
CChhaapptteerr 11

Graduating
from C to C++

LLeeaarrnniinngg OOuuttccoommeess
After reading this chapter, students will have the ability to

o explain the new style of commenting, new data types
o explain the enhanced approach of handling of structures and unions
o explain the relaxation in the place of declaration of variables
o explain the concept of reference variables
o explain the new style of typecasting, new cast operators, new operator keywords,

and new headers
o explain the concept of namespaces
o explain the parameter passing by reference
o explain the concept of stream based I/O
o explain the concept of inline functions and its comparison with macros
o explain the enhancements of structures and unions to include functions as its

members
o explain the concept of default arguments
o explain the concept of function overloading
o explain the concept of function templates
o memory management operators

Object-Oriented Programming Using C++ 2

1.1 INTRODUCTION

The C++ language is a very powerful general-purpose programming language that
supports procedural programming as well as object-oriented programming. It was
developed by Bjarne Stroustrup at AT&T Bell Laboratories, New Jersey, USA, in the
early 1980's. He found that as the magnitude of problem size and its complexity grows,
it becomes extremely difficult to manage it, using most of procedural languages,
including C language. He was a strong admirer of Simula67 and C languages, and
wanted to have a language that combines the best of both of the languages, i.e., a
language that supports object oriented programming, and at the same time have the
power and elegance of C language. The outcome of his efforts ultimately leads to the
development of C++ language. Since classes were a major addition to the original C
language, he initially called the new language 'C with Classes'. Later on, the name was
changed to C++ in the year 1983. The idea of suffixing C with ++ came from the
increment operator as the new features were added to the C language which were in
use since long.

During the early 1990's, the language underwent a number of changes and
improvements. In the year 1997, the ANSI standards committee standardized these
changes, and added several new features to the language specifications.

The C++ language is treated as super set of C language because the developer of C++
language has retained all features of C, enhanced some of the existing features, and
incorporated new features to support for object-oriented programming.

In this chapter, we will discuss about the enhanced features of C++ language over C
language. Every C programmer can very easily grasp these features without bothering
about object-oriented features of C++ language.

1.2 NEW STYLE OF COMMENTING

The C++ language supports new style of commenting. It starts with two consecutive
forward slashes '//'. This style of comments can appear on a separate line or following
any instructions. The following are the examples of valid C++ comments:

 // This is a C++ style comment.
 int rno; // variable for roll number

The only limitation of this style of commenting is that comments are limited to single
line. There if you want to add multiple lines of comments, then every line of comment
must be preceded by //.

Chapter 1: Graduating from C to C++ 3

As a guideline, whenever we want to add multiple line comments, we prefer C style
commenting and for single line comments we prefer C++ style commenting. In the
book we will be following these guidelines.

 Listing 1.1

 /*
 * Program to convert temperature from Centigrade scale to
 * Fahrenheit scale. This program also illustrates the use
 * of comments in a C++ program
 */
 #include <iostream.h>
 #include <iomanip.h>
 void main()
 {
 float fahrenheit, centigrade; // declaration of variables
 cout << "Enter temperature in Celsius scale : ";
 cin >> centigrade; // keyboard input
 fahrenheit = 1.8 * centigrade + 32;
 cout << "Equivalent Temperature in Fahrenheit = ";
 cout << fahrenheit << endl; // output computed temperature
 }

1.3 NEW DATA TYPES

New standard of C++ language supports following new data types:

o The bool data type
o The wchar_t Data Type

Note that the old C++ compilers don't support these data types.

1.3.1 The bool Data Type

The bool data type has been added to hold a boolean value true or false. The boolean
values true or false have been declared as keywords. A bool value occupies 1 bytes of
memory. Boolean value false is internally represented as integer value 0 whereas
boolean value true is internally represented as integer value 1. Following statements
show declarations and use of bool type variables.

 bool b1, b2; // declares variable of type bool
 b1 = true; // assigns boolean value true
 b2 = 0; // assign value 0, i.e. false
 bool b3 = false; // declares and initialize with Boolean
 // value false

Object-Oriented Programming Using C++ 4

You can assign any non-zero value to a bool variable to represent boolean
value true, however, it is always converted to value 1 before assignment.

When the display the values of bool variables, value 0 will be printed for boolean value
false and 1 for boolean value true.

 bool b1 = false, b2 = true;
 cout << "\nb1 = " << b1;
 cout << "\nb2 = " << b2;

The output will be as follows:

 b1 = 0
 b2 = 1

However, if you want the value of bool variable to be printed as boolean value, i.e., as
false and true, then the boolalpha manipulator can be used to accomplish this task.

This is illustrated below:

 bool test = true;
 cout << boolalpha;
 cout << "test = " << test;

The output will be as follows:

 test = true

A bool variable and boolean value can be used in an arithmetic expression. For
example, the following statements

 int x, y = 10;
 bool f = false;
 x = true + 2 * y – f;

are valid.

1.3.2 The wchar_t Data Type

The new character data type named wchar_t is added to hold 16-bit wide characters
called unicode characters. The 16-bit characters are used to represent the character sets of
other languages such as Spanish, Japanese, French, etc. The use of wchar_t is
particularly useful if we are writing programs for international distribution.

Chapter 1: Graduating from C to C++ 5

A new character literal known as wide_character is also added and it uses 2-bytes of
memory. Wide_character literals begin with the letter L, as shown below:

 L‘xy’ // wide_character literal

1.4 PROMOTION OF USER-DEFINED DATA TYPES

In C++ language, when you create a user-defined data type, the tag of the user-defined
data type acts as a data type like basic data type and you can use tag to declare a
variable.

Consider the following example:

 struct EMPLOYEE
 {
 int code;
 char name[20];
 int deptCode;
 float salary;
 };

The statement

 EMPLOYEE aEmployee;

declaring the structure variable aEmployee. Here tag EMPLOYEE acts as a data type. To
accomplish the same thing in C, we have to use the statement

 struct EMPLOYEE aEmployee;

In C language, if variables of same user-defined data type are required at many parts
of the program, then we have to repeatedly use the keyword for appropriate user-
defined data type before the tag, which may be cumbersome and many a times
becomes the source of errors.

Therefore, to overcome this difficulty in C language, when we create a new user-
defined data type, and assign a symbolic name to it using typedef statement as
illustrated below:

 typedef struct
 {
 int code;
 char name[20];
 int deptCode;
 float salary;
 } EMPLOYEE;

Object-Oriented Programming Using C++ 6

Now the statements of type

 EMPLOYEE aEmployee;

will work in C language.

Similar treatment is with union and enum user-defined data types.

Though the keyword typedef is retained in C++ language, but it is not used much.

1.5 VARIABLE DECLARATION

In C language, local variables can only be declared at the top of the function or at the
beginning of the nested block. While coding the program, it may not be known in
advance the number and type variables to be used. As and when a new variable is
required, we have to move to the top of the function definition and declare the
variable. Many a times we use the variable and forget to declare it that leads to syntax
error.

However, in C++ language, this restriction is relaxed. A variable in C++ language can
be declared anywhere in the function, but in such a case the scope of the variable will
be limited to part of the function following its declaration. Hence, most of the C++
programmers follow the practice of declaring the variables at its first use.

 Listing 1.2
 /*
 * Program to demonstrate the declaration of variables
 * at the point of its first use
 */
 #include <iostream.h>
 #include <iomanip.h>
 int main()
 {
 // variable 'i' cannot be accessed before 'for' statement
 for (int i = 0; i < 10; i++)
 {
 cout << i << endl;
 }
 // variable 'i' can be accessed after 'for' statement
 cout << i << endl;
 return 0;
 }

On other side, the declaration of variables at any position in the program reduces the
readability of the program. Therefore, to enhance the readability of the program, it is
better to declare the variables at the beginning of the function.

Chapter 1: Graduating from C to C++ 7

1.6 REFERENCE VARIABLES – Variable Aliases

In C language, we have used value variables and pointer variables. The value variables
hold some value whereas the pointer variables are used to hold the address of some
value variable. The C++ language supports one more type of variable called reference
variable. A reference variable acts as an alias (alternative name) for other variable.
Reference variables enjoy the simplicity of value variables and power of pointer
variables.

A reference variable is bound to a value/pointer variable only at the point of its
declarations using following syntax

 DataType &ReferenceVariable = Variable;

The following examples illustrate the binding of reference variables.

 char &ch1 = ch; // ch1 is an alias of ch
 int &x = y[100]; // x is an alias of y[100]
 int n = 20;
 int *p = &n;
 int &m = *p; // m an alias of *p and refers to n

Reference variables play important role while passing arguments to a function.

1.7 SCOPE RESOLUTION

The variables declared outside the functions are known as global variables. These
variables are visible to all function following its declaration. But if there is a local
variable with the same name in a function, there is no way to access the global variable
in C language. In C++ language, a global variable can be accessed using scope resolution
operator '::' (two consecutive colons).

The syntax of using the scope resolution operator is

 ::GlobalVariable

The next program illustrates the accessing of local and global variables with same
name.

Object-Oriented Programming Using C++ 8

 Listing 1.3
 /*
 * Program to demonstrate the accessing local and
 * global variables with same name
 */
 #include <iostream.h>
 #include <iomanip.h>
 int i = 10; // declaration & definition of global variable
 int main()
 {
 int i=20;
 cout << "Local variable i = " << i << endl;
 cout << "Global variable i = " << ::i << endl;
 return 0;
 }

1.8 NEW STYLE OF TYPECASTING

We know that basic data types are automatically converted to an appropriate type
when used in assignments and expressions due to implicit type conversion facility
provided by the language whereas this does not happen when the variable is passed as
an argument during a function call. Similarly, this implicit type conversion facility does
not work with user-defined data types. Through the use of explicit type conversion,
(the cast operator), we can achieve the data type conversion for any sort of data type, i.e.,
basic as well as user-defined.

In C language, the syntax for explicit type conversion is

 (DataType) Variable/Expression

The data type is enclosed in parenthesis.

In C++ language, the syntax for explicit type conversion is

 DataType(Variable/Expression)

The variable or expression is enclosed in parenthesis.

This looks very similar to a function call.

Chapter 1: Graduating from C to C++ 9

1.9 NEW CAST OPERATORS

We have used cast operator, also known as cast or typecast, where the data type is used
to convert a value from one type to another type as shown below:

 float a = 12.45; // variable of type float
 int x; // variable of type int
 x = int(a); // conversion from float to int

This type of conversion is necessary where automatic conversions are not possible.

Following new type of cast operators have been added:

o static_cast
o const_cast
o dynamic_cast
o reinterpret_cast

1.9.1 The static_cast Operator

Like the conventional cast operator, the static_cast operator is used for any standard
conversion of data types.

It can also be used to cast a base class pointer into a derived class pointer.

Its syntax is

 static_cast<type>(variable/expression)

where type is one of standard data types, and specifies data type of target variable.

 float a = 12.45; // variable of type float
 int x; // variable of type int
 x = static_cast<int>(a); // conversion from float to int

A trivial question arises in mind – why to use this new cast operator when the old style cast
operators still works? Note that the old style, which looks like a normal function call, got
mixed up with rest of the code and therefore it is difficult to spot it.

This new cast operator is easy to spot and to search specially using automated tools.

Object-Oriented Programming Using C++ 10

1.9.2 The const_cast Operator

The const_cast operator is used for casting away const or volatile. Since the purpose of
const_cast operator is to change its const or volatile attributes to normal attributes, the
target variable should be of same type as that of source.

Its syntax is

 const_cast<type>(variable)

where type is one of the standard data types.

1.9.3 The dynamic_cast Operator

Run-time type identification (RTTI) provides a means of determining an object’s type
at run time. Two operators are added for this purpose - dynamic_cast and typeid. We
will discuss these operators one-by-one.

The dynamic_cast operator is used to cast the type of an object at run-time. Its main
application is to perform casts on polymorphic objects. Basically it is used for
downcasting from a base class pointer to a derived class pointer.

Its syntax is

 dynamic_cast<type>(baseClassPtr)

where type is pointer to the derived class and baseClassPtr is a pointer of the base class.
If the object held by the base class pointer is of derived class, then it will return the
address of the derived class object otherwise returns NULL value, i.e., value 0.

The typeid operator is used to obtain the type of the unknown objects such as their class
names at run-time. Its syntax is

 typeid(object).name()

For example, in the following statement

 const char *objectType = typeid(object).name();

It will assign the type of object (class name) to pointer variable objectType. To do this, it
uses member function name() of type_info class. Remember that to use typeid operator,
you have to include header file typeinfo.h in your program.

Chapter 1: Graduating from C to C++ 11

1.9.4 The reinterpret_cast Operator

The reinterpret_cast operator is used for non-standard casts, i.e., to change one type to
fundamentally different type. It is oftenly used to cast one type of pointer to a different
pointer type. It cannot be used for standard cast such as float, int, double, etc.

Its syntax is

 reinterpret_cast<type>(sourcePtr)

where type is pointer to the target type and sourcePtr is a pointer of the source object.
Consider the following example

 float a = 12.45, *floatPtr;
 int *intPtr;
 floatPtr = &a;
 intPtr = reinterpret_cast<int *>(floatPtr);

Here it will convert a pointer of type float to a pointer of type int.

The const_cast operator is used for casting away const or volatile. Since the purpose of
const_cast operator is to change its const or volatile attributes to normal attributes, the
target variable should be of same type as that of source. Its syntax is

 const_cast<type>(variable)

where type is one of the standard data types.

1.10 OPERATOR KEYWORDS

New operator keywords have been added that can be used in place of several
operators.

Table 1.1: Operator keywords
Operator Operator Keyword Description

&& and Logical AND
|| or Logical OR
! not Logical NOT
!= not_eq Inequality
& bitand Bitwise AND
| bitor Bitwise inclusive OR
^ xor Bitwise exclusive OR
~ compl One’s complement
&= and_eq Bitwise AND assignment
|= or_eq Bitwise inclusive OR assignment
^= xor_eq Bitwise exclusive OR assignment

Object-Oriented Programming Using C++ 12

Following statement

 x < y && z != k

using operator keywords can be written as

 x < y and z not_eq k

1.11 NEW HEADERS

A new way of specifying header files is incorporated. Here you don't have to suffix the
header file name with .h extension. This style of header files works in conjunction with
namespaces, which are described in next section.

 #include <iostream>
 #include <fstream>

The traditional style <iostream.h>, <fstream.h>, etc., is still fully supported.

1.12 NAMESPACES

A program may include many identifiers defined in different scopes. Sometimes a
variable of one scope may overlap (i.e. collide) with a variable of same name in a
different scope, and thus creating a problem. Such overlapping can occur at many
levels. This situation frequently occurs in third party libraries where same names are
used for global identifiers such as functions.

To handle this problem, a new feature in the form of namespace is added. Each
namespace defines a scope where all related identifiers are placed.

To use a namespace member, the member’s name must be qualified with the namespace
name and the scope resolution operator as shown below:

 namespaceName::member

or a using statement must occur before the member is used. The using statements are
generally placed in the beginning of the program. For example, the statement

 using namespace namespaceName;

at the beginning of a program specifies that members of namespace namespaceName can
be used in the program without preceding each member with the namespaceName and
the scope resolution operator.

Chapter 1: Graduating from C to C++ 13

1.12.1 Defining a Namespace

We can define our own namespaces. The syntax for defining a namespace is

 namespace namespaceName
 {
 // declarations of variables, functions, and
 // classes
 }

Note that there is no semicolon after the terminating brace.

1.12.2 Nesting of Namespaces

A namespace can be nested within another namespace as shown below:

 namespace outerNamespaceName
 {
 // . . .
 // . . .
 namespace innerNamespaceName
 {
 // . . .
 // . . .
 int m = 10;
 }
 }

Variable m can be accessed using following ways:

 cout << outerNamespaceName::innerNamespaceName::m;

OR

 using outerNamespaceName;
 cout << innerNamespaceName::m;

1.13 PARAMETER PASSING BY REFERENCE

In addition to pass-by-value and pass-by-address, parameters can also be passed by
reference in C++ language. The parameter passed by reference has the functionality of
pass-by-address and the syntax of pass-by-value. Any modification made through the
formal reference parameter is also reflected in the actual parameter.

Object-Oriented Programming Using C++ 14

Consider the following implementation of a function to interchange values of two
integer variables when the formal arguments are value variables.

 Listing 1.4
 /*
 * Program to demonstrate the argument passing using call by value
 */
 #include <iostream.h>
 #include <iomanip.h>
 int main()
 {
 int x = 10, y = 20;
 void swap (int, int); // function prototype
 cout << "Before call to swap function" << endl;
 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 swap (x, y); // function call
 cout << "After call to swap function" << endl;
 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 return 0;
 }
 void swap (int a, int b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

In this case, the values of variables x and y are copied into formal parameters a and b
respectively, which are value variables and acts as local variables to the function. The
local copies of the variables are interchanged through another local value variable temp.
The values of variables x and y are left unchanged.

 Listing 1.5
 /*
 * Program to demonstrate the argument passing
 * using call by address (pointer)
 */
 #include <iostream.h>
 #include <iomanip.h>
 void main()
 {
 int x = 10, y = 20;
 void swap (int *, int *); // function prototype
 cout << "Before call to swap function" << endl;

Chapter 1: Graduating from C to C++ 15

 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 swap (&x, &y); // function call
 cout << "After call to swap function" << endl;
 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 return 0;
 }
 void swap (int *a, int *b)
 {
 int temp = *a;
 *a = *b;
 *b = temp;
 }

Now consider the implementation of swap() function to interchange values of two
integer variables when the formal arguments are pointer variables.

 void swap (int *a, int *b)
 {
 int temp = *a;
 *a = *b;
 *b = temp;
 }

The corresponding call to above function with x and y as actual parameters is

 swap (&x, &y);

In this case, the addresses of variables x and y are copied into formal parameters a and
b respectively, which are pointer variables and acts as local variables to the function.
Here, values of the variables whose addresses are held in a and b are interchanged
through local value variable temp. Here the values of variables x and y will be
interchanged.

 Listing 1.6
 /*
 * Program to demonstrate the argument passing
 * using call by reference (alias)
 */
 #include <iostream.h>
 #include <iomanip.h>
 int main()
 {
 int x = 10, y = 20;

Object-Oriented Programming Using C++ 16

 void swap (int &, int &); // function prototype
 cout << "Before call to swap function" << endl;
 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 swap (x, y); // function call
 cout << "After call to swap function" << endl;
 cout << "Value of x = " << x << endl;
 cout << "Value of y = " << y << endl;
 return 0;
 }
 void swap (int &a, int &b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

Now consider the implementation of swap() function to interchange values of two
integer variables when the formal arguments are reference variables.

 void swap (int &a, int &b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

In the function prototype

 void swap (int &a, int &b);

the operator & indicates that formal parameters are of reference type, and they must be
bound to the memory locations of actual arguments. Thus access made to these formal
reference variable in the swap() function refers to the actual parameters. Here the
values of variables x and y will be interchanged.

The call statement

 swap (x, y);

is translated into

 swap (&x, &y);

during the compilation process.

Chapter 1: Graduating from C to C++ 17

By comparing above versions of swap() functions, you will find that reference variables
enjoy the simplicity of value variables and power of pointer variables.

The only limitation of reference variables is that they don't provide the
flexibility of pointer variables. Once they are bound to a variable that
binding cannot be changed. All accesses made to the reference variables
are the same as the access to the variable. On the other side you can assign
the address of any value variable of same type to a pointer variable of that
type and change the binding of pointer variables at your will.

1.14 STREAM BASED I/O

The C++ I/O subsystem is designed to work with a wide variety of devices that
includes keyboard, monitor, disks, tape drives, etc. The working principle
(characteristics) of each of these devices is quite different. The C++ I/O subsystem is
designed in such a way that it provides a uniform interface that is independent of the
actual device being used.

Thus, the programmer can write a C++ program that can receive input from, and send
output to any device without bothering about the characteristics of device being used.
This interface is called a stream. Figure 1.1 shows this uniform interface.

Figure 1.1: Consistent stream interface with I/O devices

char

int

long

float

double

user-
defined

<<

Printer

Monitor

Disk file

>>

Keyboard

Disk file

Object-Oriented Programming Using C++ 18

 Console Main Memory/Storage

Figure 1.2: Console-program interaction

Figure 1.3: Data streams and program interaction

Input
device

Output
device

Output Stream

Input Stream

// C++ program
#include<iostream.h>
void main()
{
 int x, y;
 cin >> x;
 y = x * x;
 cout << y;
}

Extract from
input stream

Insert into
output stream

cout << y;
//send output

cin >> x;
//get input

// C++ program
#include<iostream.h>
void main()
{
 int x, y;
 cin >> x;
 y = x * x;
 cout << y;
}

Programs + Data keyboard

Montor/
Screen

Chapter 1: Graduating from C to C++ 19

Streams in C++ language are classified as

o Input streams
o Output streams
o File streams

A stream basically is a sequence of bytes. It can either act as a source from which the
program can take (extract) input data or as a destination to which the program can send
(insert) output data. The source stream that supplies data to the program is called input
stream and the destination stream that receives data from the program is called output
stream. These streams collectively are called data streams.

Figure 1.3 shows the interaction of data streams with program.

1.15 INLINE FUNCTIONS
During program execution, a function call involves transfer of control to a specified
address (address of first executable statement of the function), and returning to the
instruction following the function call. Before transferring the control, CPU stores the
contents of its registers and the address of the instruction following the function call,
pushes actual arguments onto the system stack. After the transfer of control, the CPU
pops the actual arguments from the system stack and copies into formal arguments
that acts as local variables in the called function. Then it executes the function code,
and stores the return value, if any, in a predefined memory location or register and
returns control to the calling function. On return, the CPU retrieves the value returned
by the function, if any, from the specified memory location or register, and resumes the
executions from the instruction following the function call statement. The time taken
during this whole process is called context switch time, and constitutes an overhead in
the execution of the program.

This overhead is relatively large if the time required to execute a function is small than
the context switch time. In that case, we would like to repeat the code in multiple
places in a function rather than creating a separate function for it. The C++ language
provides an alternative to above problem in the form of inline functions.

Inline functions are those functions whose body is inserted in place of the function call
during the compilation process. Therefore, with inline functions, the program will not
incur any context-switching overhead.

Hence, the inline functions enjoy both the flexibility and power of normal functions
and macro functions. The inline functions are best used for small and frequently used
functions.

Object-Oriented Programming Using C++ 20

An inline function definition is similar to an ordinary function except the keyword
inline precedes the function definition.

This is illustrated in the following example:

 inline float square(float x)
 {
 return x*x;
 }
 int main()
 {
 float a, b, r, z;
 // some statements
 a = square (z);
 b = square (r);
 // some statements
 return 0;
 }

During the compilation process, the above code will be treated as

 void main()
 {
 float a, b, r, z;
 // some statements
 a = z * z;
 b = r * r;
 // some statements
 }

1.15.1 Inline Functions Versus Macros (#define)

Given a choice, prefer inline over #define. Let us see why?

Like anything else in the world, there are advantages and disadvantages to everything
and macros are not an exception to that. However, the list of advantages is over
shadowed by list of disadvantages.

Consider the following macro:

 #define MAX(a, b) a < b ? b : a // 1

Chapter 1: Graduating from C to C++ 21

The problem here is that since variables a and b are not properly parenthesized, an
expression in their place could produce side effects.

For example, macro call

 MAX(x += 2, y)

expands to

 x += 2 < y ? y : x += 2

which, by C++'s precedence rules, evaluates to

 x += ((2 < y) ? y : x += 2)

where as the required was

 if (x+ = 2 < y) then result is y else result is x += 2

This pitfall can be taken care of in the following manner

 #define MAX(a,b) (a) < (b) ? (b) : (a) // 2

Though the fix may look bug-free now, there is another similar subtler pitfall to it. The
problem here is that though the single variables are parenthesised now, the whole
expression is not properly parenthesised. Remember that a macro can be a part of
larger expression and since it expands into plan stupid text, there is no evidence of a
macro having been there once the expansion has taken place. If we do not want the
parts of a macro to mix-and-match with others, we have to parenthesize the macro as a
whole and not only its variables.

For example, the expression

 z = MAX(a, b) + 23

will expand to

 z = (a)< (b) ? (b):(a) + 23

Object-Oriented Programming Using C++ 22

which, by C++'s precedence rules, evaluates to

 z = ((a) < (b)) ? (b):((a) + 23)

which is not the intended functionality.

The above problem can now be fixed by putting parentheses around the whole macro
as

 #define MAX(a, b) ((a) < (b) ? (b) : (a)) // 3

This is not the end of problems that macro can create. Consider the use macro for the
expression

 MAX(++x, y)

This would expand to

 ((++x) < (y) ? (y):(++x))

which will twice increment the value of x in case ++x is greater than y. This is generally
not the accepted result.

Another problem with macros is that about their scope. Macros always have global
scope.

Some more disadvantages of macros are:

o Macros do not have address – Macros are not code. They do not have existence of their
own in object code. They have been replaced by pre-processor in the resulting code.

o Macros are debugger-unfriendly – Till date, I think, there is no compiler that is macro
friendly and provides similar functionality for stepping in/out, watching, etc. as it
does for functions.

o Macros are not type-safe – Static type checking of arguments and return value is
carried out by the compiler for functions, but not for macros.

o Macros are not recursive – Macros are not code. They do not have existence of their
own in the object code. They have been replaced by the pre-processor.

The inline functions overcome all these disadvantages.

Chapter 1: Graduating from C to C++ 23

1.16 FUNCTION AS MEMBERS OF STRUCTURES

Structures in C language provide a mechanism to group elements (usually) of different
data types in one unit that belong to the same family. For example, if we want to create
a user-defined data type to represent an employee in an organization, the structure
definition in C may look like

 struct EMPLOYEE
 {
 int empCode;
 char empName[20];
 float empSalary;
 };

Here, for simplicity, we have considered only three elements viz. employee's code
(empCode), employee's name (empName) and employee's salary (empSalary) while
leaving out other elements such as date of birth, date of joining, educational and
professional qualification, etc.

In order to process a variable (that represents an employee, an instance of family
employees), either it must be declared as global variable so that it is accessible to all
functions or must be passed as an argument to an appropriate set of functions in order
to process it.

However, a structure in C++ LANGUAGE permits the inclusion of functions in
addition to data members, and thus provides a true mechanism of handling data
abstraction. The general syntax of structure in C++ LANGUAGE is

 struct structureName
 {
 public:

 // data and functions
 protected:

 // data and functions
 private:

 // data and functions
 };

The structure has two types of members: data member and function members. Function
defined in a structure can access any data member. The keywords public, protected and
private are called access specifiers. If none of the above specifier appears in the structure
definition, all the members have default access.

Object-Oriented Programming Using C++ 24

The private and protected members of a structure can only be accessed by the member
function where as public members are accessible by members functions as well its
instances (structure variables). Therefore, with appropriate use of these access
specifiers, we can control the access to data members as desired in the application.

When we define a structure, member functions can be defined within the structure
definition or outside the structure definition. When they are defined outside the
structure definition, they are just declared (prototyped) in the structure definition and
are bound to an appropriate structure definition by using scope resolution operator.
Both of the ways are illustrated below:

When the member functions are defined inside the structure definition:

 struct EMPLOYEE
 {
 private:
 int empCode; // private data members
 char empName[20];
 float empSalary;
 public:
 // public member function defined inside the class
 void readData()
 {
 cout << "Enter code : ";
 cin >> empCode;
 cout << "Enter name : ";
 cin >> empName;
 cout << "Enter salary : ";
 cin >> empSalary;
 }
 void showData()
 {
 cout << endl << "Employee information" << endl;
 cout << "Code : " << empCode << endl;
 cout << "Name : " << empName << endl;
 cout << "Salary : " << setprecision(2);
 cout << empSalary << endl;
 }
 };

When the member functions are defined outside the structure definition:

 struct EMPLOYEE
 {
 private:
 int empCode; // private data members

Chapter 1: Graduating from C to C++ 25

 char empName[20];
 float empSalary;
 public:

// public member function declared inside the
// class and defined outside the class

 void readData ();
 void showData ();
 };
 void employee :: readData()
 {
 cout << "Enter code : ";
 cin >> empCode;
 cout << "Enter name : ";
 cin >> empName;
 cout << "Enter salary : ";
 cin >> empSalary;
 }
 void employee :: showData()
 {
 cout << endl << "Employee information" << endl;
 cout << "Code : " << empCode << endl;
 cout << "Name : " << empName << endl;
 cout << "Salary : " << setprecision(2);
 cout << empSalary << endl;
 }

The use of both of these definitions is illustrated in following programs.

 Listing 1.7
 /*
 * Program to illustrate the mechanism of defining
 * member functions inside the structure definition
 */
 #include <iostream.h>
 #include <iomanip.h>
 struct EMPLOYEE
 {
 private:
 int empCode; // private data members
 char empName[20];
 float empSalary;
 public:
 // public member function defined inside the class
 void readData ()
 {
 cout << "Enter code : ";
 cin >> empCode;
 cout << "Enter name : ";
 cin >> empName;

Object-Oriented Programming Using C++ 26

 cout << "Enter salary : ";
 cin >> empSalary;
 }
 void showData ()
 {
 cout << endl << "Employee information" << endl;
 cout << "Code : " << empCode << endl;
 cout << "Name : " << empName << endl;
 cout << "Salary : " << setprecision(2);
 cout << empSalary << endl;
 }
 };
 int main()
 {
 EMPLOYEE aEmployee;
 aEmployee.readData(); //member function invoked on instance
 aEmployee.showData(); //member function invoked on instance
 return 0;
 }

 Listing 1.8
 /*
 * Program to illustrate the mechanism of defining
 * member functions outside the structure definition
 */
 #include <iostream.h>
 #include <iomanip.h>
 #include <conio.h>
 struct EMPLOYEE
 {
 private:
 int empCode; // private data members
 char empName[20];
 float empSalary;

 public:
 // public member function declared inside the
 // class and defined outside the class
 void readData ();
 void showData ();
 };
 void employee :: readData()
 {
 cout << "Enter code : ";
 cin >> empCode;
 cout << "Enter name : ";
 cin >> empName;
 cout << "Enter salary : ";
 cin >> empSalary;

Chapter 1: Graduating from C to C++ 27

 }
 void employee :: showData() {
 cout << endl << "Employee information" << endl;
 cout << "Code : " << empCode << endl;
 cout << "Name : " << empName << endl;
 cout << "Salary : " << setprecision(2);
 cout << empSalary << endl;
 }
 int main()
 {
 EMPLOYEE aEmployee;
 aEmployee.readData(); //member function invoked on instance
 aEmployee.showData(); //member function invoked on instance
 return 0;
 }

The following points about structures in C++ language are important to remember:

1. When we compute the size of a structure, the member functions are not included in
its size. This fact you can verify using sizeof operator. For example, for employee
structure defines above, the sizeof operator will return value 26, i.e., size of structure
employee is 26 bytes (2 bytes for empCode, 20 bytes for empName and 4 bytes for
empSalary).

2. The data member can be private, protected or public, but the member functions must
be public otherwise it will not be possible to call member functions on a structure
variable and thus serves no purpose.

3. If the access specifier for the data members is private, then a structure variable
initialization cannot be combined with declaration. Therefore, we have to write a
member functions to initialize a structure variable.

Consider the following structure definition

 struct DATE
 {
 int day; //data members with default access public
 int month;
 int year;
 // member functions
 };

 or

 struct DATE
 {
 public:
 int day; //public data members

Object-Oriented Programming Using C++ 28

 int month;
 int year;
 // member functions
 };

Then compiler permits the following

 DATE dd = { 10, 12, 2003 };

However, if the structure definition is

 struct DATE
 {
 private:
 int day; //private data members
 int month;
 int year;
 // member functions
 };

The compiler will not permit the following

 DATE dd = { 10, 5, 2003 };

Therefore, in this case the only way is to use a member function as illustrated
below:

 struct DATE
 {
 private:
 int day; //private data members
 int month;
 int year;
 void initialize(int dd, int mm, int yy)
 {
 day = dd;
 month = mm;
 year = yy;
 }
 // more member functions
 };

Now, we can declare a structure variable and then call member function initialize()
to form the initialization.

Chapter 1: Graduating from C to C++ 29

 DATE d;
 d.initialize(10,5, 2003);

You may think that these two statements can be combined as we do in normal case,
but it is not permitted. You first have to create a variable (instance), and only then
you can call member function.

Therefore, following statement is not permitted:

 DATE d.initialize(10,5, 2003);

Like structures, unions in C++ language also can have member functions.

1.17 DEFAULT ARGUMENTS

In C language, a function call must specify all the arguments used in the
function definition. In a C++ function call, one or more arguments can be
omitted with the condition that function is defined to take default values for the
arguments that can be omitted by providing the default values in the function
prototype or declarator.

In the function prototype or declarator, parameters without default arguments
are placed first and those with default values are placed later. The arguments
specified in the function call explicitly override the default values.

This following example illustrates the definition of a function with default
arguments and how it can be used.

 Listing 1.9
 /*
 * Program to illustrate the mechanism of defining
 * function with default arguments
 */
 #include <iostream.h>
 void printline (char ch = '-', int count = 80)
 {
 cout << endl;
 for (int i = 0; i < count; i++)

Object-Oriented Programming Using C++ 30

 cout << ch;
 cout << endl;
 }
 int main()
 {
 printline(); // use both default arguments
 printline('*'); // use second argument as default
 printline('+', 45); // use explicit arguments
 return 0;
 }

The above program can also be written with function prototype as

 Listing 1.10
 /*
 * Program to illustrate the mechanism of defining
 * function with default arguments
 */
 #include <iostream.h>
 void printline (char ch = '-', int count = 80); // prototype
 int main()
 {
 printline(); // use both default arguments
 printline('*'); // use second argument as default
 printline('+', 45); // use explicit arguments
 return 0;
 }
 void printline (char ch, int count)
 {
 cout << endl;
 for (int i = 0; i < count; i++)
 cout << ch;
 cout << endl;
 }

The following prototype statement is also acceptable

 void printline (char = '-', int = 80);

If you are using prototype for a function with default arguments, then the
default values need to be specified only in the prototype. Specifying default
values in the declarator too will lead to error indicating the default
argument(s) is re-declared.

Chapter 1: Graduating from C to C++ 31

1.18 FUNCTION OVERLOADING

Suppose in our program we require the functionality to swap two values of int type,
float type, double type, char type.

Normally, this situation is dealt with by writing four different functions with different
names as shown below:

 // function to swap two int values
 void swapInt (int &first, int &second) {
 int temp;
 temp = first;
 first = second;
 second = temp;
 }
 // function to swap two float values
 void swapFloat (float &first, float &second) {
 float temp;
 temp = first;
 first = second;
 second = temp;
 }
 // function to swap two double values
 void swapDouble (double &first, double &second) {
 double temp;
 temp = first;
 first = second;
 second = temp;
 }
 // function to swap two char values
 void swapChar (char &first, char &second) {
 char temp;
 temp = first;
 first = second;
 second = temp;
 }

Thus we have four different functions with different names for identical functionality.
It would have been nice if we can use single name instead of four different names.

In C++ language, it is possible to use the same function name to perform identical
operation. Such functions are called overloaded functions and the process of defining
such functions is called function overloading.

Object-Oriented Programming Using C++ 32

Overloaded functions must differ in argument list in either of the following ways:

o They may differ in number of arguments.
o They may differ in data types of arguments.
o They may differ both in number and type of arguments.

Therefore, in the above example case, we can use one name, say swap, for all four
versions of the swap function to swap different values and depending on the type of
actual arguments in the function call; the compiler will resolve the function call.

 Listing 1.11
 // Program to calculate the square of an int and float number
 // using overloaded function sqr()
 #include <iostream.h>
 #include <iomanip.h>
 int sqr (int intArg); // prototype for int version
 float sqr (float floatArg); // prototype for float version
 int main()
 {
 int intNumber;
 float floatNumber;
 cout << "Enter integer number : ";
 cin >> intNumber;
 cout << "Enter float number : ";
 cin >> floatNumber;
 cout << endl << "square of " << intNumber << " = "
 << srq (intNumber) << endl;
 cout << "square of " << floatNumber << " = "
 << srq (floatNumber) << endl;
 return 0;
 }
 // function that returns square of a integer number
 int sqr (int intArg) {
 return (intArg * intArg);
 }
 // function that returns square of a float number
 float sqr (float intArg) {
 return (floatArg * floatArg);
 }

Note that the return type does not play any role in function
overloading. The reason is that it is not necessary to collect the returned
value even if the called function returns a value.

Chapter 1: Graduating from C to C++ 33

This is demonstrated below:

 Listing 1.12
 // Program to demonstrate that return type doesn’t play any
 // role in overloading
 #include <iostream.h>
 void f(void); // prototype
 int f(void); // prototype
 int main()
 {
 f(); // function call
 return 0;
 }
 void f(void) // function definition
 {
 cout << "\nNo args., No return type\n";
 }
 int f(void) // function definition
 {
 cout << "\nNo args., int return type\n";
 return 10;
 }

In function call, there will be ambiguity because just by seeing the call the system will
not be able to figure out which version of function f() to call. Even, if we are not
collecting the value, we cannot assume that function that does not return a value
would be called.

Name Mangling – Mechanism For Handling Function Overloading

If there have been no overloading, then functions are always called by their name as
given by the programmer. But, in case the compiler permits overloading, then to
handle overloading, the compiler changes the names of all functions during
compilations. This is known as name mangling.

Name mangling, also known as name decoration, is the process where the compiler
changes the names of the functions to facilitate overloading.

1.19 FUNCTION TEMPLATES

The C++ language allows defining a single function capable of processing elements of
different data types. Such a function is known as function template or generic function.

Object-Oriented Programming Using C++ 34

The syntax of function template is

 template <class T1, class T2, . . .>
 DataType FunctionName (arguments of type T1, T2, . . .)
 {
 // local variables of type T1, T2, or any other type
 // function body, operating on variable of type T1, T2
 // any other variables
 }

where template is the keyword for declaring function template

Following is the function template for swapping the values of two variables that are
passed by reference.

 Template <class T1>
 void swap (T1 &a, T1 &b)
 {
 T1 temp; // temporary variable
 temp = a;
 a = b;
 b = temp;
 }

Following program illustrates the definition and use of function template.

 Listing 1.13
 /*
 * Program to illustrate mechanism of defining and
 * using function templates
 */
 #include <iostream.h>
 template <class T1>
 void swap (T1 &a, T1 &b)
 {
 T1 temp;
 temp = a;
 a = b;
 b = temp;
 }
 int main()
 {
 char ch1 = '*', ch2 = '+';
 int a1 = 10, a2 = 20;

Chapter 1: Graduating from C to C++ 35

 float b1 = 10.25, b2 = 22.75;
 double d1 = 12.67, d2 = 67.8;
 swap (ch1, ch2);
 cout << "\n" << ch1 << "," << ch2 << "\n";
 swap (a1, a2);
 cout << "\n" << a1 << "," << a2 << "\n";
 swap (b1, b2);
 cout << "\n" << b1 << "," << b2 << "\n";
 swap (d1, d2);
 cout << "\n" << d1 << "," << d2 << "\n";
 return 0;
 }

1.20 DYNAMIC MEMORY MANAGEMENT OPERATORS

The C++ language provides the following operators to perform dynamic
memory management:

o new operator – for dynamic memory allocation.
o delete operator – for dynamic memory deallocation.

1.20.1 The new Operator

The new operator allocates the memory in a manner similar to malloc() function in C
language. The only difference is that it always return a pointer to an appropriate type,
and there is no need for typecasting whereas the malloc() function returns a generic
pointer (pointer to void data type) that must be typecasted to appropriate data type
prior to its use otherwise system may behave inconsistently.

The new operator is defined as

 type * new type [size in integer];

The following example illustrates its use.

 int *intPtr;
 intPtr = new int[100];

Allocate a memory block of 200 bytes, 2 bytes for one integer value, total of 100
integers.

Similar statements will be used for other primitive data types as well as user-defined
data types.

Object-Oriented Programming Using C++ 36

 struct DATE
 {
 int day;
 int month;
 int year;
 };
 DATE *datePtr;
 datePtr = new date;

Allocate memory for one structure item of type DATE, i.e., 6 bytes.

The new operator also permits the initialization of memory locations during allocation.

The syntax for doing so is

 type *ptrVar = new type (InitialValue);

This is illustrated in following example:

 int *intPtr = new int(100);

This statement allocates memory for an integer number and initializes it with value
100. The address of the memory allocated memory is assigned to pointer variable
intPtr.

 float *floatPtr = new float(125.75);

This statement allocates memory for a float number (single precision real number) and
initializes it with value 125.75. The address of the memory allocated memory is
assigned to pointer variable floatPtr.

1.20.2 The delete Operator

The delete operator is a counterpart of new operator and it deallocates (releases)
memory allocated by the new operator back to the free poll of memory in a manner
similar to free() function in C language.

The syntax of delete operator is defined as

 delete pointerVariable;

Chapter 1: Graduating from C to C++ 37

The free() function in C language is defined as

 void free (void * pointerVariable);

The following statement in C++ language

 delete (ptrVar);

is equivalent to following statement in C language

free (ptrVar);

where ptrVar is pointer variable that holds the address of the dynamically allocated
memory using new operator and malloc() function, respectively. The memory allocated
using new operator or malloc() function must be released by the delete operator and free()
function, respectively.

Following program demonstrates the use of new and delete operators. The program
reads two vectors of same size from keyboard, add these vectors and outputs the
resultant vector.

 Listing 1.14
 /*
 * Program to add two vectors. This program illustrates the use
 * of new and delete operators
 */
 #include <iostream.h>
 #include <iomanip.h>
 // function to input elements of a vector
 void readVector (float *vector, int size)
 {
 for (int i=0; i < size; i++)
 cin >> vector[i];
 }
 // function to output elements of a vector
 void writeVector (float *vector, int size)
 {
 for (int i=0; i < size; i++)
 cout << vector[i] << " ";
 cout << endl;
 }
 // function to add to vectors
 void addVectors (float *x, float *y, float *z, int size)
 {

Object-Oriented Programming Using C++ 38

 for (int i=0; i < size; i++)
 z[i] = x[i] + y[i];
 }
 int main()
 {
 int vec_size;
 float *a, *b, *c;
 cout << "Enter size of vectors : ";
 cin >> vec_size;
 a = new float[vec_size]; // allocate memory for all vectors
 b = new float[vec_size];
 c = new float[vec_size];
 cout << "Enter elements of vector a : ";
 readVector(a, vec_size);
 cout << "Enter elements of vector b : ";
 readVector(b, vec_size);
 addVectors(a, b, c, vec_size); // c = a + b
 cout << "Elements of resultant vector are : ";
 writeVector(c, vec_size);
 delete a; // free memory allocated for all vectors
 delete b;
 delete c;
 // above three statements can also be combined as "delete a, b, c;"
 return 0;
 }

QUICK RECAP . . .

In this chapter, we have learnt that

o C++ language is a superset of C.
o C++ language supports object-oriented programming in addition to procedural

programming.
o C++ language supports new style of comments. Every comment line begins with

two slash characters (//).
o C++ language supports two new data types – bool and wchar_t.
o For a structure, union and enumerated user-defined data types, you don't need to

prefix keyword struct, union and enum before the tag.
o A variable in C++ language can be declared anywhere in the code.
o C++ language supports reference variables. A reference variable acts as alias for

other variable.
o Reference variables enjoy the simplicity of value variables and power of pointer

variables.
o A reference variable can only be bound to a value/pointer variable at the point of

its declaration.

Chapter 1: Graduating from C to C++ 39

o A global variable can be accessed using scope resolution operator '::' (two consecutive
colons).

o C++ language supports new style of typecasting that looks similar to function call.
o C++ language provides specialized cast operators – static_cast, const_cast,

dynamic_cast, reinterpret_cast.
o C++ language provides operator keywords for relational, bitwise and some short-

hand operators.
o New standard of C++ language also supports new style of header files, where you

don't need to include the extension.
o New standard of C++ language also introduces the concept of namespaces that

allows managing the large and complex software in an efficient manner.
o In addition to call by value, call by address (pointer), the arguments can also be

passed using call by reference mechanism.
o C++ language introduces the concept of streams that streamlines the handling of

input/output. Streams provide a uniform interface of doing the I/O irrespective of
the I/O devices being used.

o C++ language also introduces the concept of inline functions. The inline functions
are substitutes of macros that suffer from many inherit problems.

o In C++ language, structures can have function members in addition to data
members.

o In C++ language, a function can have default arguments.
o C++ language supports the feature of function overloading, where you can give

same function name for the functions that provide the same functionality but on
different type of operands.

o C++ language also supports concept of function templates (generic functions), where
you can define a single function capable of processing elements of different data
types.

o C++ language provides two memory management operators – new and delete.
These operators have added to support the requirements of object-oriented
programming.

EXERCISE . . .

1. Trace the history of C++ language.
2. What are the types comments supported by C++ language?
3. Name the new basic data types added in C++ language over C language.
4. What is a reference variable?
5. Is it possible to access a global variable in a block when the local variable shares the

name as that of a global variable? If yes, how?
6. Name the new cast operators in C++ language.
7. Name the operator keywords added in C++ language.
8. What is a namespace? How namespaces are useful?

Object-Oriented Programming Using C++ 40

9. By taking an example, demonstrate how the arguments can be passed using call by
reference mechanism.

10. What is a stream? Name the predefined streams in C++ language.
11. What are inline functions? How they compare with normal functions?
12. What is function overloading? How is it useful?
13. What is function template? How is it useful?
14. Explain the usage of memory management operators incorporated in C++

language.

