
CChhaapptteerr 11

 Introduction to
Programming &
Problem Solving

LLeeaarrnniinngg OOuuttccoommeess
After reading this chapter, students will be able to

o explain the concept of programming
o describe the concept of problem-solving and its need
o explain the concept of process and its types – adhoc and defined
o describe different approaches to problem-solving – top-down and bottom-up
o explain the concept of structured programming
o explain various control structures adhering to the requirement of structured

programming
o explain the notion of an algorithm
o explain the desirable characteristics of a good algorithms
o represent an algorithm using a flowchart or a pseudocode
o solve variety of numerical and logical problems

Problem Solving and Programming in C2

1.1 INTRODUCTION TO PROGRAMMING
Programming is a way to instruct the computer to perform various tasks.

Instruct the computer, basically means that you need to provide the computer with a set
of instructions that are written in a language that the computer can understand.

Perform various tasks, basically means finding the solution to a problem (task). The
tasks could be small & simple that require few instructions to obtain their solution or
large & complex one that may involve a large number of instructions

Hence, in brief, Programming is a way to tell computers to do a specific task.

The real problem with the current teaching & learning of programming (using any of
C/C++/Java/Python/Kotlin) is that ultimately it reduces to teaching & learning of
programming language only.

Programming is not just about learning the syntax of the language, it is more about
accomplishing the task – Problem Solving.

1.1.1 Problem Solving
Problem-solving is a skill that anybody can learn with practice.

Let us pause for while, and ask ourselves a simple question - what is a problem?

The obvious answer is the absence of a solution. The moment you get a solution, the
problem is no more a problem for you.

Therefore, I wish that our education system must produce individuals, who can seek
solutions to the problems they are facing or may face in future, the solution seekers.

We will learn about problem-solving, in more detail, in the next section.

1.1.2 Process
A process is a series of steps or activities that interact to produce a solution.

Whatever we do in our day-to-day life, we are always following certain series to steps
to accomplish a task.

I am leaving this as a task for you – enumerate most of the daily activities you do, and what
are the steps you follow to accomplish them.

Chapter 1: Introduction to Programming & Problem Solving 3

1.1.2.1 Adhoc Process

A process where activities are not well-defined, and the solution is sought in a
hit-and-trial manner.

Characteristics of an adhoc process:

o may or may not produce solution
o the outcome may not be traceable
o the solution may not be repeatable

1.1.2.2 Defined Process

A process that is well-defined and documented, i.e., every step is clear and had been
written in a form that one can understand easily.

Characteristics of a defined process:

o solution is sought by following the steps prescribed in the document
o will always produce the solution
o the outcome is always traceable
o the solution is always repeatable

1.1.2.3 Tools to Document a Process

Any one of the following tools can be used to document a defined process:

o Algorithm
o Flowchart
o Pseudocode
o Decision table
o Decision tree

In this textbook, we will discuss about algorithm, flowchart, and pseudocode. The
remaining tools – decision table and decision tree you will learn in the subjects where
they possible used.

1.2 INTRODUCTION TO PROBLEM-SOLVING

The ability to solve problems is a most basic life skill and is essential to our day-to-day
lives, at home, at school, and at the workplace.

Problem Solving and Programming in C4

We solve problems every day without really thinking about how we solve them.

For example, it is raining and you need to go to the market.

What do you do?

There are a variety of possible solutions:

o You can take your umbrella and walk down to the market.
o If you don't want to get wet, you can drive, or take the bus.
o You might decide to call a friend for a ride, or you might decide to go to the

market another day.

The important point to note down here is that there is no right way to solve this
problem and different people may solve it differently.

Problem-solving is the process of identifying a problem, developing possible solution
alternatives, and taking the appropriate course of action.

Why is problem-solving important?

Good problem-solving skills empower you not only in your personal life, but are very
critical in your professional life.

In the currently fast-changing global economy, employers often identify everyday
problem solving as crucial to the success of their organizations.

Chapter 1: Introduction to Programming & Problem Solving 5

For employees, problem solving can be used to develop practical and creative
solutions and to show independence and initiative to employers.

1.3 APPROACHES TO PROBLEM SOLVING

There are two approaches to problem solving:

o Top-down approach
o Bottom-up approach

1.3.1 Top-Down Approach

The basic idea of the top-down approach is to divide a complex problem into smaller
sub-problems, this process is also called decomposition. The sub-problems are further
divided into sub-problems and this process is continued until each sub-problem is
atomic (can’t be divided further) and can be solved independently of other sub-
problems.

The top-down way of solving a program is the step-by-step process of breaking down
the problem into chunks for organizing and solving the sole problem.

Figure 1.1: Top-down process

Structured programming languages, like the C programming language, use the top-
down approach to solving a problem in which the flow of control is in the downward
direction.

Top
Module

Sub
Module 1

Sub
Module 2

Sub
Module 1.1

Sub
Module 1.2

Sub
Module 2.1

Sub
Module 2.2

Problem Solving and Programming in C6

1.3.2 Bottom-Up Approach

As the name suggests, this method of solving a problem works exactly opposite to the
top-down approach.

In this approach, we start working from the most basic level of problem solving and
moving up in conjugation of several parts of the solution to achieve the required
results. The most fundamental units, modules, and sub-modules are designed and
solved individually, and these units are then integrated together to get a more concrete
base for problem-solving.

This bottom-up approach works in different phases or layers. Each module designed is
tested at a fundamental level which means unit testing is done before the integration
of the individual modules to get the solution.

Figure 1.2: Bottom-up process

The object oriented programming languages, like the C++ or Java programming
language, uses the bottom-up approach to solving a problem in which the flow of
control is in the upward direction.

1.3.3 Top-down v/s Bottom-up Approach

Table 1.1 summarizes the key differences between top-down approach and bottom-up
approach.

Top
Module

Sub
Module 1

Sub
Module 2

Sub
Module 1.1

Sub
Module 1.2

Sub
Module 2.1

Sub
Module 2.2

Chapter 1: Introduction to Programming & Problem Solving 7

Table 1.1: Top-down V/S Bottom-up Approach
Top-down Approach Bottom-up Approach
Divides a problem into smaller units and
then solves it.

Starts by solving small modules and
adding them up together.

This approach may contain redundant
information. Redundancy can easily be eliminated.

A well-established communication is not
required.

Communication among steps is
mandatory.

The individual modules are thoroughly
analyzed.

Works on the concept of data-hiding
and encapsulation.

Structured programming languages such
as C uses a top-down approach.

OOP languages like C++ and Java etc.
uses a bottom-up mechanism.

Relation among modules is not always
required.

The modules must be related for better
communication and workflow.

Primarily used in code implementation,
test case generation, debugging, and
module documentation.

Finds use primarily in testing.

The top-down approach is the conventional approach in which the
decomposition of the higher-level system into a lower-level system takes
place respectively while the bottom-up approach starts by designing lower
abstraction modules and then integrating them into a higher-level system.

1.4 STRUCTURED PROGRAMMING

Structured programming is a technique devised to improve the reliability and clarity
of programs.

In structured programming, control of program flow is restricted to the following three
structures:

o sequence
o selection
o iteration

or to a structure derivable from a combination of these basic three structures.

Each of these structures is described overleaf.

Problem Solving and Programming in C8

1.4.1 Sequence Structure

In sequence structure, instructions are followed or executed one after another in
sequence in which they appear. The flow of logic is from top to bottom.

 :
 :
 instruction-1

instruction-2

 instruction-3
 :
 :

Figure 1.3: Pseudocode and flowchart for sequence structure

1.4.2 Selection Structure

Selection structure is used for making a decision. It is used for selecting a proper path
out of the alternative paths in the program logic.

Selection structure may take the form as either If . . . Endif or If . . . Else . . . Endif or If
. . . Else If . . . Else . . . Endif structure.

The If . . . Endif structure says that if the expression is true, then execute statement else
(if the expression is false) skip over the statement.

Figure 1.4: Pseudocode and flowchart for If . . . Endif selection structure

instruction-1

instruction-2

instruction-3

statement

true

false

expression :
 :
If (expression) then
 statement
Endif
 :
 :

Chapter 1: Introduction to Programming & Problem Solving 9

The If . . . Else. . . Endif structure says that if the expression is true then execute
statement-1, else (if the expression is false) execute statement-2.

Depending on the outcome of the expression being tested, if there are multiple
alternatives (execution paths), then If . . . Else If . . . Else . . . Endif structure is a very
handy structure.

 Figure 1.5: Pseudocode and flowchart for If . . . Else . . . Endif selection structure

Figure 1.6: Syntax of If . . . Else If . . . Else . . . Endif structure

The expressions are evaluated in order, and if any expression is true then the statement
block associated with it is executed, and this terminates the whole chain.

The last else part handles none of the above where none of the specified expressions are
satisfied.

If (expression-1) then
 statement-1
Else If (expression-2) then
 statement-2
Else If (expression-3) then
 statement-3



Else If (expression-n) then
 statement-n
Else
 statement-s
Endif

 :
 :
If (expression) then
 statement-1
Else
 statement-2
Endif
 :
 :

statement-2 statement-1

true false
expression

Problem Solving and Programming in C10

Figure 1.7: Logic flow of If . . . Else If . . . Else . . . Endif structure

1.4.3 Iterative Structure

The iterative structure is used to produce loops when one or more instructions are to be
executed either a given number of times or till a certain condition is met.

The following two iterative structures are used:

o While . . . Endwhile
o For . . . Endfor

Figure 1.8: Pseudocode and flowchart for While . . . Endwhile iterative structure

statement-n

true

expression-1

. . .

false

true

expression-2 false

true

expression-3

true

expression-n

false


false

statement-sstatement-3 statement-2 statement-1

. . .

 :
 :
While (expression)
 statement
Endwhile
 :
 :

true

false

statement

expression

Chapter 1: Introduction to Programming & Problem Solving 11

The While . . . Endwhile iterative structure will continue executing until the expression
is true. However, if statement or a certain group of statements are to be executed for a
known number of times, the For . . . Endfor iterative structure is a better choice.

Figure 1.9: Syntax for For . . . Endfor iterative structure

It uses an index variable i to control the loop. Here r is called the initial value, s is
called the final value, and t is called the step size, which may be positive (increment)
or negative (decrement).

Figure 1.10: Working of for statement for positive and negative step size

 :
 :
 For i = r to s in steps of t
 statement
 Endfor
 :
 :

true

statements

false
Is i ≤ s ?

set i = r

set i = r + t

(a) When step size t is positive (b) When step size t is negative

true

statements

false
Is i ≥ s ?

set i = r

set i = r  t

Problem Solving and Programming in C12

1.5 ALGORITHMS

An algorithm is a finite sequence of steps defining the solution of a particular problem.

Characteristics of a good algorithm:

There are five important characteristics of an algorithm that should be considered
while designing an algorithm for a problem.

o Input: An algorithm must have zero or more but a finite number of inputs, which
are externally supplied. An example of zero input algorithms can be to find the
sum of the first 100 natural numbers. Here, the user doesn’t need to supply any
external input since it is already specified to find the sum of the first 100 natural
numbers. However, if the above problem is re-stated as finding the sum of first n
natural numbers, the user is required to provide single input denoting the value
for n.

o Output: An algorithm must have at least one desirable outcome, i.e., output.

o Definiteness (No ambiguity): Each step must be clear and unambiguous, i.e.,
having one and only one meaning.

o Finiteness: If we trace the steps of an algorithm, then for all cases, the algorithm
must terminate after a finite number of steps.

o Effectiveness: Each step must be sufficiently basic that it can in principle be carried
out by a person using only paper and pencil. In addition, not only should each
step be definite, but it must also be feasible.

An algorithm can be represented using a flowchart or pseudocode.

1.5.1 Flowchart

A flowchart is a pictorial representation of an algorithm. It uses different shapes to
denote different types of instructions. The actual instructions are written within the
shapes using clear and concise statements. These shapes are connected by directed
lines to indicate the sequence in which instructions are to be executed.

Table 1.2 shows various symbols used in flowcharts along with their name and brief
description.

Chapter 1: Introduction to Programming & Problem Solving 13

Table 1.2: Various flowchart symbols and their brief description
Symbol Name Purpose

Oval Terminal - to mark the beginning and end of the
program logic flow.

Parallelogram Input/Output - to denote input to the program or
output from the program.

Rectangle Processing - to denote arithmetic operations and
movement of data.

Diamond Decision - to denote a point where decision has
to be made to branch to one of the alternatives.

Small circle Connector - To provide a logical link between
segments of a flowchart.

Directed lines Flow Lines - To indicate the sequence in which
instructions are to be executed.

Figure 1.11: Flowchart to find the nature of roots of a quadratic equation

b2 – 4ac = 0

Stop

b2 – 4ac < 0

Input vales of a, b, c

Start

b2 – 4ac > 0 Compare
b2 – 4ac
with 0

Print “Roots are
real & equal”

Print “Roots are
real & distinct”

Print “Roots are
imaginary”

Problem Solving and Programming in C14

1.5.2 Pseudocode

The word “pseudo” means imitation or false and the word “code” refers to the
instruction written in a programming language. Pseudocode, therefore, is an imitation
of actual computer instruction. Pseudo instructions are phrases written in English like
statements. Instead of using symbols to describe the logic of the program, as in
flowcharts, pseudocode uses a structure that resembles computer instructions.
Because, it emphasizes the design of the program, pseudocode is also called Program
Design Language (PDL).

Pseudocode is made up of the following basic logic structures that have proved to be
sufficient for writing any computer program:

1. Sequence
2. Selection (If . . . Endif, If . . . Else . . . Endif, If . . . Else If . . . Endif)
3. Iteration (While . . . Endwhile, Do . . . While)

We have already discussed about these logic structures under the heading of
structured programming.

Pseudocode Description

Comments

Each instruction may be followed by a comment. The comments begin with a double slash, and
the explain the purpose of the instruction, such as

Read: n // Enter the value of variable n

Appropriate use of comments enhances the readability of the pseudocode, which in turn helps
in maintaining the pseudocode.

Variable Names

For variable names, we will use italicized lowercase letters such as max, loc, etc.,
whereas for defined constants, if any, we will use uppercase letters.

Assignment Statement

The assignment statement will use the notation as

Set max = a OR max = a

to assign the value of a to max. The right hand side of the assignment statement can
have a value, a variable or an expression.

Chapter 1: Introduction to Programming & Problem Solving 15

However, if several assignment statements appear in the same line, such as

 Set k = 1, loc = 1, max = ai OR k = 1, loc = 1, max = ai

then they are executed from left to right.

Input/Output

Data may be input and assigned to variables by means of a read statement with the
following format

Read: Variable list

where the Variable list consists of one or more variables separated by comma.

Similarly, the data held by the variables and the messages, if any, enclosed in double
quotes can be output by means of a print statement with the following format

Print: message and/or Variable list

where the message and the variables in the Variable list are separated by comma.

Execution of Instructions

The instructions are usually executed one after the other as they appear in the
pseudocode. However, there may be instances when some instructions are skipped or
some instructions may be repeated as a result of certain expressions.

Completion of the Algorithm

A pseudocode is completed with execution of the last instruction. However, it can be
terminated at any intermediate state using the exit instruction.

Pseudocode to display the nature of roots of a quadratic equation of the type

ax2 + bx + c = 0 provided a  0
 Pseudocode 1.1
 Begin

Read: a, b, c
Set disc = b2  4ac
If (disc = 0) then

Print: “Roots are real and equal”
 Else If (disc > 0) then
 Print: “Roots are real and distinct”

Else
 Print: “Roots are imaginary”
 Endif
 End.

Problem Solving and Programming in C16

ILLUSTRATIVE EXAMPLES
Example 1.1: Draw a flowchart and write a pseudocode to swap (interchange) two
variables say a and b.

Solution: Think of the scenario – we have water in one glass and juice in another glass.
We want to have water in a glass in which we have juice, and juice in a glass in which
we have water. How can this task be accomplished?

In a similar way, we have to use a third variable say t, to facilitate the swapping of
values of two variables.

Figure 1.12: Flowchart and pseudocode to swap two variables

Example 1.2: Draw a flowchart and write a pseudocode to test whether a given natural
number ‘n’ is even or odd.

Solution: You all may know that any natural number is even if it is exactly divisible by
2, i.e., division by 2 gives 0 as remainder. The operation of obtaining remainder is
called modulo (mod in short) operation.

 Pseudocode 1.3
 Begin
 Read: n

If (n mod 2 = 0) then
Print: n, “ is Even”

Else
Print: n, “ is Odd”

 Endif
 End.

Start

Read: a, b

Set t = a

Set a = b

Set t = a

Print: a, b

Stop

Pseudocode 1.2
 Begin
 Read: a, b

Set t = a
Set a = b
Set b = t

 Print: a, b
 End.

Chapter 1: Introduction to Programming & Problem Solving 17

Figure 1.13: Flowchart to test whether a given number is Even or Odd

Example 1.3: Draw a flowchart and write pseudocode to find the largest of three
numbers; say a, b, c.

Solution: We first compare a with b. If a is greater than b then we compare a with c. If a
is greater than c, then a is taken as the largest number otherwise we take c as the
largest number.

However, if a is not greater than b, we compare b with c. If b is greater than c then b is
taken as the largest number otherwise we take c as the largest number.

Figure 1.14: Flowchart and pseudocode to find largest of three numbers

Start

Read: n

Print: n, “ is Even”

Is n mod 2 = 0?

Print: n, “ is Odd”

Stop

Start

Print c

Is a > b ? Yes

Input a, b, c

Stop

No

Is a > c ? Is b > c ?

Print aPrint b

YesYes No No

No Yes

Problem Solving and Programming in C18

 Pseudocode 1.4
 Begin
 Read: a, b, c

If (a > b)
If (a > c) then

 Print: a
 Else
 Print: c
 Endif
 Else

If (b > c) then
 Print: b
 Else
 Print: c
 Endif
 Endif
 End.

Example 1.4: Based on the percentage of marks in a subject, letter grade is assigned to a
student as per the following examination policy:

Percentage of Marks Grade
percentage ≥ 90 A+
90 > percentage ≥ 80 A
80 > percentage ≥ 70 B
70 > percentage ≥ 60 C
60 > percentage ≥ 50 D
percentage < 50 F

Write pseudocode to assign a letter grade to a student whose percentage of marks in a
subject is given.
 Pseudocode 1.5
 Begin
 Read: percentage

If (percentage >= 90)
Print: “Grade = A+”

Else If (percentage >= 80)
Print: “Grade = A”

Else If (percentage >= 70)
Print: “Grade = B”

Else If (percentage >= 60)
Print: “Grade = C”

Else If (percentage >= 50)
Print: “Grade = D”

Else
Print: “Grade = F”

 Endif
 End.

Chapter 1: Introduction to Programming & Problem Solving 19

Example 1.5: Commission on sales by a salesman is calculated as per following policy:

Amount of Sale (in Rs.) Commission Rate
0 – 5000 Nil

5001 – 10000 5 % excess of 5000
10001 – 15000 7.5 % excess of 10000

> 15000 10 % excess of 15000

Draw a flowchart and write a pseudocode that accepts sales made by a salesman and
displays the commission due.

Solution:

Figure 1.15: Flowchart to compute the commission

Start

Input sales

YesIs sales 
5000?

Set commission = 0

Stop

Yes

Print commission

No

Is sales 
15,000?

Set commission = 250+
0.075* (sales – 10000)

Set commission = 1000+
0.1* (sales – 15000)

Yes

No

Is sales 
10000?

Set commission = (sales –
5000) * 0.05

No

Problem Solving and Programming in C20

 Pseudocode 1.6
 Begin
 Read: sales

If (sales <= 5000)
Set commission = 0

Else If (sales <= 10000)
Set commission = (sales − 5000) * 0.05;

Else If (sales <= 15000)
Set commission = 250 + (sales − 10000) * 0.075;

Else
Set commission = 1000 + (sales − 15000) * 0.1;

 Endif
Print: “Computed commission = ", commission

 End.

Example 1.6: Draw a flowchart and write pseudocode to find the sum of digits of a
number n.

Solution:

Figure 1.16: Flowchart to find the sum of digits of a number

 Pseudocode 1.7
 Begin
 Read: n

Set s = 0
While (n > 0) do

Set d = n mod 10

Start

Input n

Print “Sum = ”, s

Is n > 0? No

Stop

Set d = n mod 10

Set s = s + d

Set n = n / 10

Yes

Set s = 0

Chapter 1: Introduction to Programming & Problem Solving 21

Set s = s + d
Set n = n / 10

 Endwhile
 Print: “Sum = ”, s
 End.

Example 1.7: Draw a flowchart and write pseudocode to check whether the given
number n is palindrome or not.

Solution:

Figure 1.17: Flowchart to check whether the given number n is palindrome or not

 Pseudocode 1.8
 Begin
 Read: n

Set t = n, s = 0
While (t > 0) do

Set d = t mod 10
Set s = s  10 + d
Set t = t / 10

 Endwhile

A number is called palindrome if it reads
same from both the ends. For example, the
number 1991 is a palindrome, whereas the
number 1932 is not.

Start

Input n

Set t = n

Is t > 0?

Set d = t mod 10

Set s = s  10 + d

Set t = t / 10

Yes

Set s = 0

Print
“Palindrome”

No

Stop

Is s = n?
Yes

Print
“Not Palindrome”

No

Problem Solving and Programming in C22

If (s = n) then
 Print: “Palindrome”
 Else
 Print: “Not a Palindrome”
 Endif
End.

Example 1.8: Draw a flowchart and write a pseudocode to check whether the given
number n is an Armstrong number or not.

Solution:

Figure 1.18: Flowchart to check whether the given number n is an Armstrong number or not

Pseudocode 1.9
 Begin
 Read: n

Set t = n, s = 0
While (t > 0) do

Set d = t mod 10
Set s = s + d  d  d
Set t = t / 10

 Endwhile
If (s = n) then

 Print: “Armstrong”

Start

Input n

Set t = n

Print
“Armstrong”

Is t > 0? No

Stop

Set d = t mod 10

Set s = s + ddd

Set t = t / 10

Yes

Set s = 0

Is s = n?
Yes

Print
“Not Armstrong”

A number is called Armstrong if sum of cube of its
digits equals the number itself. For example, 153 is
an Armstrong number because

3 3 31 5 3 1 125 27 153     

However, number 135 is not an Armstrong number,
since

3 3 31 3 5 1 27 125 153 135      

No

Chapter 1: Introduction to Programming & Problem Solving 23

 Else
 Print: “Not Armstrong”
 Endif
 End.

Example 1.9: Draw a flowchart to find whether the given natural number n is a prime
number or not.

Solution: A natural number is said to be prime if it is divisible by 1 and itself only, i.e.,
it cannot be factorized. In addition, to this definition, an even number except 2 is not a
prime number. Therefore, our test criteria becomes

1. If n is greater than 2 and is even then n is not a prime number.
2. If test at step 1 fails, then we try to divide number n by factors k = 3, 5, 7, … n .

Therefore, if n is divisible by any value of k, number n is not a prime number.
3. If test at step 2 also fails, then n is a prime number.

Figure 1.19: Flowchart to check whether number n is prime or not

yes

Print n is a prime
number

Stop
no

Is n divisible by
k?

yes

Add 2 to k

Is k  m?
no

Print n is not a
prime number

no
Assign value of

n to m

Assign value 3 to k

Is n > 2 and
divisible by 2?

yes

Start

Input value for n

1

1

Problem Solving and Programming in C24

The following is the pseudocode to find whether the given positive number n is a
prime number or not.

 Pseudocode 1.10
 Begin

Read: n
If (n > 2 and n mod 2 == 0) then

Print: n, “ is not a prime number”
Exit

Else
Set m = n
For k = 3 to m by 2 do

If (n mod k == 0) then
Print: n, “ is not a prime number”

 Exit
 Endif
 Endfor
 Print: n, “ is a prime number”

Endif
 End.

Example 1.10: To find the highest common factor (HCF), also known as the greatest
common divisor (GCD), of two natural numbers m and n.

Solution:

Figure 1.20: Illustration of computational procedure for HCF/GCD

Figure 1.20 demonstrates the long/continued division method to find the HCF/GCD
of two natural numbers. You must have observed that in successive divisions, the
divisor of the previous division becomes dividend, remainder of becomes divisor, and
division is again carried out. This process is continued till the reminder becomes zero,
and the current divisor is taken as HCF/GCD of the given natural numbers.

32025
25

70
50

12

2520
20

1

20
20

0

4

quotient

remainder

divisor

dividend

5

Chapter 1: Introduction to Programming & Problem Solving 25

This process can be implemented by using the following steps

1. Perform division.
2. If remainder is zero, then stop and take the divisor as HCF/GCD.
3. Replace dividend by divisor.
4. Replace divisor by remainder.
5. Repeat from step 1.

Figure 1.21: Flowchart and pseudocode to compute HCF of two numbers

Example 1.11: Draw a flowchart and write a pseudocode to print first n terms of the
Fibonacci sequence.

For example, if input value for n is 8, the output should be

 0 1 1 2 3 5 8 13
Solution: Observe that, leaving first two terms, each term is obtained as the sum of the
immediately preceding two terms.

If we use variable prev for previous term, curr for current term, next for next term, and
setting prev and curr to values 0 and 1, respectively, i.e., first two terms of the
sequence, then the entire sequence can be generated by using the recurrence relation

next = prev + curr
replace prev by curr
replace curr by next

no Stop

Divide m by n and let the
remainder be r

Replace m by n and n by r

Start

Input m, n

 Is r = 0?
yes

Print “HCF/GCD = ”, n

Pseudocode 1.11
Begin

Read: m, n
 Set r = m mod n
 While (r  0) do
 Set m = n
 Set n = r
 Set r = m mod n
 Endwhile
 Print: “HCF/GCD = ”, n
 End.

Problem Solving and Programming in C26

Figure 1.22: Flowchart and pseudocode to print first n terms of the Fibonacci sequence

1.6 ALGORITHM TO PROGRAM

By now, you have learned that algorithms are a way to solve given problems using
computer. The algorithm contains the logic to solve a given problem. This logic needs
to be converted to a program using a programming language.

Python language is our programming language for this course.

Here is an example of a Python program to test whether the given natural number is
palindrome or not.

Print next

Stop

Is count < n?
No

Set next = prev + curr

Yes

Start

Input n

Set prev = 0, curr = 1

Print prev, curr

Set count = 2

Set count = count + 1

Set prev = curr

Set curr = next

Pseudocode 1.12
Begin

 Read: n
Set prev = 0, curr = 1
Set count = 2
Print: prev, curr
While (count < n) do

Set next = prev + curr
Print: next
Set count = count + 1
Set prev = curr
Set curr = next

 Endwhile
 End.

Chapter 1: Introduction to Programming & Problem Solving 27

 Listing 1.1
 /* Program to check whether given natural number is
 palindrome or not
 */
 #include <stdio.h>
 int main()
 {
 int n, t, sum, d;
 printf("Enter any natural number : ");
 scanf("%d",&n);
 t = n;
 sum = 0;
 while (t > 0)
 {
 d = t % 10;
 sum = sum * 10 + d;
 t = t / 10;
 }
 if (sum == n)
 printf("\n%d is a palindrome number.\n", n);
 else
 printf("\n%d is not a palindrome number.\n", n);
 return 0;
 }

 First Program Run
 Enter any natural number : 1221
 1221 is a palindrome number.

 Second Program Run
 Enter any natural number : 1205
 1205 is not a palindrome number.

We will be learning about C language in subsequent chapters.

REVIEW EXERCISE
1. What do you understand by the term programming? Elaborate.
2. What is problem-solving? What is the need for problems-solving?
3. What is a process? Differentiate between adhoc process and defined process.
4. Name the various approaches for problem solving.
5. Describe the top-down approach of problem solving.

Problem Solving and Programming in C28

6. Describe the bottom-down approach of problem solving.
7. Differentiate between top-down approach and bottom-up approach to problem

solving.
8. What do you mean by structured programming?
9. Describe the various control structures that meet the requirement of structured

programming.
10. What is an algorithm? Describe the essential characteristics of an algorithm.
11. Given a choice to represent the solution of a problem by flowchart or pseudocode,

which you will prefer and why? Elaborate.

NUMERICAL AND LOGICAL PROBLEMS

Solve following numerical and logical problems and express their solution using
flowchart/pseudocode:

1. To find largest of the five numbers a, b, c, d, and e.
2. To find the day of the week on a given date.
3. To test whether a given year is a leap year or not. [Hint: A given year will be a

leap year if it is divisible by 4 but not by 100. If a year is divisible by 4 and by 100,
it is not a leap year unless it is also divisible by 400.]

4. To test whether the given date in format dd/mm/yyyy is valid or not.
5. To test whether a given number is a perfect number or not. [Hint: A perfect

number is a number in which the sum of its proper divisors is equal to the number
itself. Proper divisors of a number are all divisors of a number excluding itself.]

6. To test whether a given number is strong number or not. [Hint: A strong number
is a number whose sum of the factorial of its each digit equals to the number
itself.]

7. Suppose an amount p is deposited in a commercial bank, which pays compound interest at
the rate of r% annually, for n years. Write a pseudocode that prints the amount in account
after each year.

8. To find LCM and HCF of two natural number m and n.
9. To find factorial of a natural number n.
10. To print first n pairs of twin prime numbers. Note that two consecutive prime numbers are

said to twin prime numbers if they differ by 2.
11. The monthly telephone bill is to be computed as follows:

Minimum Rs. 200 for upto 100 calls
plus Rs. 0.60 per call for next 50 calls
plus Rs. 0.50 per call for next 50 calls
plus Rs. 0.40 per call for any call beyond 200 calls.

The input contains name of the customer and number of calls made and the
desired output is the name and telephone bill to be paid by the customer.

Chapter 1: Introduction to Programming & Problem Solving 29

12. State pollution control board has the following classification policy:
Pollution Index Classification

< 30 Pleasant
30 – 60 Unpleasant
> 60 Hazardous

 To prints the appropriate classification for given pollution index.
13. A department store places an order with a company for n pieces of miners, m

pieces of toasters, and p number of fans. The cost of items are as follows:
Item Description Price per Unit (in Rupees)

Miners 1,500
Toaster 200
Fan 450

The discount allowed for various items are 5% for miners, 15% for fan, and 10%
for toaster. The company charge 10% as sales tax on all items on net value after
deducting the discount. To compute the amount to be paid by the store for given
value of m, n, and p.

14. To check whether a triangle can be formed or not from given three line segments
whose measure is given as a, b, and c.

15. To check whether a triangle can be formed or not from given three angles whose
measure is given as a, b, and c.

16. To find the type of the angle when a measure of one angle is given in degrees and
in anti-clockwise direction.

17. Given three points A(x1, y1), B(x2, y2) and C(x3, y3), to determine whether they are
collinear, i.e., lie on the same line.

18. Given points (x1, y1) & (x2, y2) on line AB, and points (x3, y3) & (x4, y4) on line CD,
write a the steps to determine whether lines AB & CD intersect each other.

19. To find your age when your date-of-birth and today’s date is given, both in the
format dd/mm/yyyy.

20. To find convert a time in 12 hours system to 24 hours system.
21. To find convert a time in 24 hours system to 12 hours system.
22. To find difference in time when the start time and ending time is given, both in the

format hh:mm:ss.

  

