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Technical terms, Overall understanding, Mathematics in instrumentation and
control, science of automatic control, Process characteristics and Process

dynamics.

TECHNICAL TERMS

The following are some of the technical terms that come quite
often in instrumentation and control.

accuracy, 153
adaptive control, 75

bimetal thermometer, 168

bode diagrams/plots, 99,
110

capacitance, 17

closed loop, 66
controlled variable, 12
conductivity cell, 192
chromotograph, 197
control valve, 148, 306
colorimetry, 216

dynamics, 21, 25
delay, 13

derivative control, 50
degrees of freedom, 12
dead zone, 154

dead time, 13

distributed
parameter, 131, 315

electronic controller, 165
error, 49

forcing function, 5

frequency response, 110
feedback, 66

first order system, 5, 84
floating control, 52

gain (A.R), 125, 108
hydraulic controller, 144

impulse change, 6
integral control, 50
ionisation gauge, 283

Laplace transform, 3
linear system, 30

lag, dead time, 13

load variable, 12
Liapunov method, 260
liquid seal, 168, 287
lumped parameter, 130

mode of control, 49
manipulated variable, 12
manometer, 283

mcleoid gauge, 165

non-linear system, 30
Nyquist diagram, 120

1

open loop, 53
on-off control, 51
optical pyrometer, 168

pressure gauge, 283
phase margin, 101
pneumatic controller, 142
pneumatic, 144
polorograph, 202

ramp, 156
root locus diagram, 117
ruth-method, 96

resistance thermometer,
168

radiation pyrometer, 168
rotameter, 288

spectrometer, 210

step change 4
sinusoidal change, 5
second order system, 85
stability, 96

state equation, 236
span, 153
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Overall understanding of the subject : Instruments &
Controllers are used for Safety, Operation and Main-
tenance of a Process andplant

Instrumentation section. Deals with the principles of work-
ing, responses of temperature, pressure, composition and liquid
level measuring instruments and their selection for various con-
ditions of measurements. Instruments are selected based on the
range of operation, time constants and responses. Pneumatic and
electric transmission are used in transferring the measured vari-
able to any point that is necessary. Instrumentation diagrams
cover location of measuring instruments in a process or in entire
plant, transmission lines and automatic controllers. Standard
symbols are used in writing instrumentation diagrams, to repre-
sent or to show measuring instruments, controllers etc. Signalling,
control centres, recording instruments and panel boards come
under instrumentation section.

Automatic control. Automatic control 1s used to increase the
quality and quantity. Automatic control is done with the informa-
tion of process-dynamics, deviation that can be tolerated, various
types of automatic controllers available, control valves, stability
methods and block diagrams for analysis. Automatic control
means, if the outlet variable (required quantity) is changing due
to some disturbance in the process, then the controller reads it
and changes the other variable (manipulated variable) to the re-
quired point. Once the equipment is installed, the technical person
has to inspect only for their working or not. Computers are used
to solve tedious equations or lengthy calculations like non-linear
equations. Adaptive control, optimal control, stochastic control
and methods of solutions for non-linear systems are the advanced
sections in automatic control.

Optimal control aims for the best performance of the controlled
system (better than the conventional feed back control). Adaptive
controller adjusts the controller set up (like gain) by measuring
the working conditions (operating). Stochastic means probalitistic
type or uncertainity type. Nonlinear techniques are used when the
system behaviour (equations) is non-linear type for control
analysis. Modern control theory (state equations and state vari-
ables) is for multi-inputs-outputs, optimal control and for time
domain analysis. Z-transform is used for sampled data (discrete
data) systems for analysis. Recently computer control is used.
Artificial intelligence, neural networks, fuzzy control etc. have
come.
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The following are some of the journals which are to be seen to
be upto date in this subject.

(1) AIL.Ch.E. Journal (2) Canadian Journal of Chemical En-
gineering (3) L.LE.C. Process design and development (4) Interna-
tional Journal of Chemical-Engineering (5) Chemical Engineering
Science (6) International Journal of Control (7) British Journal of
Chemical Engineering (8) Indian Chemical Engineer (9) LE.E.E.
Transactions on Automatic Control (10) Automatica.

Table 1.1
Laplace transforms of commonly used functions
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1.1. Solving : y''' -3y + 3yl —y =t%';y(0)=1;y(0) = 0;

¥y (0)=2
Taking laplace transforms on both sides
L o' -3Ley™) +3LGy") - Ly) = L(£%")
s° y(s) = 5%y (0) = sy'(0) - y"(0) - B[s%y(s) - sy(0) - y'(0)]
+3 [sy(s) - y(0)) - y(s) = 2/(s - 1)°
Substituting the values ofyl(O),y”(O), y(0) and simplifying,
s°-3s+5 2
= +
s-1°  (s-1°
1 1 + 3 + 2
-1 (s-1* (s-1° (s-1)°
Taking inverse laplace transforms,
yit)=e -t e' +t%'/2 + t%'/60 Ans.
1.2. Solving : dx/dt =2x -3y ; x(0) =8 ; y(0) = 3,
dy/dt =y - 2x.
Taking laplace transforms on both sides,
sx(s) — 8 = 2x(s) - 3y (s),
sy(s) — 3 =y(s) - 2x(s)
Solving simultaneously, both equations
y(s) = 3s — 22/(s* - 3s - 4)
5 2
(s+1) (s-4)
y(t)=5e"" - 2* Ans.
x(s) = 8s - 17/(s2 -3s-4)
__5 ., 3
s+1) (s-4)
x(t) = 5e” '+ 3e* Ans.

1.3. For a first order instrument deriving the response
equation if the step input is introduced :

For a first order instrument the differential equation is
Tdo/dt +6 =6,

where 6 = value indicated by instrument,
8, = final steady value ;
t =time;
T = time constant ; For step change of 6, of magnitude A
Tde/dt +6=A
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Taking laplace transforms on both sides of the equation
Ts6(s) - 6(0) + 0(s) = A/s,
Assuming 6(0) =0,

A
8(s) = s (Ts +1_)

Using partial fractions,

11
ey =4 [E T+ 1/7’)]

Taking inverse laplace transforms

o(t)=A(1-e“T). Ans.
1.4. Deriving the response equation for first order sys-
tem or instrument with sinusoidal input as forcing func-

tions.

T%? +0 =6 (A sin wt)

where 0 = value indicated by instrument ;
A = amplitude of sine wave ;
o = frequency of sine wave ;

T = time constant.

Taking Laplace transforms on both sides of the above equation
and assuming 6(0) = 0;

8(s) = Ao
T(s+1/T) (s* + 0?)
By partial fractions 0(s) can be written as
B B
_ 1 2 3
8(s) = (s+1/7) * (s +iw) * (s —iw)

B (s+im) (s —iw) + By(s —im) (s + 1/T)
+B3(s+1/T) (s +iw) =Aw/T,

Putting s=iW
A
B3 = m .. (1)
Putting =—iW
B, = ——-é——‘— .. (2)
2i (0T - 1) ’
Let s=-1/T, B, = AeT/(w*T% + 1)
0(s) = AoT + — 4 ;
(s+1/T) (0*T?+1) 2i(0T-1)(s +in)
A

t 2aT + 1) 5 - iw)
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_ AoT
(s+1/T) (@*T? + 1)
AT +1)
2l oT-1) (0T + 1) (s +iw)
AT -1)
"9 (0T +1) (oT - 1) (s - iw)
_ AoT . A
(s+1/T)(0*T?+1) (0*T%+1)
—iol 1 el 1 ]
2i(s+iw) 2i(s+iw) 2i(s-i0) 2i(s-iw)

Taking inverse Laplace transforms,

AoT -uT A
0t)=—5 — 5
2 (@*T% + 1) ¢ ((1)2Tfz +1)
ot _ -ioty ﬂ int - iwt
% (e ) 2 e +e ]
AwTe” A
(163
€= (u)2T2+1) (u)2T2+1)
Using trigonometric identity of
PcosA+QsinA=rsin(A+9¢)
where r=P?*+Q%"?and ¢ = - tan" ! (0T) ; Q/P = 0T
AoTe VT , Asin (0t +0)
ot t =3
®)= (T2 + 1) (m2T2+ 1)2 ast=
A sin (ot + -
eapw;q):—tan 1 (T) Ans.

1.5. For a first order instrument, deriving the response
equation for impulse input :

(sin ot — 0T cos wt)

Hint : put 6r(s) =1; Ans. for unit impulse
o) = 1 e' vT

. 3s . .
1.6. G =—5——7——, det t):
iven x(s) (32 D) (32 T4 ermining x(t)
Using partial fractions,
3s ..
x(s) = m, determining x(t) :
Using partial fractions,
3s
(s+i)(s—10)(s+20)(s— 20
A . B + C + D
T(s+i) (s-1) (s+20) (s-2i)

x(s) =
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equating the numerators, A = > B == C == 5 D=- %
1

x(s) = 1 N 1 1
28 +1) 2(s-1) 2(s+2i) 2s-2i)
Taking inverse Laplace transforms
M) ="t e T2
Using the relations,
¢ =cos t +1isin t,
e =cost-isint
x(t) =cost —cos 2t Ans.
1.7. Solving using Laplace transforms the Bessel equa-
tion of type :
1y y1 + ty = 0, initial conditions are
=1;y'=0,let g(s) = Lfit)
L(ty') =-d/ds(s® g(s) - s)
=-s?g'(s) - 2sg(s) + 1
L") =sg(s)~ 1; Lty) =~ d/ds g(s) = ~g'(s)
- 5%g'(s) - 25g(s) + 1 + 58(s) - 1 - g'(s) =

(32+1)gf+sg=0

2
integrating, In g + 1_11(_32_+_Q =1n C, where C, is a constant ;
g(s) = -Ll)m Fors>1, by binomial series.

(s
g(s)= 9 ( ]

= _ n'2n

22n (‘ 2 2n+1

C =1 for the given initial conditions. This is the series for
Bessel function.

1
LJdy(t) = —5——, y(t) =Jy(t). Ans.
O( ) (32+ 1)1/2 y( ) 0( )
1.8. Problem. Given x(s) = 3 determining x(¢) :
s(s+1)
Al A, Ag A,

) = "D’ (s +1)° ’ (s+1)°
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_ 1
(s+17°

A, =sx(s)

s=0 s=0

Ay = (s + 1)’x(s)

s=-1

d s _d(1)__ 1
A3_ds (s + 1)° x(s) __1—ds(s)_ 2

1 d° 3
A2=§—!;i?2(3+1) x(s) »
d (1
st 32 -
:'—2—3 :-—1
2s soo1
x(s)*—l-— 11 1
s (s+1) (s+1)?% (s+1)°
-t L2 -t
’ 1 _t_te_'_te
x(t)=1-e 5 " 6 Ans.

1.9. Definition of automatic control and examples :

Automatic control is the maintenance of desired value by
measuring the existing value, comparing with the desired value and
using this difference to initiate action by a controller for reducing the
difference. Examples are :

(a) Home heating system as shown in Fig. 1.1 (a).

REGULATOR
—_ FURNACE HOME .
FUEL GAS pum——r— '
]
[ < —— T ] |
WVALVE :
? :
J
FEED Fig. 1.1 (a)
/ —> COOLING
716, FLUID
\1\.

oo
CSTR |, PRODUCTS

coLD >
FLUID

Fig. 1.1 (b)
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Depending upon the temperature difference between the re-
quired value and measured value, a valve is operated to adjust
the fuel gas supply to the furnace, to bring the home temperature
to the wanted value.

(b) Temperature control in exothermic chemical reactor, by
changing the flow rate of cooling fluid shown in figure 1.1 (b).

The temperature in the reactor is measured by TIC (tempera-
ture indicating controller) and changes the inlet cooling fluid flow
rate, depending on the error (difference between measured value
and desired value).

(c) Temperature control in endothermic chemical reactor by
increasing or decreasing heat supply (electric or steam) shown in
Fig. 1.6.

(d) Temperature control in water heater by changing heat flow
shown in Fig. 1.4.

(e) Temperature control in heat exchangers (outgoing hot fluid
temperature for example) by changing inlet cold fluid flow rate,
as shown in Fig. 1.2.

HOT FLUID

M

COLD <«— COLO-FLUID
FLUID

G

] r PNEUMATIC LINE
HOTI L.
FLUID
Fig. 1.2

In this example hot fluid temperature is measured and com-
pared with desired value. Depending on the error, the inlet cold
fluid amount is changed.

1.10. The uses of automatic control

(a) increases in quantity or number of products
(b) improves the quality of products

(c) improves the uniformity of the products

(d) savings in processing materials

(e) savings in energy or Power requirements

(f) savings in plant equipment

(g) decreases human errors

(h) economical in some processes.
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1.11. Operational diagram and physical diagram with
examples.

Operational diagram represents the various units present in
the process or system during operation, including the automatic
controller also. The physical diagram does not include controller.
The operational diagram for water heater is shown in Fig. 1.3 and
physical diagram in Fig. 1.4.

——>HOT-WATER

ccew oy
]

TEMPERATURE]
MEASURING
INSTRUMENT

CON 7.'ROL LER

————  _HEAT
FLOW

COLD WATER—!

(1)

Fig. 1.3
HOT WATER

FTEMPERA TURE
MEASURING
INSTRUMENT

COLO—
WATER <«—HEAT
FLOW

Fig. 1.4

1.12. The elements of block diagrams and drawing block
diagram for one example :

Dynamic function : y s .
x = (y, t) where t is time

Algebraic function :
x=z-y

The block diagram for water heater z s -

is shown in Fig. 1.5 (b). -

R—set temperature,

m—manipulated variable, y
C—controlled variable,

[—load variable, e—error. Fig. 1.5 (a)
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ICONTROLLER

—a

HEATER

Fig. 1.5

®)

1.13. Drawing block diagram for control of temperature in

Chemical reactor.

The operational diagram is shown in Fig. 1.6 and the block

diagram in Fig. 1.7.

FEED
56T

m

HEATING/
COOLING

F — Feed rate,

Fig. 1.6
T.C. — temperature controller,

C; — inlet concentration,
C, — outlet concentration,

T — outlet temperature (temperature inside the reactor),
T; — inlet temperature.

7;-,LOAD

+ +
T
T co~7RaLLER1——5—[REAc70R —

Fig. 1.7
1.14. Short notes on block diagrams :

Block diagrams represent the various units present in a con-
trolled Process. Analysis is done with the help of these block
diagrams. Open loop transfer function and closed loop transfer
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function are calculated from these block diagrams for control
analysis. This is writing like flow diagrams in Process Control for
calculations. Examples of writing block diagrams are given in 1.12
and 1.13.

1.15. The process variables in process control and ex-
amples :

(a) Controlled variable : is that variable which directly or
indirectly indicates the form or state of the product. Examples are
temperature in a chemical reactor, outlet temperature of water in
water heater.

(b) manipulated variable : is that variable which is selected
for adjustment by controller so as to maintain the controlled vari-
able at the desired value. Examples are cooling by changing cold
water flow rate or changing steam flow rate for heating in Chemi-
cal reactor and heat flow changing (m) in water heater.

(c) Load variable : All other independent variables except
controlled variable and manipulated variable. Examples are inlet
concentration and temperature of reactants in a chemical reactor
and inlet temperature of cold water in water heater.

1.16. Process degrees of freedom and its uses :

Process degrees of freedom means the number of independent
variables in a process.

np =ny - ne ; np = process degrees of freedom, ny = number of
variables in the process ; n, = number of equations in the process.
The number of controllers to be used in a process should not exceed
the process degrees of freedom.

1.17. The process degrees of freedom in a continuous dis-
tillation column ,

\(01;02 ’03 104
> OVER-HEAD
REFLUX PRODUCT
T
g STEAM, m
—— ;. B1582,83,84
Fig. 1.8 B80TTOM PRODUCT

Let O, = overheaa temperature, O, = overhead pressure
O; = overhead composition; O, = overhead flow rate
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B, = bottom temperature ; B, = bottom pressure
B3 = bottom composition; B4 = bottom flow rate;
Fs5 = feed temperature, Fg = feed pressure ;

F; = feed composition ; Fig = feed per cent vapour;
Fq = feed flow rate ; m = steam flow rate.

The diagram is shown in Fig. 1.8.

Using Gibb’s phase rule at the overhead, there are two com-
ponents and two phases n=2-2+2=2. So any two of three
variables O, O,, O; are independent. The same is true at the

bottom where any two of the three of the variables B,, By, B; are
independent. For the feed also any two of Fj, Fg, F; are inde-
pendent. The number of variables are

Overhead—two out of O, 04, 0O3and O, —3

Bottom — two out of By, By, B3and By, —3
Feed — any two of F5, Fg, F;and Fg, Fy —4
Heat input -m..... —1

The number of equations are three which are material
balance, energy balance and equilibrium relationship. Then
n,=11-3=8.

Maximum number of controllers are — 8. Ans.

1.18. Process control variables in an exothermic chemical
reactor. Controlled variable : temperature in the reactor ; manipu-
lated variable : flow rate of cooling water ; load variable : inlet
temperature of reactants, inlet concentrations or flow rate changes.

1.19. Dead time, transportation lag and examples :

Dead time is defined as any definite time delay between two
related actions. Dead time is found in chemical reactions when a
finite time should be waited before the reaction begins to take
place as shown in Fig. 1.9. Sometimes transportation lag is also
accounted as dead time. For example, if the temperature measur-
ing instrument is placed at a distance, downstream of a heat
exchanger, a time delay occurs before the fluid reaches from the

LAG-TIME OR
DEfD TIME

‘.l

pt——

MEASURED
VARIABLE

O

TIME ——
Fig. 1.9
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outlet of the heat exchanger to the temperature measuring instru-
ment. Any delay until a variable begins to change is accounted as
dead time without being specific. Another example is conductivity
meter for concentration measurement at down stream of dialyser.

This is represented in Laplace form as e~ Ls where L is lag time.

1.20. For a single tank with resistance R and capacitance
C deriving

q'(8)/q,(s) = Ter 1’ where T = AR

Using unsteady mass balance equation :

Rate of input — Rate of output + change due to reaction = Rate
of change of accumulation.

In this case chemical reaction term is zero. The single tank
arrangement is shown in Fig. 1.10.

Q‘.(t)

Fig. 1.10
q;,—q, = % (Ah), where A is level in tank

A is area of cross section of tank and ¢ is time.
Using h/q = R (linear relation)

dgq
9;-q,=AR—? (1)
at steady state equation 1 can be written as
dq
qiS_QOS=AR d:s . (2)
Eq. (1)-Eq. (2) is
d
(@ = 9is) = (90 = Qo) =AR - (@5~ Gos) e (3)
Substituting g; — gis = qi" and qo — gos = go’, equation 3 becomes
dq,’
S _qg /= —= o
- g, =AR 4)

Taking laplace transforms on both sides of equation (4) gives
9/’ (s) —q,' (s) =sAR q,(s)
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collecting common terms gives
6 1
g/®)  (Ts+1)

Similarly it can be shown, replacing qo’ by 2’/R

Ko __R _,
q/s) (Ts+1) ’

1.21. For a stirred tank chemical reactor shown in Fig.
1.11 deriving Co’ (s)/Ci’(s) = R/(Ts + 1). Assume the reaction is of
first order and isothermal. F = feed rate ; V = volume of reactor,
C = concentration, ¢ = time.

Using unsteady mass balance equation for the CSTR shown
in Fig. 1.11.

Ans.

FC,-FC,-KC,)V= Vd—;;— .. ()
Where K is the first order rate constant. At steady state the
equation is
9Cos

FCiy - FCypy ~KC,, V=V —

... (6)
Equation 5-Equation (6) is
F(C;-Cy)-F(C,-C,)-K(C,-C,p) V- - (C -Cy) ... (7

F,c,-—l

v

e

Fig. 1.11

Using deviation variables,
C,-C;=C/,C,- Cos =Gy
Equation 7 becomes

FC; - FC, - KVC, V:iitC' . (8)

Taking laplace transforms on both sides of equation (8),
FC/(s)- FC/(s) - KVC,'(s) = VsC,'(s)
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collecting common terms gives,

C/)s) F/(F+KV) R
C/(s) V/(F+KV)s+1 Ts+1
1.22. Developing the process dynamic equations for a con-
tinuous stirred tank chemical reactor with conditions of (a) first

order type reaction (b) reaction is exothermic (c) rate constant
varies with temperature.

ACHT
——- 4T,

Ans.

Co
T
W, Ty ——> v >F,CosT
7j
Fig. 1.12
Mass balance equation :
dC,
FC;-FC,-K,VCpe™ “E”‘T=—d7° 14 . (9)

Heat balance equation :

Fp(T; - T) Cp+ K,VC e “**T dH - UA (T - T)
= VpCpdT/dt .. (10)

F =flow rate ;
T = temperature
C = concentration ;
K, = constant for reaction rate
V = volume of reactor ;
t =time;
p =density ;
Cp = specific heat
dH = heat due to reaction;
U = overall heat transfer coefficient ;
A = area of cooling surface ;
T; = jacket temperature ;
dE = energy term in reaction rate.

1.23. Number of degrees of freedom in CSTR having exo-ther-
mic reaction :
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The set up is shown in Fig. 1.12.
Inlet variables =T,,C,,F,TW,W=5
Outlet independent variables
=T,C, TWo,F, W -2 out of 5; equations
Mass balance, energy balance

=2
Number of degrees of freedom
=7-2=5. Ans,

1.24. Resistance and capacitance and an example for each.

Resistance (R) = driving force/flow

Capacitance (C) = storage/driving force.

For liquid level system :

storage = volume of fluid,
flow = flow of liquid,
driving force = height of liquid ;
R=dh/dq;C=hA/h=A
where A is the cross-sectional area of tank.

1.25. Analogy between thermal, electrical, gas and liquid
systems. The analogous quantities of voltage, current and charge
in electrical systems are marked with those in liquid, thermal and
gas systems. From these, relations for resistance and capacitance
are developed.

Electrical systems : Resistance

R)=de/di
where e is the voltage and i is the current.

Capacitance (C)=dV/de
where V is electrical charge and d is differential.

Liquid systems. & (height of liquid) is similar to e, g (flow
rate) is similar to i, volume of liquid is similar to charge (V).

Liquid resistance (R) =dh/dq.

The equation for flow rate (g) in turbulent flow is given by,

q=KA [2g (b - hp))?
where K = flow coefficient,

A = area of restriction,
g = acceleration due to gravity

Turbulent resistance (R) is = 2(h, — hy)/q

The laminar flow rate equation is
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(hy - hy) = 128 plg(mpd®)
where u = absoluteviscosity,
d = inside diameter of pipe,
p = liquid density,
! = length of pipe;
Laminar resistance (R)

_adh _128p
dqg mpd*

Gas systems. Pressure (P) of gas is similar to e, flow rate of
gas (w) is similar to ¢, weight of the gas in vessel (W) is similar to
charge (V). Turbulent gas flow rate equation,

w = KAY [2g(P, - P,)]"*
where K = flow coefficient,
A = area of restriction,
Y = expansion factor,
p = density of gas.
2(P,-P

Turbulent gas resistance (R) =dP/dw = Ll—w——ﬂ, gas capaci-
tance (C)=dW/dP=Vdp/dP, using ideal gas law Vdp/dP
=V/(nRT)
where V = volume of vessel,

R = gas constant,
T = absolute temperature of gas.

Thermal systems. Temperature (0) is similar to e, heat flow
rate (q) is similar to i, heat content in the object (m Cpd9) is similar
to charge V.

Resistance (R)=d0/dq

Conduction heat equation is, ¢ = KA(8, - 65)/dx where K =
thermal conductivity, A = area normal to heat flow, dx = thickness
of conductor.

Thermal resistance by conduction = R = dx/(KA). In heat trans-
fer by convection, g = hA d6

where h = heat transfer coefficient,
A = area of heat transfer

Thermal resistance by convection
=1/(hA)
In radiation heat transfer,
q = KAE (6 - 63)
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where K = constant,
E = emissivity, A = surface area,
Thermal resistance by radiation

(R)=d6/dq

do _ 1

dq  KAE (82 + 03 + 6% 0, + 620,)
taking 6, = (6, +6,)/2

de _ 1/KAE 1

dq  (20,)°- 20,0, (0, +0,) 46} KAE
if 0, = 6,, sod6/dq = 1/(4KAEG})
Thermal capacitance
(C)=m Cpd6/d8 =Cpm
where m = weight of block,
Cp = Specific heat of block.

1.26. Problem : Determine the capacitance of the vessel of 5
sq. ft.

Cross-sectional area and 8 ft. high, storing carbon dioxide. The
storage conditions are absolute pressure = 150 PSi, absolute
temperature = 540 degrees R.

For theory refer 1.25 under gas systems.

Gas capacitance (C) =dW/dP = V/(nRT) for ideal gas.

W = weight of gas, P = pressure of gas.

Here n = 0.826 using ideal gas behaviour

R =10.65 cu. ft. PSi/(lb. mole. or)
58 -3
C=1065+0.826 x540 - 420+ 107

1.27. Time constant. This comes for first order systems only.
Time constant of any unit is the product of resistance and
capacitance of it. The response of a set of units depends upon the
time constants of the individual units and their interconnections,
say Parallel or series. Equations are different for different connec-
tions.

For a first order system the response reaches 63.2% of final
value for one time constant. For a mixer the time constant is =
Volume of fluid in the mixer/Flow rate of fluid.

1.28. Problem : Steady heat flow occurs through a one
inch thick wall of carbon plate with an area of 2.0 sq. ft. The
temperature drop is from 330°F to 180°F. Calculate the ther-
mal resistance ?

Thermal conductivity (K) of carbon plate
=29.0 BTU/(ft. deg. F. hr.)
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R =d6/dq =dx/(KA)

1.0 * 3600
" 1ox 293" 5.20 deg. Sec./BTU.

1.29. Transfer function of a Process

The transfer function of a process represents the variation of one
variable with any other variable in the Process in the Laplacian form.
For example in a liquid tank, if ¢; is the inlet flow rate, q, is the
outlet flow rate, T is time constant, then G(s) = g, (s)/q;(s), where
G(s) is the transfer function of ¢, and g;.

These transfer functions are used for analysis of linear sys-
tems.

1.30. Problem : For the heat transfer figure shown below, in
Fig. 1.13, ¢ (heat flow) = 100 cals. per

¥
minute, mass of water including water I
equivalent is 1000 gm. -] —
Heat transfer 70°c_| | 70
= hA dT = 10 (T - 70) cals/minute. >
(a) Find T (steady state temperature), ~ >
(b) find time constant, T (c) find ‘
T'(s)/q'(s), (d) find T at 2 minutes after q Fig. 1.13

changes to 90.

(a) Using heat balance, at steady state,
Input heat rate = output heat rate
q= 10 (Ts - 70) =100; TS =80°C. Anms.
(b, ¢) Using unsteady heat balance,
q — 10 (T - 70) = 1000 Cp% .. (11)
where Cp = specific heat of water = 1.0, ¢ = time. At steady state
equation 11 becomes,

g, - 10 (T, - 70)=0 w (12)
Substracting equation (12) from equation (11),

(@ -qy) - 10 (T -T,) = 1000 % (T-T,) .(13)
Let q-qs=q,T-Ts=T,
Eq. 13 becomes, ¢’- 107" =1000dT"/d¢ ...(14)

taking Laplace transforms on both sides of equation 14,
q’(s) — 10T(s) = 1000 sT"(s)
T(s)/q’(s) =0.1/(100s + 1) Ans.

Time constant = 100 minutes, Resistance = 0.1
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d) q'(s)=-10/s, T'(t)=- [1 - 19
at 2 minutes, T'(t)=-0.02
T-Ts=-0.02; Ts=80°C;
T=80-0.02=79.98°C. Ans.
1.31. Problem : For the block diagram below, calculate the
transfer functions of, (a) ¢, to t; (b) r to ¢; as shown in Fig. 1.14.

S+/ t’

(X —>t,

Y

Fig. 1.14
_ 2 10 ho
(a){r (0‘2“1)}2*0'5*<5s+1)+(5s+1)“"
taking t,=0
Y 10/(5s+1)
ro 10
1+ (5s + 1) (0.25 + 1)
e 5
lifying, to/r = s+ '
simplifying /T 05126755 s
(b) taking r =0, to/t, = 1/(58;01)
T (0.2s+1) (55 +1)
0.2s+1

t2/tl =

(s® +5.25 + 11)

1.32. Process dynamic equations of a counter current
dialyser, shown in Fig. 1.15.

FsCr— ] 5 C,
B )G~ V2 —F,C3
Fig. 1.15

F = flow rate, C = concentration,
K = permeation constant, A = permeation area

The mass balance equations are :

F3C3 - F4C4 + KA (Cl - C4) = Vde4/dt

Flcl—cmz—I{A (Cl—c4)=V3dC2/dt} model —1
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FsC3-F,C,+ KA (Cy-C3) =VydC,/dt
F\Cy - F,Cy~ KA (Cy— Cy) = Vstz/dt} model — 2
Keeping flow rates as constants,
Fy=F;;F3=F,
At steady state model 1 equations become
F3Cys - F3Cys + KA (Cys - Cys) = VopdCys/dt
F\Cis - F,Cy, - KA (Cys - Cys) = V3dCyps/dt
Substracting steady state equations from unsteady state equa-
tions and using C; -C;s=Cy, C3-Cys=Cy"; C4-Cy =C,/, and
Cj; is constant.
F\Cy-F,Cy-KA(C/-C)=V3dC, /dt
FiCy' -FsC,/ +KA (C{ -Cy)=V,dC,/dt
Taking Laplace transforms on both sides of the equations and
solving simultaneously,
C/(s) KA/(F3+KA)
C/(5) Vy/(F3+KA)s+1
Cy(s)  (F,-KA)(F;-KA)+K°A’+ (F, - KA)s
Cy(s)  s*V,aVp+ s (FyV, + FaVs + KAV,) + Fy(F3 + KA)
Similarly using the same procedure, transfer functions are
obtained using model — 2 equations.
1.33. Quiz questions
(a) Laplace transform of frequency input of magnitude, A :
Ans. AW/(s*+ WP
(b) Controlled variable in a heat exchanger.

Ans. Temperature of cooling or heating fluid (outlet
temperature)

(c) Manipulated variable in heat exchanger.
Ans. Flow rate of heating or cooling fluid.
(d) Load variable in heat exchanger.
Ans. Temperature of entering hot or cold fluid.

(e) Transfer function can be derived for highly non-linear sys-
tems or not ?

Ans. No.
() Time constant of mixer.

Ans. Volume of mixer/flow rate of solution.
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(g) What this symbol stands for in block diagrams. +*

. . S>Q®—-z2
Ans. Summing function. +1y

(h) General transfer function of a first order system.
Ans. R/(Ts+1).
(1) General transfer function of a second order system.
R
(T%%+ 26 Ts+ 1)
1.34. Obtaining frequency response values in a simple
way :
For first order system :
¥(s)/x(s) = output/input
=R/(Ts + 1) = G(s), putting s =iW ; GGW) =

Multiplying and dividing by (1 - T¥W),
G(iW) = R(1 - iWT)/(1 + W2T%)
This G W) is a complex number. Magnitude of a complex
number is :

s.

N
(Tiw+1)

V(Real Part)” + (imaginary part)®
1
=R/(1 + WT%):
(Phase) = tan™ ! (imaginary part/Real part)
=tan ! (- WT) = - tan” } (WT)

y(t) = a%@@ sin (Wt + ¢) Ans.

Same procedure is applied for obtaining frequency response of
other transfer functions shown in later chapters.

1.35. Developing dynamic equations (complicated ex-
ample) :

Thermal dynamics of a distributed parameter non-adiabatic
humidification Process : (Ref : R.R. Stewart and D.F. Bruley, Vol.
13, No. 4, AL.Ch.E.J. 1967).

Assumptions :

1. Flat velocities and temperature profiles exist in both
phases.

2. Gas phase mass velocity is constant.
3. Film theory applies.
4. Mass transfer sensible heat is negligible.
5. Heat loss from the liquid.
Phase to the surroundings is negligible.
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ot ot,
v % __UP

g -

20 + g aZ 0 CPgA (tl tg) ...(15)
a, o UP AKyP ,

% V% = 5cpa e aopa Hd ~Hy)  -(8)

For simplification, H,' =0, Hgi =g

Putting time constant (T) and taking Laplace transforms,
dz, LS, 1
dz v, ¢ VT,
dt;, s+U/1)+ (/1) - (/1) = (1/T)
5" v t) = v, %, ..(18)

Model 1 is obtained by solving equations (17) and (18) with
boundary conditions, 't'L =0atz=L,f, =% patz=0.

7 -(17)

% )= gy € COLIB() cos [Bs)L + sin [Bs) L

[ D sin B(s)L

B(s) cos B(s)L + E(s) sin B(s)L
Model 2 neglects mass transfer, that is o = 0.

Model 1 ’: e w ...Model 2.

mg ~ ‘ml~
Model 3 considers the effect of gas phase temperature changes
on 1, through linearizing expression :

11 g
?—‘ng[“ﬁr OJ

gss

- E(s)]} ... Model 1

Z,
?51— (s) =exp {B{l— (1 - exp (KL) - [F(s) + N(s)]L]}... Model 3.
80

Model 4 assumes that mass transfer, heat effect and liquid
temperature change ¢, are negligible. These reduce equations (17)

and 18 to

L&
S

1/
(s)=exp - s+d/7%) L ...Model 4.
g0 Vg

Nomenclature : A = cross sectional area, sq. ft.

1
B=(D-E%:
C = (F - G)/2; CP = heat capacity, BTU/(1b.°F)

o~
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1
D=1/(xy, V, V) + &t V, V)
E=F+G)/2;F=(s+1/1)/V,
G=I[s+1/1)+(1/1x1/V,
h = film heat transfer coefficient, BTU/(hr.sq.ft. °F)
H’ = dynamic humidity, Ib. vapour/lb. gas
K, = gas phase mass transfer coefficient, Ib/(hr. sq. ft. AH)
L =length of tower, ft.; M = §j/(Ty55V,Tps50)
N=pl/ TgSS VngSSO
P = circumference of gas-liquid interface, ft.
s = Laplace transform;
t = temperature change from steady state;
T = Laplace transformed temperature change;
T = temp. °F; U = overall heat transfer
Coefficient = hy hy/(hy + b))
V = velocity, ft/hr ; z = axial position, ft;
I=(Tiss0 — Tissp — Tgsso + Tess)/ [1 - exp. (KL)]
. (Tysst — Tesse) + (Tesso — Tisso) exp (KL)
7= 1-exp (KL)
o = Constant relating change of interface liquid
temperature to change in interface humidity,
(Ib. vapour/lb. dry air)/ °F
B = dimensionless constant relating change in gas phase
time constant to change in gas phase temperature.

0 = time, hr. ; p = density, 1b,,/ ft%; A = latent heat;
T, =p,CP, A,/(UP),hr; 1,=p,CPA,;/UP, hr;
Tmg = g T/ AKy"), . ; T, = by 1/ (MK 00), hir;

g = gas Phase; [ = liquid phase ; i = interface;
ss = steady state; m = mass transfer ;
o = air inlet, L = air outlet ;
1.36. Dynamics of a packed liquid extraction column,
shown in Fig. 1.16.

Ref : J.E. Doninger, W.F. Stevans, A.I. Ch. E.J., Vol. 14, No.
4, 1965. Mixing cell model is used.

The dynamic equations are
dx
Xy 1L-2,L-QH=Hhy dt"
ay'n
dt

Yne1G-¥,G+Q,H=Hhg
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Ly G
(] '
! id
%y G ty';
—Q, n=n
’ )
x, Ynu

N 6l
Zo  Fig. 1.16 a4
where Q, =K a(x, - x*,).
y' =mxx-b=0.768 x* - 0.0056
(HAC-water —organic Phase)
L = water phase flow rate, gm/(min. sq. cm.)
G = organic phase, gm/(min. sq. cm.)
x = mass fraction of acetic acid in water phase,
gm. acid/gm. solution
y = mass fraction of acetic acid in organic phase, gm
HAC/gm solution
a = mass transfer area, sq. cm/c.c. packing
@ = mass transfer rate, gm/(sq. cm. min. transfer area)
x* = equilibrium value of x
K;, = mass transfer coefficient, water phase, gm/(min. c.c.)
Yn=Ynt b
hp =hold up of raffinate ; hg = hold up of extract
By taking Laplace transformation of the first four equations,
the following equations are obtained.
TLEIH-Z"(TLTG_fg'*’ l)zn+1 +TGEn=O

H H
Ty =T e T 1= e

Hh HK HK
T6="G *mg t1i€" G

H = packing height, cm. (mixing cell)
X,y = Laplace transform of concentration variable.

¥’ = mass fraction of acetic acid in organic phase.
gm acid/gm. solution

m = distribution coefficient
X,=Xpatn=0,;y,,;=o0atn=N (boundary values)
G(s)=@!= TGN\/(TLTG—é’-F 1)2—4TLTG
X T Tg(DY -DY-Dy '+DY™N)-fz (DY - DY)
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- v -fg+1)°-4T, T,
whereDu:TLTG fa+1t (TL;'G fe+1) LT,

1.37. Well mixed isothermal crystallizer :

Ref : M.B. Sherwin, R. Sinnar and S. Katz, A.I. Ch. E.J., Vol.
13, No. 6, 1967, shown in Fig. 1.17.

PRODUCT
Wa:Co _  SLURRY
7] Wi,C

Fig. 1.17
Conservation equation :

- .9 ip O 2
Particle balance : 5 V'Hh+ > (G“oV)
=IVBr’-ro)- Wif+Woy

Solute and crystal balance :
g; [V(eC®+ (1 +€)-(1-¢)p)
= Wpleo Ch + (1 - €0) pl - W, [eC8 + (1 - €)p]
Term 1 = accumulation of crystals at size r ; term 2 = net flux
of crystals away from size r due to growth, term 3 = input of

particles at size r, due to nucleation ; term 4 = withdrawal of
particles of size r due to product removal ; term 5 = input of
particles of size r due to solids in feed ; term 6 = accumulation of
solute and crystals, term 7 = input of solute and crystal by feed
stream ; term 8 = removal of solute and crystal due to product
withdrawal.

The above equations were simplified and solved with some
assumptions.

1.38. Matrices and determinants.

an Gz ... aim
Matrix A =| %21 922 - Ao
Qny Qpg  eeeeee Qpm

Horizontal—row, vertical—column
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X1
X | . Matrix A = [A)
’ Determinant A = |A |
xn
Square matrix is the one where the number of rows is equal
to the number of columns.

Vector =

a; O o .. ©0

0 Qo 0 N 0

Diagonal matrix A=| 0 0 a3 .. O

0 0 0 .. a
[A] + [B] = [(a;; + b;)] ; [A] - [B] = [a;; - b,
Ka;) Kay, | Koy,
KIA] = Kay K, Ka,, | whereKisa
o scalar quantity

Kanl Kan2 o Kanm

[Al [B]=[C]=C;=Y ai by
K=1
[AB] [C] = [A] [BC]
(A +B] [C] = [AC] + [BC]
[C] [A + B] = [CA] + [CB] ; [AB] # [BA]

Inverse of a matrix : if A = (‘; g)

-1_ 1 d -b
A " (ad - bc) (—c a]

Ay Ayn L Ay
Adjoint matrix : adj A = A.12 Ap ... Ap
Aln A2n vee Ann
A 1 - ﬁj!omt/{_
|A]

where |A| is determinant of A.
where Ay, Ay, .... A, are cofactors.

a a . @
Transpose of A="12 722 n2
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d d d ]
ar an() d a9(t) dt a1,(t)
d d d
d oy gt ® o axn®) 2z 22
=
dt :
d d d
_.(-i_t an(?) ;i—t an2(t) Et- anm(t)-
[A@) dt = (] aijit) dt)
Janwdt Japvydt . [asode
Ialm(t) dt IGZm(t) dt Ianm(t) dt

Multiplication of matrices :
an  ap|(by by Cu Cyp

Wl 1B =(C] [‘121 azzJ [bzl bzz) [021 Cyo

Ci1=a31b11+ 150515 Cra=ay byg + a5 by

Co1=a91 b1+ agg bgy 5 Cog = @g1 byg + Ggg by

2
Cir=0ajlb k+aj2bk= ajibik
i=1

Determinants :

ap 0@y

Al =
Qg1 Qg2

=(@y; Qg — Gy A1)

Q... G| |by by
a (122
|A| |B]=|"®

agn| |ba1 Do

an () Qpp bnl bn2 Lo
Cn Cyp Cia

_|Ca Ca Can
Cn 1 CnZ b Cnn

Cir=0a; by +apbgp + ... +a;, by

29

1.39. Determine the transfer function H(s)/Q(s) for the
liquid level system shown in Fig. 1.18. Resistances are linear
(R, and R,). The flow rate from tank 3 is maintained constant at

b by means of a pump i.e. the flow rate from tank 3 is independent

of head A. The tanks are non-interacting.
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4®)

Q

A
TANK~[

CAPITAL LETTERS ARE
DEVIATION VARIABLES

=

Fig. 1.18

H(s) _ H(s) | Qq(s) _ Q1(s)
Qs)  Qus) @i(s) Q(s)
To obtain H(s)/@Q2(s): Applying mass balance for tank—3

dh
02"Qo=A3§t"

at steady state,

dhs
958 —qos=Ag =~

in deviation form
d
(92~ g28) ~ (g0 — qos) = Ag 1y (h = hy)
Q2 = A3 dH / dt
taking Laplace transforms on both sides

- _ 1 His) 1
Qq(s) = sA3 H(s), Qa(s)/Q(s) = T 71 Oy~ A
Qi(s) _ 1

Q) (Tys+1)
He)_ 11 1
Q(s)  Ags (Tys+1) (Tes +1)
where T1 = AIRI’ T2 = A2R2 Ans.
1.40. Linearizing non-linear behaviour.
Non-linear terms are linearised by using Taylor’s series ex-
pansion.
(1) Linearization of one variable :
Neglecting higher order terms (derivatives)

Z(x) = Z(xs) + in‘ (x —x,) ...(19)

a

where x; is steady state value.

X
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For Example : ¢ = CVh in liquid — level system (flow rate
and level relation)
where g = flow rate, C = constant and % = liquid level in tank.
For single tank shown in Fig. 1.19,

t)‘(t)

h A R(NON-LINEAR)
—=4, (%)

Fig. 1.19

The unsteady-state material balance equation is (assuming
constant area of cross-section, A and density of fluid in the tank)

qi- g, =Adh/dt .(20)
g,=CVh (non-linear relation) ...(21)
-CVh =Adh/dt

We can not take Laplace transforms on both sides for the above
equation and obtain transfer function since VA is present. Since
Qo is a function of A, using Taylor’s series expansion,

aqo
QO a h

9,
9n " on

aqo

(h - hs)

h o (Clh) = 2th

—T’QOS Ch,

So qo=C\/Es—+(h—hs)‘2—\/¢h—
s
Eq. 20 becomes,

dh (22)

-Chy - (h - hs)T

In deviation form,

Qi = qis) —T=(h he) = A (h hy) ...(23)
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In deviation form,

Q-5 H=22H .(24)

S
Now, taking Laplace transforms on both sides of equation 24,
Qi(s) - :?—\(71==H(s) =sA H(s) ...(25)

Hs) 2R,
Qs) =H(s) {As * _T’J ' Qis)  (As2Vh, +C)

If we compare with the standard form of first order transfer
function,

gi(% TSRH,R 9h,2/C; T=RA
i

(2) Linearization of a term having two variables :
Taylor’s series expansion is

Ze.9) =260 30+ 57 | [

Z (y - y,) + higher order terms in
a.y Yo Xg (x -'xs) and (y —ys)

Neglecting higher order terms,
aZ
Z(x,y) = Z(xsv ¥s) + 5;

+ ...(26)

(- xg)
g Vs

/A
+ %

-y ..(27)
X5 Vs

If Z is a function of 3 or more variables, the linearized form is
same as that of equation 27 with additional terms for each vari-
able.

For example : In a dialyser using model 1 equations as shown
in item 1.32.

F;C;-F,Cy+KA(C,-C,)=V,dC,/dt
F,C,-F,Cy-KA(C,-C,) =V3dCy/dt
We have seen, the equations are linear if flow rates are con-
stants.
Suppose if flow rates (F’s) are also changing, then the first

two terms in the equations become non-linear. Then using Taylor’s
series expansion,

F3C3=F3,Cy; + (F3 — F3,) Cg5 + (C3 — Cy,) Fyg
FCy=F 4 Cy+ (Fy—Fy) Cyg +(Cy — Cy) Fyg
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FIC,=FCy+(F1-Fy)) Ciy + (C, - Cyy) Fyg
FoCy=FyCos + (Fy = Fy5) Co + (Cg = Cyy) Fog

using the above linearized relations, transfer functions can be
determined.

1.41. Process dynamics of plate absorbers

The treatment of absorbers and distillation columns is same.
The arrangement of a n stage absorber is shown in Figure 1.20.

V - vapour flow rate

L - liquid flow rate

x - liquid composition

¥y — vapour composition

b - constant
H - liquid hold up on plate
h - vapour hold up on plate
T - time constant

L ——{
x"”:" ___l I et Yn o
—
T PLATEN
L
—{I: Y -1
TVn -1
Ly
1 —
V,
Tz»yz PLATE-2
by %2 oY
PLATE-1
i
X
Ly, %y <— ~%,%
Fig. 1.20

The assumptions are (a) Perfect mixing of vapour and liquid
phases (b) equilibrium relation of the form

¥Yn = mx, + b holds. (¢) no chemical reaction.
Unsteady state mass balance of a component on plate n is :
Using input-output = Rate of accumulation,
d
EZ (ann + hnyn) = Ln +1%Xp41 ¥ Vn -1¥Yn-1- Lnxn - szyn
assuming H,=Hy;= ... =H=H,
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%(Hxn+mhxn)=Ln+1xn+l+V,,_l(mx,,_l+b)
-L,x, -V, (mx,+b)

It is reported by experiments that the overall mass balance
equations of form,
dL, dLy dL

TI=L2‘L1,TW L3_L2’ """ T.Esz”"l-L"'

So for a n-plate column, there will be n equations of component
balance and n equations of overall balance. If temperature also
changes on each plate of the absorber, there will be n equations
representing temperature variation. These equations are solved
simultaneously to obtain the solutions with the help of boundary
conditions.

For I-plate absorber : The equations become

% (Hxy + mhxy) = Loxg + Vo (xgm + b) — Lyx; + V| (myx; + b)

..(1)
dL
Tj‘l—t—l =L,-L, (2)
in deviation form, equations 1 and 2 can not be written because
of the presence of product of two variables (L and x). Either they
have to be linearized by using Taylor’s expansion or we have to
assume L; =L, =L.

Assuming L, =L,=L =constant and V=V, =V =constant

equation 1 becomes in deviation form as,

% (Hx{ + mhx,") = Lxy’ + Viyxy’'m — Lix;" — Vmx,
taking Laplace transforms on both sides gives,
sHx,(s) + shmx'(s) = Lxy(s) + Vi x¢'(s) m — Lx,(s) — Vimxy(s)

collecting common terms, we get
x1(s) [sH + shm + Vym + L] = Lxy/(s) + Vgmxy'(s)

if x,, is constant (y,) £((9) = L
0 0 xy/(s) ~ s(H +mh) + (Ly + Vym)
xll(S) _ mVo

if x; = constant, x5'(s) s (H+mh)+ (L, + Vym)

So first order transfer functions are obtained for one stage.
For two stage, second order transfer function is obtained and for
n stage column, nth order transfer function will be obtained.
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1.42. Heat exchangers (Fig. 1.21)
l 5i 1 Tsi Cs 0

T FLUIO

W,;,T,
# & N

el

lcm 0 FLUID
Wso,Ts0

Fig. 1.21

W; = flow rate of tube side fluid, Ws = flow rate of shell side
fluid, Ts = temperature of shell side fluid, Tt = temperature of tube
side fluid, ¢ = inlet, O = outlet, V¢ = hold up volume on tube side,
Vs = hold up volume on shell side, ¢ = tube side, s = shell side.

Assumptions : (1) temperature variation along the axes is
neglected (Lumped parameter is assumed) (2) flow rates are equal,
that is Ws; = Ws = W50 and Wy = Wy = Wy. (3) Physical properties
do not vary much.

The unsteady heat balance equation on tube side is :

W.Cip, Tyi - CWip, Tyo = UA (Tyo - Ts0)
P C, %% ..(1)

Where p = density, C = heat capacity, U = overall heat transfer
coefficient, A = heat transfer area.

The heat balance equation on shell side is :
WsCsps Tsi - Cs Wsps TsO +UA (TtO - TsO)

dTy,
=V, C; at

The equations (1) and (2) are the process dynamic equations
(simplest type) of heat exchanger, obtained in simple form, with
some unrealistic assumptions. In practice, in heat exchangers,
temperature varies considerably along the length.

Equation 1 and 2 are of linear type, if one of the two variables
(flow rate, temperature) is kept constant. So transfer functions
can be obtained. For rigorous equations, distributed parameter
model is to be used.

-(2)

Equation (1) in deviation form is : (keeping W, W,, T,; as con-
stant)
WCp, T - WCp, Ty - UA (T - Tyy)
= Vtctpt thOI/dt ..-(3)
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Eq. 2 in deviation form is :
WsCsps Tsi, - Ws Csps TsO’ +UA (TtO, - sO/)
=V,p, CdTy /dt ..(4)
in Laplacian form, equations 3 and 4 are
= WiCip, Tiy'(s) - UAITy'(s) = Tso'(s)] = Vip, CisTg'(s)  ...(5)
WsCspsTsil(s) - WsCsps Tsol(s) + UA[TtOI(s) - Tso,(s)]
=V, CsTyo'(s) ...(6)
Eliminating T,y'(s) between equations (5) and (6), and using
Vip,Cs + UA+ Wy, C,=A;ss + B gives,
Ty'(s) _ W,C,p, (A;s + B)
Ty/(s) (s Vp, Cy + W,Cyps) (Ass + B) - UPA% + UA(A;s + B)
Similarly, transfer functions for other outlet/inlet variables
can be obtained.
1.43. Inputs : (1)

(a) Step function : x(¢)
The step function is shown in Fig. T F ==

1.22 :
x=0;t<0
x=A;t>0 _{
x(s)=A/s 0 Time —»
(b) Impulse function : shown in Fig. 1.92
Fig. 1.23 b

at x=0;t<0
x=A/b ; O0<t<b e
LIA3(t)] =L (Impulse) =A
(c) Sinusoidal input : 1
Shown in Fig. 1.24
x=0;t<0 b
x=Asinwt,t20 0 0
x(s) =Aw/ (s2 + 0)2)
where A is amplitude of sine
wave
1.44. Single Tank block diagram : Shown in Figs. 1.25 and
1.26
Inflow rate (g;) is manipulated variable (m). The vessel head

‘c’ is the controlled variable and ‘u’ is downstream head as load
variable.

A V

|
: A/b
I
!

|

—— Time,t

Fig. 1.23
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| 2m

O'- 1
I
1
10
—=Time
Fig. 1.24
m
q{ 1
e
TN T~ R
O e P~
Fig. 1.25
By mass balance to the tank,
m—-q,=Adc/dt (1)
q,= E} c-u) -(2)

where R is valve resistance, A is area of cross-section of tank and
q, is outlet flow rate.

Replacing qo in Eqn. (1) by Eqn. (2) gives,

Ac=m- -}-12- (c-u)
Tc+c=R,+u where T=RA
Taking Laplace transforms on both sides of the equation, and
taking initial values as zeroes gives,
sTe(s) + c(s) = Rm(s) + u(s)
¢(Ts+ 1) = Rm(s) + u(s)

cs) _ R . _m.cs) 1
m(s)_Ts+1[takmgu(s)—ol’u(s)—Ts+l

taking m(s)=0
The block diagram for the above single tank is, Fig . 1.26
G, = controller transfer function,

G,, = Measuring instrument transfer function.

1.45. Non-interacting systems : An example is arranging tanks
one below the other as shown in Fig. 1.27.
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TS71 [ U

R R +
G, S TS o(s)
+ m(s) +1
Gm
Fig. 1.26

Hy(s)  Qy(s) . Hy(s)

Qs) Q) @)’

Qis) 1 Hys) Ry
Qi) (Tis+1)’ Qys) (Tes+1)
Hys) (1 Ry

Q) |Tys+1|(Tes+1)

In general for non-interacting systems,

q(t)—l @

We know,

So

h Ry R = Resistance
Ay i ha H = deviation level
q, 2 . Q = deviation flow rate
A 2
2
e, @
h - level q, ha
q - flow rate A3 R3
A - area of cross-section of tank , @
Fig. 1.27 93
X, (s) m k;

Xo(s) io1Ts+1) ...(3)

1.46. Interacting systems : An example is arranging the
tanks as shown in Fig. 1.28, side by side.

® @ ®

hy H, Hy
Hr Ry k Ry hs R3

A
1 or; | A; Of)' A3 CPT‘qa

Fig. 1.28

q(t) —f
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In this arrangement, the flow into the second tank depends on
level difference in first and second tanks.

1
Q= E; (hy - hy)
Q _Ql =A1 dHl/dt ’
Q- Q:=Ay;dHy/dt
in deviation variables,
1

1= R, (H,-H));
Qz = HZ/R2

Taking Laplace transforms for the above equations,
Q(s) - Qy(s) =sAH, ..(4)
Q1(s) ~ Q2(s) = sAH, ...(5)
R,Qy(s) = Hy(s) - Hy(s) ...(6)
R,Q(s) = Hy(s) (T
Eliminating @1(s), Q2(s) and H(s) in equations (4) to (7) among

them, gives
Hy(s) R,

= ...(8
Q(S) T1T2 S'2 + (Tl + T2 +A1 Rz) s+1 ( )

1.47. Problem : Feed at a rate of ¢ =40 lit/minute and a
composition ¢, = 0.30 gm mole/litre is entering a continuous stirred

tank reactor containing a constant volume of 2000 litres of react-
ing material. Assume a first order reaction with rate constant

_ gm mole / gm. mole
K=0001 ¢ “min / lit

(a) Calculate the exit composition F(q)

(c) at the end of 10 min. if the feed q l
composition is suddenly changed to i
0.5 gm. mole/lit. at a time ¢ = 0.

(b) How will you derive the overall
dynamics of the system if both
q and ¢ are subject to change in the
reactor ? Fig. 1.29

Solution. F(q) — Feed rate lit/min.

Cy4; — inlet composition, g%it?:_le_

V = Volume of reactor, litres = 2000
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. Cs) q/@+KV) R
Using 1.21, Cu'(s)~ Vs ‘1 T Ts+1

(@ +kV)
_ 9Cy  40x030
at steady state, C= @+ KV) " 20+ 2000x 001" 0.2
_ q _ 40 _
k= (g +KV) 40+ 0.01x 2000 =067

14 2000 .
T= TKV = 40+001x2000 - 233 min.
s (05-03) . . 02 R
C'(t) = 0.2 x 0.67 (1 — e~ /333y
at t = 10 min, C’(¢) = 0.0348
C(t) = 0.20 + 0.0348 = 0.2348  Ans.

(b) Mass balance equation is :
qC,;—qC -KVC=VdC/dt ..(9)

Using Taylor’s series expansion,

9 9
fe ) =fapy)+ L @-z)+ Ll -y
ax xa’ys ay X5 Ys
FCy;=F; Cpis + FCp' + Cpis F
FC=FC,+FC +CJF'
F=q
Equation (9) becomes,
FCp+F,Cy/ +Cp ' -FC,-FC' -CF -KVC = V‘é—;
...(10)
Eqn. (9) at steady state is :
FCp-F,.C,-KVC, = ngs ..(11)

Eqn. (10) - Eq. (11) :
F,C'p+Cay, F' = F.C' — C.F = KVC + KVC, = —(‘i—’% (Cao-C.)

Collecting common terms after taking Laplace transforms,
C'Ai(s) Fs + -F,(s) (CAis - Cs)
(sV+F,+KV) (sV+F;+KV)

C'(s)= Ans.
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1.48. Process degrees of freedom :

w,T
w,T{ T
———— g — temperature
o — water flow rate
——-—+
Fig. 1.30

Examples : Water heater shown in Fig. 1.30.
Variables : Inputs: w, T;, ¢ > 3

Outputs: 0, T — 2

Total -5
Number of equations are :

Material balance — 1
Energy balance — 1

2

n,=n,-n,=5-2=3 Ans.

These 3 can be placed as : one at w, one at T; and one at g to

control temperature. If more than 3 controllers are used then
interaction occurs. Heat exchanger : shown in 1.42.

Inputs: @, Ty, 05, Tg; > 4
Outputs : w,, T}, 05, Ty, — 4

Total - 8
Equations :
Material balance —» 2 (one shell side, one tube side)
Energy balance — 2 (one shell side, one tube side)

Total -4
np =8 — 4 = 4. These four can be placed as one at w:, one at
T:, one at ws and one at T;.

1.49. Parts of a control system. For a CSTR with exothermic
chemical reaction shown in Fig. 1.31, using cooling water to main-
tain constant temperature in the reactor, the various parts are :

The control system consists of

(1) Process (exothermic CSTR)

(2) Measuring instrument (temperature measuring instru-
ment)

(3) Automatic controller
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T ™. Controller
,Ci, T f/\\
1 . TM’m
Water Final control
element
CSTR
T
Cooling ¢ — F.CT
water | W Jacket
Fig. 1.31

(4) Final control element (a valve to change flow rate of cooling
water)
(5) Transmission (electrical or pneumatic).

1.50. Problem

Athermometer is immersed in a liquid which is heated at such
a rate that its temperature is increasing at the rate of 0.05 degree
centigrade per second. If both the thermometer and liquid are
initially at 20°C, what rate of passage of liquid over the ther-
mometer bulb is required if the error in the thermometer reading
after ten minutes (long time) is to be not more than 1°C? The mass
of mercury in the bulb is A :
10 gms and the heat trans- e RN V4 Film resistance
fer coefficient to the bulb
is given by the equation,
h =735 u%® where A is the
heat transfer coefficient in
watt/(m2.°C) and u is the
linear velocity of the liquid
in meters/second. The sur-
face area of the bulb is

0.01 m? and the specific

heat of mercury is 1.38 Fig. 1.32
kdJ/(kg. deg C).

Solution. e = surrounding temperature ; A = heat transfer
coefficient ; f = temperature read by thermometer ; A = area of heat
transfer ; ¢ = specific heat of liquid in the bulb ; ¢ = time ; m =
mass of mercury.

By applying unsteady state heat balance for the bulb, (Fig.
1.32).

Mercury

Glass wall
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Input rate of heat to bulb — output heat rate from bulb
= Rate of heat accumulation in bulb.
Input heat rate = hdAe
Output heat rate = hAf
Rate of heat accumulation = mc df/dt
hA (e — ) = mc df/dt
at steady state (s) ; hA (e, — f;) = mc df,/dt in deviation form,
hA (E -F)=cm dF/dt
Taking Laplace transforms on both sides of the equation,
[E(s) - F(s)] hA = mc sF(s)
Collecting common terms gives,
Fs) _ 1 __1
E@is) [me/(hA)ls+1 Ts+1
cals

m =10 gms ;c=1.38x0.2388 = 0329544( “C)

h =735 x 0.238 u*® = 175.6u°® cals/(m%.sec.°C)
A=0.01m?

where 0.238 cal/(m?%.sec.°C) = 1 watt/(m2.°C)
T me mc _ 10x0.329544  1.877

RA T 1756 u°8 % 001 8

For linear change of error, the steady state error is KT where
K =0.05 deg.C/sec and T is time constant in seconds.

1. 877

where T is time constant.

seconds

Equating KT =1 x0.05=1
u%®=1.877x 0.05=0.094
u=0.052m/sec Ans.

1.51. U-Tube Manometer Oscillation. A. Analyse the
dynamic behaviour of a U-tube mercury manometer and develop
its transfer function. Explain the terms (and obtain the expres-
sions for them) given below : (a) over shoot (b) decay ratio (c) rise
time (d) period of oscillation.

These terms are associated with the response cuive of a second
order underdamped system the input to which is subjected to a
step change.

A U-tube manometer with a tube of 8 m. m i.d and a mercury
column of 1.5 m is used to record the pressure in a process. At
steady state the manometer reads 25 cms. When the pressure of
the process suddenly changes by 20% determine,

(a) The peak reading (maximum possible) of the manometer
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(b) The time that the manometer
takes to first pass through the new
steady state pressure.

The specific gravity, and viscosity
of mercury are 13.6 and 1.6 CP respec-
tively.

Solution. We will assume the
flow in the manometer is laminar and
will consider fluid friction. We will
neglect the density of gas above the
manometer fluid. The various forces which make up the force
balance equations are : (Fig. 1.33)

Fy=m,/g. =pLA"/g,

where a = dh?/dt* (acceleration), L is length of column. Potential
head,

Fig. 1.33

Fh =2pAhg/g,
Frictional resistance in laminar flow by Hagen-Poiseuille’s law
is,
R=32uL/(g, D%

p = Liquid density ; P = Applied pressure ; R = Frictional resis-
tance ; u = Viscosity of fluid.

Equating the forces.
Acceleration of fluid = Potential head - frictional head

pLA d h dh
g df® dt
pLAdh _ 4 p_gp ﬂ——“——32 dh
8 dt 2 ( 2 8 8&e D2 dt
dividing through out by pLA/g, gives

d2h+3_2gdh 2, _Fe
dt* pD?*dt L Lp

d’h  32udh 2
d2+ D% dt Lh 0

Taking in deviation form and Laplace transforming gives
h'(s) _ 1/(2p)
PO (L o 160Ls
28 pD*g

=AP-2h )=g RAYL

for oscillations,




PROCESS DYNAMICS

Standard form of second order transfer function is,

_ R
s+ 215+ 1)
where 1 =L/2g;t=\L/(2g)
and €= _8_Du_2 N2L/g
Y

for step change of P (s) :
(a) overshoot = exp (- m &/V1 - &2)
(b) decay ratio = exp (- 2nE/V1 - £2)

45

(c) Rise time is the time required in the beginning to reach

final steady state value.
(d) period of oscillation
(w) = \ﬁTiT /T
B. In deviation form
h(s) _ 1/2p

Pe) —Iis2+[MJs+1

28 p D%g

R=1/2p=75 113‘ 5 =0.0368 cm®/gm

_4, 150
=\L/2g = 2% 981 =0.28 sec.

u_ oL/g = 8 x 1.6 x V2 x 150/981
100 x 13.6 x (0.8 x 0.8)

= 0.0088
h, (steady state level) = 25 cms
(@) Overshoot =e &/ V1=8&" _ -0.0277_ 4 9797

Peak reading =25+25x0.2+25x0.2x0.9727
= 34.86 cms

(b) for step response, the solution for £ <1is:

sin {m% +tan ! Lgi

- ét/t

y&)=1- 1 z

new steady state value at first comes when y(t) =0
by trial and error /1= 0.1

Since 1 =0.28 sec, so t =0.028 sec. Ans.
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1.52. A tank of 10 feet high and cross-sectional area of 5 feet
x b feet has initial steady flow rate of g; = 300 gallons per minute.
The inlet flow rate is suddenly increased to 400 gal/minute. Plot
the level in the tank with time. The flow rate and level are related
as :

Input, gal/hr (q;) level, feet (h)
0 0
5000 0.70
10,000 1.10
20,000 3.90
30,000 8.80

Solution. Both linear and non-linear relations are tried to test
g; and h.

a A R by l'inea; (C) Non-linear
Relation, 3 g=cvh
0 0 0 0
5,000 0.70 1.4+10°4 5976
10,000 1.10 1.10 10~ ¢ 9535
20,000 3.90 195104 10127
30,000 8.80 2933%10" ¢ 10113

R is not constant but C is some what constant so non-linear
relation is agreeing. Taking C average in the operating range of
10,000 to 30,000 gal/hr, C is (9535 + 10113)/2 = 9824

KS) R o, o172
0 (5) " TS+1 sR=2hnY?/C
R@#)=R|q’' | 1-e“D);T=RxA
h, at g; = 18,000 is CVh, = 18,000
h, = 3.357 feet
R=2x(3.357)12/9824 = 3.7301 x 10™*
T =23.3x10"*x 25 x 60 = 3.495 MINS.
k' (£) = 6000 x 3.7301 x 10™ % (1 — e~ ¢/3.495)

0 t, MIN h(t)=h () +h,
0 0 3.357
0.975 2 4.332
1.5625 4 4.882
2.11 10 5.467
2.238 . 5.595
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1.53. An isothermal CSTR has Reaction described by :
dT?* 24K |Cu=7Coo

(a) write the transfer function model for the CSTR

(b) Calculate the process time constant

(c) find process steady state gain ?

(@) Taking Laplace transforms on both sides

SC,4 (S)-C,4 (0)+(K+ T]CA S) = CA0 )

Collecting Common terms : Cy (S) [ S+K+ T J = % Cuo (S)

Ca(S) 1 1/(T + KT) R,

Cao(S) (ST+T+TK) S/(T+Tk)+1 Ty S+1

(d) T,= (©)R,=1/(T+TK)

1
(T+TK)’
1.54. Develop Transfer function for Transportation Lag ?

n= %’ = Total Volume/Element Volume

Ty (S) _ 1
"T;S) (TS+1)"
(Considering as n interacting systems)

L = Length of pipe ;

[

o[ L[ L] L] L[l | b1

T; 1 2 3 4 n-1 n

PROBLEMS

1.1. Solve y” + ty’ —y = 0; y(0) = 0; y’(0) = 0. [Ans. y(t) = t]
1.2. Solve y(t) + 4y(t) = 9t ; y(0) = 0, y'(0) = 7. [Ans. y(¢) = 3t + 2 sin 2t]
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1.3. Solve yll +2'= t,y"-Z=¢e;y0)=3;y0)=-2;2(0)=0.
[Ans. y(t) =2 +t%/2+e /2 - 3 sin t/2 + cos /2]

1.4. Draw operational and block-diagram for a single tank to control liquid
level.

1.5. Draw operational and block diagram to keep the speed of an automobile
constant with varying load.

1.6. Draw operational and block diagram for ship-steering mechanism ?
1.7. Calculate the process degrees of freedom for a liquid-liquid heat ex-
changer. [Ans. 5]
1.8. Calculate the process degrees of freedom for an endothermic chemical
reactor, having first order reaction.
1.9. Calculate the process degrees of freedom for a water-heater. [Ans. 3]
1.10. Derive the transfer function for the liquid level in a tank and inlet flow
rate. [Ans. h'(s)/q;(s) = R/(Ts + 1)]
1.11. Derive the transfer function of a mixer.
[Ans. C\’ (s)/C/(s) = 1/(T; + 1) where T = volume of mixer/flow rate,
Cy’ and C;) are the outlet and inlet concentrations respectively.]
1.12. A steady heat flow occurs in an electrically heated furnace with walls at

1800°F to a large steel casting at 1400°F. The surface area is 1.0 sq. ft.
Calculate the thermal resistance. Assume emissivity is unity.

[Ans. 60 deg. sec/BTU]

NOMENCLATURE

A — amplitude of sine wave or area of cross-section
C, — outlet concentration

C; — inlet concentration

F — feed rate
hy, ho, h — level
i — current
! — load variable
m — manipulated variable or mass of solid
n — moles of gas
P,, P, — pressure
q, — inlet flow rate to tank
qo — outlet flow rate from tank

g — liquid flow rate or heat flow rate
R — resistance or gas constant or set point
s — Laplacian variable
T — time constant or temperature
t — time
t; — inlet temperature

T,, Ty — temperatures or time constants
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T, — steady state temperature

V1, Vy, V3 — hold up volumes
v — electrical charge
x — function, input
y — function, output
y" — first derivative of y
y"” — second derivative of y
y"" — third derivative of y
6 — value indicated by instrument
“1” — deviation variable
s — steady state value

& — damping coefficient in second order transfer function.
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