-1
2 3
el=1+t+—+—+
£2 /3
1 1 1 1 1

+—=+

=+ — ...
(s—1 s 2 % st

and

Table 1.5. Table of Laplace transform pairs

...(1.10)

.(1.11)

..(1.12)

...(1.13)

1 4 (¢) unit impulse at ¢t = 0
2 u (t) unit step at t = 0
3 u({t—T) unit stepatet=T
4 t
. e
%
6 "
7 e
8 edt

1
1
s

1 _
_esT
S

|F—‘ mmll—*

S %

S
4
—-

=

s+ta

s—a
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9 te=

10 te®

11 7 G

12 sin ot

13 cos ot

14 e~ sin ot
15 e~ cos wt
16 sinh oz

17 cosh ot

Comparing the terms

1
=2, o=
S S

L tz_—i
42__32
t" ] 1
L|:7n :sn+1 or [’[tn]:sn+1
zZn
and 1 JCESY ="

1.5.2 Basic Laplace Transform Theorems
Basic theorems of Laplace transform are given below :
1. Laplace transform of linear combination
Lla fi(t) + bfy(D)] = aF(s) + bFy(s)
where f,(#), f,(¢) are functions of time and a, b are constants.
2. If the Laplace transform of f (¢) is F' (s), then
df ()

@) L7 = [SF(S)—f(O +)]

2
(i) L ddfz(t) = [s2F(s) —s (0 +) - f(0 +)]

3
(i11) L d dfs(t) =[s3 F(s) —s2f(0 +) —sf"(0 +) — f” (0 +)]

1
(s +a)?
1
(s —a)®
Zn
(S + a)n +1

..(1.14)

...(1.15)

...(1.16)

.(1.17)
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df ) d* £ ()
dt  d2

att=(0+)

where £ (0 +), f/(0 +), f”(0 +) ... are the values of f(¢),
3. If the Laplace transform of f (¢) is F (s), then

-1
(i)L_[f(t) =[Fs(s)+f (0+)}

S
-1 )
@) L H f@ = {Fs(s) ! ;3 +) + ! io +)}

.(1.18)

83 82 S

(tit) L J” f@ =

where £-1 (0 +), f~2 (0 +), f-3 (0 +)... are the values ofj f(t),” f(t),m £() att=(0+),

4. If the Laplace transform of f (¢) is F{(s), then
Lem® f(#) = F(s + a)
5. If the Laplace transform of f (¢) is F(s), then

-1 -2 -3
F(s) 04+ 204+ f <o+>}

2@ =--L Fes)

ds
6. Initial value theorem
lim f£(#) = lim s Lf () ...(1.19 a)
t—>0 §— oo
or lim f(#) = lim s F(s) ...(1.19)
t—0 §—> o
7. Final value theorem
lim f(¢) = lim s £f(¢) ...(1.20 a)
t— oo s—0
or lim f(#) = lim s F(s) ...(1.20)
t— o s—0

The final value theorem gives the final value (¢ — o) of a time function using its
Laplace transform and as such very useful in the analysis of control systems. However, if the
denominator of s F(s) has any root having real part as zero or positive, then the final value
theorem is not valid.

SOLVED EXAMPLES

Example 1.6.1. Find the inverse Laplace transform of the following functions :

1 s+6
g F fa s F g WIS MAD P 4
(@) F(s) Leil) @) F(s) WAL
(iii) F(s) = 2; (iv) F(s) = 23;2
s +4s+8 s“+4s+6
5 ) s2+2s+3
MY IR = T 6 s
Solution. (i) F(s) = 1

s(s+1)
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Using partial fraction expansion

Fioy =4 T
s s+1
The coefficients can be determined as 2, = 1 and &, = -1
1 1
F(s)=————
s s+1

Taking inverse Laplace transform on both sides

1 F(s) =1 F _ 1 }

s s+1
or LYFis) =1 1—L_l 1
s s+1
f@)=(1-e?) Ans.
s+6

(i) B = i asv3)

The term (s2 + 4s + 3) can be factorised as (s + 1) (s + 3)
3 s+6

S s(s+D(s+3)

Using partial fraction expansion

by ke o ks

F(s)

F(s) =
s s s+1 s+3
The coefficients can be determined as &, = 2, k, = — 2.5 and &, = %
Fe=2.1 951 1.1
s s+1 2 s+3
Taking inverse Laplace transform on both sides
AFs) =)ot g5 L 11
s s+1 2 s+3
or FARs=ctetoptgs Lol
s s+1 2 s+3
f@)=2-25e"+ %e‘f‘”) Ans.
1
(tit) F(is)=—5——.
s2+4s+8
on completing the square, the term (s? + 4s + 8) can be expressed as [(s + 2)% + (2)%]
F(s) 1

T s+ 27 + 2]

Taking inverse Laplace transform on both sides
1

[(s +2)% + (2]

1 2

Afg)= oA
o LR =L S o o

L1FGs) =1
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F@) = %e_Zt sin (2¢) Ans.

s+2

@@v) F(s) = 214516

on completing the square the term (s% + 4s + 6) can be expressed as [(s + 2)2 + (V2)%]

s+2
F§)= ———F7—=3
YT 522+ (2
Taking inverse Laplace transform on both sides
+2
L_l F(S) = L_l 3—
(s +2)% +(/2)
f(t)=e2cos 2¢ Ans.
®) ) = —5—

s(s®> +4s+5)
Using partial fraction expansion

5 ki kys+ kg
S
s(s“+4s+5H) S s°+4s+5
The coefficients are determined as k, = 1, k, = — 1 and k; = — 4
F(s) = 1 s+ 4

s s?+4s+5
on completing the square, the term (s? + 4s + 5) can be expressed as [(s + 2)% + (1)%]

1 s+4
Fg)=~-—-—°> =
(8) = 2 [(s+2) + (2]

1 s+2 1

s [s+2%2+ M2 T (s +22 + (D]

Taking inverse Laplace transform on both sides

1 s+2 1
—lF — 1| = _ _
L= s (s+22+2  (s+2?%+ (1?2
or L1 F(s) = L_ll_[l%_ - %
S [(s+2)" +(D"] [(s+2)" +(D"]
f@)=(1—-e?cost—2e2sint) Ans.
2
(i) F(s) s“+2s+3

s +6s% +125+8
The denominator (s + 6s% + 12s + 8) can be expressed as (s + 2)3

s“+2s+3
F(s) = ————
: (s+2)3
Using partial fraction expansion
Fls) = 2 b 5

5+2) (5122 (5127
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The coefficients are determined as &, = 1, k, = — 2 and k5 = 3
1 2 3
- 2 T 3
s+2 (s+2) (s+2)
Taking inverse Laplace transform on both sides

F(s) =

R =2 S+ 3 -
s+2 (s+2)7° (s+2)
or L1F(s) = 1 o 2 5+ ct 3 5
s+2 (s+2) (s+2)
f@)=e? —2te? 4 3422
or f@)=e®[1-t2-3¢)] Ans.
Example 1.6.2. Obtain the solution of the differential equation given below
d
225 1 8x - 10; given x (0 +) = 2.

dt
Solution. Taking Laplace transform on both sides the following equation is obtained :

L[2%+8x} =210 or L[2dx}+ L[8x] = £10
dt dt

205 (X(s) — (0 +)] + 8[X(s)] = L0
s
Substituting x(0+)=2
10
2[s X(s) — 2] + 8[X(s)] = —
s
Simplifying, X(s) = 25+5
s(s+4)
Using partial fraction expansion
X(s) = LA + ks
s s+4
The coefficients can be determined as k2, = 1.25 and %, = 0.75
2 .
X(s) = 125 N 0.75
s s+4

Taking inverse Laplace transform on both sides
x(t) = (1.25 + 0.75 e*). Ans.

Example 1.6.3. Obtain the solution of the differential equation given below

dt d
#+2d_f+2x =0, given x(0 +) = 0 and x'(0 +) = 1.
Solution. Taking Laplace transform on both sides the following equation is obtained :
d’x dx
L|:?:| + L |:2E:| + L[2.’)C] =0
or [s2X(s) — sx(0 +) — (0 +)] + [25 X(s) —x(0 +)] + 2 [X(s)] = 0
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Substituting x(0 +) =0 and x°(0) =1

or [s2X(s) —s - 0 — 1] + 2[s X(s) — 0] + 2[X(s)] = 0
1
Simplifying, X)) = —5——
HPTYIRg ’ (s2+25+2)
On completing the square, the term (s2 + 2s + 2) can be expressed as [(s + 1)2 + (1)?]
X(s) = 1

[(s + D? +(D?]
Taking inverse Laplace transform on both sides
1
L_]-X = L71 DN R
(s) {(s 1+ (1)2}
x(t)=e’sint Ans.

Example 1.6.4. Find the Laplace transform of the differential equation given below
and hence evaluate the time solution of the same given that y(0 +) = 0 and y'(0 + ) = 6.

d’y . dy
—=+5="=+6y =12¢
di? P Y

Solution. Taking Laplace transform on both sides, the following equation is
obtained :

2
L {%} + L[ %} + L[6y] = £[12¢1]
[s2Y(s) — sy(0 +) —y’(0 +)] + 5[sY(s) — y(0 +)] + 6[y(s)]
12
S (s-1)
Substituting y(0 +) =0 and y'(0+)=6

[s2Y(s) —s - 0 — 6] + 5[sY(s) — 0] + 6[Y(s)] = i
(s-1
12

(s-1

or [s2Y(s) — 6] + 5[sY(s)] + 6[Y(s)] =

6s+6
(s — D(s® + 55 +6)
The term (s% + 5s + 6) can be expressed as (s + 2) . (s + 3)
Yis) = 6s+6
(s—1D(s+2)(s+3)
Using partial fraction expansion
Ry N ky, . kg
s—1 s+2 s+3
The coefficients can be determined as &, = 1, k, = 2 and k; = - 3
1 2 3
+ —
s—1 s+2 s+3
Taking inverse Laplace transform on both sides
1 2 3
+ p—
s—1 s+2 s+3

Simplifying, Y(s) =

Y(s) =

Y(s) =

£1Y(s) = L_l[
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1 a1 2 a1 3
+ L - L
s—1 s+2 s+3
y(@t) = (e + 2672 — 3e73") Ans.

Example 1.6.5. The Laplace transformed equation for the charging current of a
capacitor arranged in series with a resistance is given by,

Cs
RCs +1
The circuit is connected to a supply voltage of E. If E = 100 V, R = 2 MQ, C = 1 uF;
calculate the initial value of the charging current.

1
Solution. Since E =100 .. E(s)= ﬂ
s

Substituting the given values,

or £1Y(s) = £71

I(s) = - E(s)

1x10°°s 100
[(2x10°x1x107%s)+1] s
Applying the initial value theorem,

I(s) =

0 +) = th_r)r%) i) = lim sl(s)

S — oo
. 1x107%s 100
= llms. 6 76  —
s> [(2x10°x1x107°s)+1] s
= lim 1 .100:L06 =50 uA. Ans.
§ = o0 6 1 2x10
2x10° + ————
1x107°s

Example 1.6.6. A series circuit consisting of resistance R and an inductance of L is
connected to a d.c. supply voltage of E. Derive an expression for the steady state value of the
current flowing in the circuit.

Solution. The differential equation relating the current i(¢) flowing in the circuit and
the input voltage E is given by

di(t)

dt
Taking Laplace transform of this equation yields,

E(s) = RI(s) + L[sI(s) — i(0 +)]
because i(0+)=0
E(s) = RI(s) + Lsl(s)
E is constant (d.c. voltage)

E=Ri(t)+L

E(s) = % = RI(s) + Ls I(s)

__1 E
" R+Ls s
Applying the final value theorem,

E
S

or I(s)

i,=lim ()= lim sl(s)
t—> oo s—0
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. E . E E
= lim s- -—=lim ==
s50 R+Ls s s-0R+Ls R
i = E Ans.
Ss R
Example 1.6.7. A system is represented by a relation given below :
100
X(s) = R(s)5———
s° +2s+ 50
if r(t) = 1.0 unit, find the value of x(t) when t — oo.
Solution. Since ri¢)=1
1 1 100
R(s) = — Lo Xs)=—r————
=3 = ST 25450
According to the final value theorem,
x(t) = lim sX(s)
t— oo s—0
100 100

= 2.0 units. Ans.

lims1 3 =
s—0 s (s“+2s+50) 50

Example 1.6.8. The Laplace transform of the error signal in a control system is
expressed by a relation

E(s) = R(s)5————
s“ +6s+ 25

Calculate the steady state value of the error if r(t) = t.

Solution. Since r@t) =t

1 1 s
R(s) = — s B ——m
2 s2 . s2 (s> +6s+25)

According to final value theorem

. . 1
e, = lim s E(s) = lim s ——————
50 s=0 g“ (s“+6s+25)
= lim 2; = L = 0.4 unit. Ans.
505 +6s+25 25

Example 1.6.9. Find f (0 +), f’(0 +) and [”(0 +) for the function whose Laplace
transform is given below :

F(s)

4s+1
T s(s2+2)
Solution. (1) (0 +) is determined as follows :
f(O+)= }lir%) f@) = Sli_r)rl s F(s) (Initial value theorem)

4 1

. 4s+1 .. 4s+1 . T
= lims-—5——=lim ————=1 =0

sow  5(s°4+2) sow(s“+2) s o 4

s

f(O0+)=0. Ans.
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(2) (0 + ) is determined as follows :

4s+1 4s+1
/ = — O = : _0:
L@ =scf@®)—fO0+)=s 56?1 2) 2 +2)

f0+)= tll_I)I}) [/ @®) = lim scf'(¢)

4 1
. 4s+1 .. 4s+1 . i
=hms2 =1m—2= im 2=4
R Pt
s s
[ (0+)=4. Ans.
(8) f” (0 +) is determined as follows :
Lf” W =s2Lft)—sfO)—f (0+)
4s+1 -8
= 2.$_3.0—4:3. §+ —4 = 82
s(s* +2) (s +2) (s*+2)
f70+)=lm f”@#) = lim scf” ()
t—0 S —> oo
-3)
i (s—8) . (-8 . s
= lim 5. =5 = lim 5 =811_1>1L—2=1
o (s"+2) == (s+j (1+2j
s s

f”70+)=1. Ans.
Example 1.6.10. The Laplace transform of f (¢) is given by

F(s) =
(&) s(s+2)
Find the final value using the final value theorem and verify the result by
determining f (t) using inverse Laplace transform.

Solution. (1) The final value is the value of f(¢) as t — .
As per final value theorem,
f@) =lim s F(s)

t— oo s—0

ims—— = lim =
550 [s(s+2)] s-0(s+2)

f@#) =2. Ans.

t—> o0
(2) The expression for f (¢) is determined as follows :

4
F(s) =
(&) s(s+2)

Using partial fraction expansion

F(s) = R + ks

s s+2

The coefficients can be determined as &, = 2 and %k, = — 2.

2 2
F(s)=————.
(&) s s+2
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Taking inverse Laplace transform on both sides

L1 F(s) =t F o2 }

s s+2
or LR(s) = o1 {2 _ 2 }
s s+2
o f@)=2—2e%
and f@® =2-0=2. Verified.
t— oo
PROBLEMS

1.1. Find the inverse Laplace transform of the functions given below :

] 1 3 S
A A 0L AN G PN L
@ F(s) (s +1)(s + 4) (@) F(s) o A
G s L S L (iv) Fls) = S+ 0:25
(S 1 1)(8 S 4) (S il 05)2
() F(s) = = :

s s+Dis+2)"

1.2. Express the following differential equations in Laplace transform form :

2
0) %+6%+8x = 0, given (0 +) = 0 and x' (0 +) = 2
t
d’x dx
(€22) F+4E+5x =5,givenx(0+)=0andx’ (0 +) =0
t
Gii) 98 +60+5 [ 0.dt =0, given 60 +)=0, 60 +) = 0 and 07 (0.+) = 0.1
4 dx 14
@Gv) 2—=-+4x =te 3, x(0+) = 0.
dt
1.3. By using Laplace transform determine the ratio g(s) for the differential equation given
s
below
dct) _ , de(t) !
= r(t).
2 +4522 4 clt) ()

Assume all initial conditions as zero. If r(¢) = 1 evaluate the time solution for c(z).
1.4. Find the initial value of the functions having following Laplace transform

(s + o) 2(2s + 1)
(s + o) + ©”] s(s +05s+4)
1.5. Find the final value of the functions having following Laplace transform :
20s+1)
s(s?+4s+5)

@) F(s) = @i1) F(s) =

) &) = —E2D  yhere 0> 0 (ii) F(s) =
(s+0)” +m



