
1.1. DEFINITIONS
Strength. The strength of a material may be defined as the maximum resistance which

a material can offer to the externally applied forces. The stength of a material depends upon a
number of factor e.g., type of loading, temperature, internal structure etc. It has been established
beyond doubts that the actual strengh of the material is much below the theoretical cohesive
strength of the material.

Stress. When some external forces are applied to a body, then the body offers internal
resistance to these forces. The magnitude of the internal resisting force is numerically equal
to the applied forces. The internal resisting force per unit area is called ‘stress’.

However, we name this subject as ‘‘strength of Materials’’, but at not stage we try to
determine the strength of the material, we always calculate the stress in the material.

In order to understand the concept of stress, consider a body under the action of a
number of forces as shown in Fig. 1.1 (a). If an imaginary cut is made by passing a cross-section 1.1

Fig. 1.1. Understanding stress.

and the left portion is drawn separately as shown in Fig. 1.1 (b), now consider the elemantary
force F acting on the elementary area A. They by definition:

Stress,  = Limit



A

F
A 0

 =
dF
dA

...(1.1)

The dimensional units of stress are N/m2 (Newton per metre squared) and is always
supposed to act at a point.

Normal stress. In  Fig. 1.1 (b), the force F can be resolved into components such that
one of them is along the outward drawn normal to the area A (since there can be only one
normal at a point) and the other components lie in the plane of the area A. Let Fn be the
normal component, then normal stress,
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2 STRENGTH OF MATERIALS

n = Limit



A

nF
A 0

 = 
dF
dA

n ...(1.2)

The normal stress may be tensile or compressive depending upon the forces acting on
the material to the either of the pull or push type respectively. Tensile and compressive stresses
together are called direct stresses.

Shear stress. The force F may be resolved into indinete number of components in the
plane containing area A, because there are infinite number of directions in the plane containing
area A which are perpendicular to the unit normal n . However, if we restrict our studies to
three-dimensional co-ordinate system, then we are left with only two directions x and y
perpendicular to each other as shown in Fig. 1.1 (b). Then the shear stresses are defined as :

x = Limit



A

xF
A 0

 = 
dF
dA

x ...(1.3a)

y = Limit




A

yF

A 0
 = 

dF

dA
y ...(1.3b)

Conventional or engineering stress. It is defined as the ratio of load P to the original
area of cross-section A0. Thus,

 =
P
A0

...(1.4)

True stress. It is defined as the ration of load P to the instantaneous area of cross-
section A. Thus,

  =
P
A

P
A

A
A


0

0.  = 
A
A

0

Foe volume constancy, Al = A0l0 where l = l0(1 + )
where  = engineering strain

 A =
A0

1 

  =  (1 + ) ...(1.5)

Strain. It is defined as the change in length per unit length. The strain may be tensile
or compressive depending upon whether the length increases (under tensile load) or decreases
(under compressive load). It is a dimensionless quantity.

Conventional or engineering strain. It is defined as the change in length per unit
original length. By definition

 =
l l

l
 0

0
 = 

dl
l l

dl
l

l

l

l

0 0

1

00

 zz ...(1.6)

where l = changed or deformed length
l0 = original length, and dl = change in length.

Natural strain. It defined as the change in length per unit instantaneous length. By
definition, the natural strain,

  =
dl
ll

l

0
z  = ln 

l
l0

 = ln (1 + ) ...(1.7)

Normal strain. It is the strain produced under the action of direct or normal stresses.
Shear strain. It is the strain produced under the action of shear stresses. The shear

strain is measured by the change in the angle. Thus in Fig. 1.2, if dl is the change in the length
of face CD under the action of shear force F, then by definition,
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Shear strain,  = tan 
For small strains,

tan   , thus,  =
dl
l

...(1.8)

Gauge length. It is that portion of the test specimen
over which extension or deformation is measured.

Percentage elongation. It is the change in length per
unit original length of the test specimen expressed as a
percentage, i.e.,

Percentage elongation =
dl
l
 100

Percentage reduction of area. It is defined as the change in area per unit original
area expressed as a percentage, i.e.,

Percentage reduction of area =
A A

A
0

0
100

F
HG

I
KJ 

Poisson’s ratio. When a material is subject to longitudinal deformation then the lateral
dimensions also change. The ratio of the lateral strain to longitudinal strain is a constant
quantity called the Poisson’s ratio and is designated by  or 1/m.

 =
Lateral strain

Longitudinal strain
...(1.9)

Superficial strain. It is defined as the change in area of cross-section per unit original
area i.e, superficial strain,

s =
A A

A
0

0




dA
A0

...(1.10)

Volumetric strain. If a uniform stress is applied on all the three faces of a body, then
all the three dimensions of the body will change resulting in change in volume. Thus, volumetric
strain,

 =
V V

V
dV
V


0

0
...(1.11)

where V = Final volum, and V0 = Original volume
Hooke’s law. This law states that within elastic (proportional) limits, strain is

proportional to stress.
Modulus of elasticity. Within elastic limits the ratio of normal stress to normal strain

is a constant quantity and is defined as the Young’s modulus of elasticity, i.e.,

E =




Pl
A dl

0

0
...(1.12)

Modulus of rigidity. It is defined as the ratio of shearing stress to shearing strain, i.e.

G =



...(1.13)

Bulk modulus. It is defined as the ratio of uniform stress intensity to volumetric strain,
within the elastic limits and is denoted by K. Thus

K =



...(1.14)

Fig. 1.2. Shear strain.
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Proof stress. It is the maximum stress which can be applied to a material without
allowing the material to fail.

Factor of safety. Because of uncertainties of loading conditions, we introduce a factor
of safety, defined as the ratio of the maximum stress to the allowable or working stress. The
maximum stress is generally taken as the yeild stress for ductile materials. This is also called
the ‘factor of ignorance’.

Free Body Diagram. The free body diagram of an element of a member in equilibrium
is the diagram of only that member or element, as if made free from the rest, with all the
internal and external forces acting on it.

1.2. STRESS-STRAIN DIAGRAM
1.2.1. Ductile Materials. Fig. 1.3 shows the stress-strain diagram for a ductile material

like mild steel. The curve starts from the origin O showing thereby that there is no initial
stress or strain in the test specimen. Upto point ‘a’ Hoole’s law is obeyed and stress is
proportional to strain. Therefore, oa is a straight line and point a is called the limit of
proportionality and the stress at point a is called the proportional limit stress, p. The portion
of the diagram between ab is not a straight line but upto point b, the material remains elastic,

Fig. 1.3. Typical stress-strain Fig. 1.4. Loading and unloading paths.
diagram for a ductile material.

i.e. on removal of the load, no permanent set is formed and the path is retraced. The point b is
called the elastic limit point and the stress corresponding to that is called the elastic limit
stress, e. In actual practice, the points a and b are so close to each other that it becomes
difficult to differentiate between them. Beyond the point b, the material goes to the plastic
stage until the upper yeild point ‘c’ is reached. At this point the cross-sectional area of the
material starts decreasing and the stress decreases to a lower value to a point d, called the
lower yeild point. Corresponding to point c, the stress is known as upper yield point stress, yu
and corresponding to point d, the stress is known as lower yeild point stress, yl. At point d the
specimen elongates by a considerable amount without any increase in stress and upto point e.
The portion de is called the yielding of the material at constant stress. From point e onwards,
the strain hardening phenomena becomes predominant and the strength of the material
increases thereby requiring more stress for deformation, until point f is reached. Point f  is
called the ultimate point and the stress corresponding to this point is called the ultimate
stress, u. It is the maximum stress to which the material can be subjected in a simple tensile
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test. At point f  the necking of the material begins and the cross-sectional area starts decreasing
at a rapid rate. Due to this local necking, the stress in the material goes on decreasing inspite
of the fact that actual stress intensity goes on increasing. Ultimately the specimen breaks at
point g, known as the breaking point, and the corresponding stress is called the nominal breaking
stress based upon the original area of cross section. Whereas the true stress at fracture is the
ratio of the breaking load to the reduced area of cross-section at the neck. The initial portions
of the diagram are shown in Fig. 1.4 on exagerated scale.

Sometimes it is not possible to locate the yield point quite accurately in order determine
the yield strength of the material. For such materials the yield point stress is defined at some
particular value of the permanent set. It has been observed that if load is removed in the
plastic range then the unloading path line is parallel to the straight portion of the stress-
strain diagram as shown in Fig. 1.4 (b). The commonly used value of permanent set for
determining the value of yield strength for mild steel is 0.2 per cent of the maximum strain as
shown in Fig. 1.5.

1.2.2. Brittle Materials. The stress-strain diagram for a brittle material like cast iron
is shown in Fig. 1.6. There is very little elongation and reduction in area of the specimen for
such materials. The yeild point is not marked at all. The straight line portion of the diagram is
also very small.

Fig. 1.5. Determining yield strength Fig. 1.6. Typical stress-strain
of brittle materials. diagram for a brittle material.

1.3. BAR OF VARYING CROSS-SECTION
Consider a bar of varying circular cross-section as shown in Fig. 1.7

Fig. 1.7. Bar of varying cross-section.

and subject to axial load P througtout. The area of different cross-section is :
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A1 =
 
4 41

2
2 2

2d A d, , A3 = 

4 3

2d

Let 1, 2 and 3 be the corresponding stresses, then,

1 =
P
A

P
A

P
A1

2
2

3
3

, ,  

The strains become, 1 =






1

1
2

2

2
3

3

3E E E
, , 

The changes in lengths become, l1 = 1l1, l2 = 2l2, l3 = 3l3.

Total change in length, l = l1 + l2 + l3 = P
l

A E
l

A E
l

A E
1

1 1

2

2 2

3

3 3
 

F
HG

I
KJ

or in general, we have, l = P
l

A E
i

i ii

n




1

...(1.15)

Fig. 1.8. Bar of varying cross-section.

If the loads in different sections of the bar are different as shown in Fig. 1.8 (a), then
free body diagrams may be drawn for each section as shown in Fig. 1.8 (b), and the net forces
acting in each section may be determined. Thus the stresses, strains and total elongation may
be determined.

1 =
P
A

1

1
 , 2 = 

P P
A

1 2

2


 , 3 = 

P
A

4

3

1 =
1

1E
 , 2 = 

2

2E
 , 3 = 

3

3E
l1 = 1l1, l2 = 2l2, l3 = 3l3

l = l1 + l2 + l3

=
P l
A E

i i

i ii

n




1
...(1.16)

Example 1.1. A mild steel rod 20 mm diameter is subjected to an axial pull of 50 kN.
Determine the tensile stress induced in the rod and the elongation if the unloaded length is 5 m.
E = 210 GN/m2.
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Solution. Given, d = 20 mm; P = 50 kN; l = 5 m
Area of cross-section of the rod,

A =
 
4 4

202 2d  ( )  × 10–6 = 314 × 10–6 m2

Stress  =
P
A

 = 
50 10

314 10

3

6


   = 159.155 MN/m2

Elongation,  =
Pl
AE

 = 50 10 5 10

314 10 210 10

3 3

6 9

  
  

 = 3.789 mm.

Example 1.2. A short hollow cast iron cylinder of wall thickenss 10 mm is to carry a
compressive load of 600 kN. Determine the outside diameter of the cylinder if the ultimate
crushing stress for the material is 540 MN/m2. Use a factor of safety of 6.

Solution. Let d0 be the outside diameter of the cylinder in mm. Then area of cross-
section of the cylinder is,

A =

4

200
2

0
2

d d b g{ }  × 10–6 =  d0 10b g  × 10–5 m2

Safe load =  d0 10b g × 10–5 × 
540
6

106  = 900 ×  (d0 – 10) = 600 × 103

 d0 = 222.2 mm.
Example 1.3. A round bar as shown in Fig. 1.9 is subjected to an axial tensile load of

100 kN. What must be the diameter ‘d’ if the stress there is to be 100 MN/m2? Find also the total
elongation. E = 200 GPa.

Solution.

Fig. 1.9

Stress,  =
P

d( / ) 4 2

100 × 106 =
100 10

4

3

2


( / ) d

 Diameter, d =
4

103   = 0.03568 m = 35.68 mm

Total elongation, l =
P
E

l
A

l
A

l
A

1

1

2

2

3

3
 

L
NM

O
QP

=
100 10

200 10

3

9




0 10

10

0 15

4
100

0 15

4
80

1

103 2 2 6

. .

( )

.

( )







L

N

M
M
M

O

Q

P
P
P
  

=
10

2

4

 [1 + 0.191 + 0.299] = 
1490 10

2

4.  

 = 0.0745 mm.
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Example 1.4. A  steel bar 25
mm diameter is loaded as shown in
Fig. 1.10. Determine the stresses in
each part and the total elongation. E
= 210 GPa.

Solution.
Area of cross-section,

A =
d2

4
 = 


4

 × (25)2 × 10–6 = 490.87 × 10–6 m2.

Fig. 1.11. Free body diagrams.

The free body diagrams for each portion have been shown in stresses in various parts
are:

AB =
40 10

490 87 10

3

6


 .

 = 81.488 MN/m2

BC =
20 10

490 87 10

3

6


 .

 = 40.744 MN/m2

CD =
30 10

490 87 10

3

6


 .

 = 61.116 MN/m2

Total elongation, l =
1

AE
P li i

=
10

490 87 10 210 10

3

6 9.     [40 × 0.5 + 20 × 0.4 + 30 × 0.2]

=
10 34 10

490 87 10 210 10

3 3

6 9

 
  .

 = 0.3298 mm.

Example 1.5. A steel bar as shown in Fig. 1.12 (a) consists of two parts AB and BC
having areas of cross-section of 4 cm2 and 5 cm2 respectively. It is rigidly fixed at end A and end
C is at a distance of 1 mm from the other rigid horizontal support. A load of 100 kN is applied
vertically downward at B. Determine the reactions produced by the rigid horizontal support
and the stress in the parts AB and BC of the bar. E = 200 GPa.

Solution. In the absence of horizontal rigid support, the portion AB of the bar would
elongate by an amount,

AB =
100 10 1.25 10

4 10 200 10

3 3

4 9

  
    = 1.5625 mm

Whereas the lower portion BC of the bar would have remained unaltered. Due to the
presence of the horizontal rigid support, the bar AC can move downward by 1 mm only. Since
the extension of the bar AC is more than 1 mm, therefore, the bar is subjected to an upward
reaction. Let the upward reaction be P in kN. The force in bar BC will be equal to P and
compressive in nature, whereas, the force in AB will be 100-P, and tensile in nature, as shown
in Fig. 1.2 (b).

Fig. 1.10
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Total elongation of the bar then becomes

= 
(100 P) 10 125

4 10 200 10

3

4 9

  
  

.
 – 

P 10 1.2

5 10 200 10

3

4 9

 
  

= (15.625 – 028125 P) 10–4 m

The total elongation is limited to 1 mm,

 (15.625 – 0.28125 P) 10–4 = 1 × 10–3

or P = 20 kN

Hence force in AB = 80 kN

and   force in BC = 20 kN

 AB =  
80 10

4 10

3

4


   = 200 MPa (tensile)

and BC =
20 10

5 10

3

4


   = 40 MPa (compressive)

Example 1.6. A bar of length 5 m is made of two materials as shown in Fig. 1.13. The
first 3 m of its length is made of brass and is 7.5 cm2 in cross-section and the remainder of its
length is of steel and is 5 cm2 in cross-section. Determine the total compression of the bar under
a load of 20 kN. Esteel = 210 GN/m2, Ebrass = 84 GN/m2.

Solution. The load in brass and steel parts is the same and
equal to 20 kN.

Compression of brass,

lb =
20 10 3

7 5 10 84 10

3

4 9

 
  .

 = 0.095238 × 10–2 m

Compression of steel,

ls =
20 10 2

5 10 210 10

3

4 9

 
    = 0.038095 × 10–2 m

Total compression = lb + ls = 0.133333 × 10–2 m
= 1.33333 mm.

Example 1.7. A prismatic bar as shown in Fig. 1.14 (a) carries an axial load 10 kN.
Calculate the reaction at the supports assuming them rigid.

Solution. Let RA and RC be the reactions at the supports A and C respectively. For the
equilibrium of the bar these reactions must act towards the left so that

RA + RC = 10 ...(1)
The free body diagrams for the portions AB and BC are shown in Fig. 1.14 (b). Thus

Fig. 1.14

Fig. 1.12.

Fig. 1.13.
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lAB =
R

AE
A  1

 (extension); lBC = 
R

AE
C  2

 (compression)

Since the supports are rigid, therefore elongation of AB shall be equal to the compression
of BC. Hence

R
AE

A  =
2R
AE

C

 RA = 2RC ...(2)
Solving Eqs. (1) and (2), we get

RC =
10
3

 kN; RA = 
20
3

kN.

Example 1.8. A load P is suspended from two rods as shown in Fig. 1.15. The rod AC is
of steel, having a circular cross-section 30 mm in diameter, and an allowable stress of 160 MN/m2;
the rod BC is of aluminimum having a diameter of 40 mm and an allowable stress of 60 MN/m2.
What is the maximum load P which can be suspended from these rods?

Solution. Due to symmetry, the forces in the rods AC and BC shall be equal. Let F be
the force in each rod, then

2F cos 30° = P

 F =
P P

2 30 3cos 
 N

Stress in steel rod
 P = 195.89 kN
Stress in aluminium rod

=
P

3

4

900 10 6
  

 = 160 × 106

 P = 130.59 kN
Hence safe load = 130.59 kN.

1.4. EXTENSION OF A TAPERED
BAR
Consider a bar of length L and

tapering from diameter d2 to d1 and
subjected to axial load P as shown in
Fig. 1.16. The diameter of the bar at
a distance x from the end having
diameter d2 is,

d = d2 – 
d d

L
2 1F
HG

I
KJ x

Area of cross-section, A =
 
4 4

2
2

2 1
2

d d d d
L

x 
F

HG
I
KJ

L
NM

O
QP

Stress in the bar,  =
P
A

Elongation of the elementary length dx of the bar,

u =
P dx
AE

dx
E




Fig. 1.15.

Fig. 1.16. Tapered bar under tension.
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But A = 1A1 = 2A2 = P

 u =
1 1A

A
dx
E

.

Also
A
A

1  =
d
d

1
2

2  and 
d
d L l x
1 1


 

 u =
1 2

2E
l

L l x
dx

 ( )

 Total elongation, uz  =
1

2

20 E
l

L l x
L


 z ( ) dx

u =
1

2

0

1l
E L l x

L

 
 = 

1
2 1 1l

E l L l



L
NM

O
QP

=
1

2l L
El L l

.
( )

 = 
1.
( )

Ll
E L l

=
P
A

L
E

d
d1

1

2
  




L
NM

O
QP

l
L l

d
d

1

2

=
4

1 2

PL
d d E

...(1.17a)

If d = d1 = d2,

Then u =
4

2
PL

d E
...(1.17b)

For a square tapering bar, u =
PL

d d E1 2
...(1.18)

Example 1.9. A steel rod, circular in cross-section, tapers from 2.5 cm diameter to 1.25 cm
diameter inalength of 50 cm. Find how much of this length will increase under a pull of 25 kN
if E = 210 GPa.

Solution. Given d1 = 1.25 cm, L = 50 cm, d2 = 2.5 cm P = 25 kN
Extension of a tapering circular bar is gicen by Eq. (1.70a)

u =
4
1 2

PL
d d E

 =
4 25 10 0 5

125 2 5 10 210 10

3

4 9
  

    
.

. .
 = 0.2425 mm.

Example 1.10. A tension bar is found to toper uniformly from (D – a) cm diameter to (D
+ a) cm. Prove that the error involved in using the mean diameter to calculate Young’s madulus

is 
10 2a
D
F
HG
I
KJ  per cent.

Solution. Given  d1 = D – a; d2 = D + a
Let L = Length of the bar and P = Load applied.

Mean diameter =
d d1 2

2


 = D and Mean stress,  = 
4

2
P
D

If u = Extension of the bar then strain,  = 
u
L
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Young’s modulus, E =
4

2
PL
D u

...(1)

Now for a tapering round bar from Eq. (1.17a), we have

u =
4

1 2

PL
d d E

 ; E = 
4

1 2

PL
d d u

or E =
4 4

2 2
PL

D a D a u
PL

D a u ( ) ( ) ( ) 



...(2)

 Error in Young’s modulus from Eqs. (1) and (2) becomes,

 = 
4 1 1

2 2 2

PL
u D a D 


L
N
MM

O
Q
PP

 = 4 2

2 2 2
PL
u

a
D D a ( )

L
N
M

O
Q
P

Percentage error = 
4 2

2 2 2
PL
u

a
D D a ( )

L
N
M

O
Q
P  × 

u D a
PL

( )2 2

4
100


  = 

a
D

a
D

2

2

2
100 10

  FHG
I
KJ

Example 1.11. A mild steel plate 20 mm thick and 20 cm wide at the top, tapers uniformly
to 10 mm thickness and 15 cm width over a length of 2 m. Find the elongation under a pull of
15 kN.

E = 210 GPa.
Solution. Consider an elementary strip of length dx of the plate at a distance x cm from

the lower end as shown in Fig. 1.17.

Width of strip = 15 + 
20 15

200
15

40
F

HG
I
KJ  FHG

I
KJx x

cm

Thickness of strip = 1 + 
2 1
200

1
200

F
HG
I
KJ  FHG

I
KJx x

 cm

Area of the strip, A = 15
40

1
200

FHG
I
KJ  FHG

I
KJ

x x
 cm2

Stress in the strip,  =
15 10

15
40

1
200

7

FHG
I
KJ FHG

I
KJ

x x
 N/m2

Extension of this strip,u = 
 dx

E

= 15 10

15
40

1
200

7

FHG
I
KJ FHG

I
KJ

x x
 . 

dx
E

Total extension, u =
15 10

15
40

1
200

7

0

200

FHG
I
KJ FHG

I
KJ

zE
dx

x x

=
15 10 1

5

7


E 0

200

3
200

1
200

z
FHG
I
KJ FHG

I
KJ

dx
x x

= 3 10 1
2

1

3
200

1

1
200

7

0

200
FHG
I
KJ

FHG
I
KJ


FHG
I
KJ

L

N

M
M
M
M

O

Q

P
P
P
P

zE x x
dx

Fig. 1.17.
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=
 15106

E
200 3

200
200 1

200 0

200

ln lnFHG
I
KJ  FHG

I
KJ

x x

=  3 109

E
 [ln 4 – ln 3 – ln 2 + ln 1]

=  


3 10

210 10

9

9
 [1.3863 – 1.0986 – 0.6931 + 0]

= 3 0 4054
210

 .  = 0.00579 cm.

1.5. BAR  OF UNIFORM STRENGTH
Consider a bar which is acted upon by tensile load P as

shown in Fig. 1.18. Consider an elementary strip of the bar
between cross-sections x and x + x from the lower end. Let
the areas of cross-section at x and x + x be A and A + A
respectively. Let  be the stress in the bar through-out.

Total force acting on the strip upwards = (A + A)
Total force acting on the strip downwards =  A + xA

where  = specific weight of the bar.
For the equilibrium of the strip,

(A + A) = A + Ax


dA
A

 =


x

In the limit, we get
dA
A

 =



 dx

Integrating, we get
dA
AA

A

2
z  =


 0

xz dx

ln 
A
A2

 =



x

 A = A e
x

2


 ...(1.19)

where A2 = area of cross-section at the bottom.
If A1 = area of cross-section at the top, where x = L

Then A1 = A e
L

2


 ...(1.20)

Example 1.12. A vertical tie bar of 5 cm diameter is subjected to 45 MPa stress. If the
stress in the bar is to constant at all cross-sections, find the diameter of the section at a point
5 m above the section whose diameter is 5 cm.

Density of bar material is 7470 kg/m3.
Solution. For a bar of uniform strength,

A = A e
x

2




d2 = d e
x

2
2




Fig. 1.18. Bar of uniform strength.
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= 52 × e
7470 9 81 5

45 106
 


.

 = 25.20425
d = 5.0204 cm.

1.6. EXTENSION OF A BAR UNDER ITS OWN WEIGHT
1.6.1. Bar of uniform area

Consider a bar of uniform cross-section of area A and
length L. Consider an elementary strip of this bar between
cross-sections x and x + dx as shown in Fig. 1.19. The downward
force acting on this strip is due to the weight of the bar that
lies below this element and is equal to  Ax.

In order that this elementary strip is in a state of
equilibrium, a force equal to  Ax must act upwards.

The stress in the strip, =
Ax
A

 = x

Strain in the strip,  =

E

 = 
x
E

Extension of the strip, = dx = 
x
E

dx

Total extension of the bar = x
E

L

0z  dx = L
E

2

2
If, W = Total weight of the bar = AL

 Total extension =
WL
AE2

...(1.21)

It may be observed that the total extension produced by the self-weight of the bar is
equal to that produced by a load of half its weight applied at the lower end. Therefore, if the

weight of the bar is to be taken into account for calculating
extension, half of the total weight to the bar may be applied
at the lower end.

1.6.2. Bar of varying cross-section
Consider a bar of varying cross-section as shown in

Fig. 1.20. Consider an elementary strip of the bar at a
distance x from lower end and of length dx.

Total force acting on this strip downwards is equal
to the weight of the bar upto x.

Let A be the area of cross-section at x.

 Weight of the bar upto x =
0

xz  Adx

Stress in the strip =
 Adx

A

x

0z .

 Extension of the bar = 
 Adx dx

AE

xL

00 zz LNM O
QP ...(1.22)

1.6.3. Conical Bar
Consider a conical bar shown in Fig. 1.21, whose base radius is r and height h. The

radius of an elementary strip at a distance x from the base is

Fig. 1.19. Uniform bar under
its own weight.

Fig. 1.20. Non-uniform bar under
its own weight.
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=
h x

h
F
HG
I
KJ  r

Load acting on the elementary strip,

P =
1
3

 ·  h x
h

r
F
HG
I
KJ

L
NM

O
QP

2

 (h – x) g

where  = density of the bar material.
Area of the elementary strip,

A =  h x
h

r
F
HG
I
KJ

L
NM

O
QP

2

Stress in the elementary strip,

 =



P
A

 = 
1
3

 (h – x) g

Extension of dx =
dx
E

 = 
( )h x g

E
 
3

 dx

Extension of bar, =
g
E

h

3
0
z  (h – x) dx = g

E
h x

h

6
2

0
 ( )

=
gh

E

2

6
...(1.23)

Weight of the bar, W =
1
3
r2 h g

Area of base, A = r2

 W =
1
3

 Ah g

or hg =
3W
A

 =
Wh
AE2

...(1.24)

Example 1.13. A metal bar 5 cm × 5 cm section is subjected to an axial compressive load
of 500 kN. The contraction on a 20 cm gauge length is found to be 0.5 mm and the increase in
thickness 0.045 cm. Find the value of Young’s modulus and Poisson’s ratio.

Solution. Given P = 500 kN; l = 20 cm
l = 0.05 cm; t = 0.0045 cm

Area of cross-section, A = 5 × 5 = 25 cm2

Longitudinal strain,  =
l
l

 = 
0 05
20
.

 = 0.0025 (compressive)

Stress,  =
P
A

 = 
500 10

25 10

3

4


   = 200 MPa (compressive)

Young’s modulus, E =



 = 
200 10

0 0025

6
.

 = 80 GPa

Lateral strain =
t
t

 = 
0 0045

5
.

 = 0.0009 (tensile)

Poisson’s ratio,  =
Lateral strain

Longitudinal strain
 = 

0.0009
0.0025

 = 0.36

Fig. 1.21. Conical bar.
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Example 1.14. A bar of 20 mm diameter is subjected to an axial tensile load of 120 kN,
under which 200 mm gauge length of this bar elongates by an amount of 3.5 × 10–4 m. Determine
the modulus of elasticity of the bar material. If  = 0.3, determine its change in diameter.

Solution. Modulus of elasticity, E = 
P
A

 · 
l
l

= 120 10

4 20 10

3

3 2


  /b g e j
 × 

200 10

3 5 10

3

4






.
 = 218.27 GN/m2

 =


d d
l l

/
/

Poisson’s ratio, 0.3 = d /

.

20

3 5 10 200 104 3  e j e j

d =
0 3 20 3 5 10

200

1. .   

 = 0.0105 mm.

Example 1.15. The following data was recorded in a tensile test:–
Diameter of specimen = 12 mm; Gauge length = 60 mm
Minimum diameter after fracture = 6.5 mm
Determine:
(a) Modulus of elasticity, (b) Ultimate tensile stress,
(c) Upper and lower yield point stress, (d) Percentage reduction of area,
(e) Percentage elongation, and (f) Nominal and actual stress at fracture.

Load (kN) 2.5 5.0 7.5 10 12.5 15 17.5 20 22.5

Extension (m × 10–6) 5.6 12 18 24.5 31.5 38.5 45 53 59.5

Load (kN) 25 27.5 30 32 33.5 31 32 31.5 32

Extension (m × 10–6) 66.5 74 81 90 110 225 450 675 1000

Load (kN) 34.5 36 37 39 39.5 40 39.5 36 28

Extension (m × 10–6) 1700 1950 2500 3650 5600 7850 11200 13450 14550

Solution. The load-extension diagram for the elastic range is shown in Fig. 1.22.

(a) Modulus of elasticity, E =



 = Slope of the curve × 
l
A

= 0.3731 × 109 × 
60 10

4 144 10

3

6


 



( / )
 = 197.94 GN/m2

(b) Ultimate tensile stress =
Maximum load

Area of cross-section

=
3

6

40 10

( /4) 144 10



  
 = 353.68 MN/m2

(c) Upper yield point stress, yu =
33 5 10

4 144 10

3

6

.

/


  

 = 296.21 MN/m2
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Lower yield point stress, yl =
31 10

4 144 10

3

6


  /

 = 274.10 MN/m2

Fig. 1.22. Load extension diagram.

(d) Percentage reduction in area = 
(12) (6.5)

(12)

2 2

2


 × 100 = 

144 42 25
144
F

HG
I
KJ

.
 × 100 = 70.66%

(e) Percentage elongation = ( . )60 14 55 60
60

 L
NM

O
QP
 × 100 = 24.25%

(f) Nominal stress at fracture =
28 10

4 144 10

3

6


  ( / )

 = 247.57 MN/m2

Actual stress at fracture =
28 10

4 42 25 10

3

6


  ( / ) .

 = 843.80 MN/m2.

Example 1.16. A 70 cm length of aluminium alloy bar is suspended from the ceiling so
as to provide a clearance  = 0.03 cm between it and a 25 cm length of steel as shown in
Fig. 1.23.

Aal = 12.5 cm2, Eal = 70 GN/m2,

As = 25 cm2, Es = 210 GN/m2.

Determine the stress in the aluminium and in the steel due to a 300 kN load applied 50
cm from the ceiling.

Solution. Elongation of AB under 300 kN load = 
300 10 50 10

12 5 10 70 10

3 2

4 9

  
  



.

= 1.71428 × 10–3 m = 0.171428 cm
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This elongation is more than the clearance 0.03 cm between the
bars. Hence bars DE and BC will be subjected to compression whereas
AB will remain in tension. Let P be the compressive force in BC and
DE then the tensile force in AB will be (300 – P) kN. Then

AB – BC – DE = 

or
( )

. .

300 10 50 10

12 5 10 70 10

10 20 10

12 5 10 70 10

3 2

4 9

3 2

4 9

   
  


  
  




P P

– 
P   
  




10 25 10

25 10 210 10

3 2

4 9  = 0.03 × 10–2

or (300 – 1.4P) × 0.0571428 × 10–4 – 0.0047619 × 10–4 × P = 0.03 × 10–2

or (17.14284 – 0.084761 × P) 10–4 = 0.03 × 10–2

P = 166.854 kN

AB =
( . )

.

300 166 854 10

12 5 10

3

4

 
   = 106.52 MN/m2 (tensile)

BC =
166 854 10

12 5 10

3

4

.

.


   = 133.48 MN/m2 (compressive)

DE =
166 854 10

25 10

3

4

. 
   = 66.74 MN/m2 (compressive)

1.7. ADVANCED SOLVED PROBLEMS
Problem 1.1. The cylinder head an I.C. engine is attached to the cylinder by means of

six steel bolts of 15 mm diameter. The maximum gas pressure is 1.5 MPa. Determine the stress
developed in each bolt it the diameter of the cylinder is 200 mm.

Solution. Resisting force of bolts = Gas force in the cylinder

6 × 

4

 × 152 ×  =

4

 × 2002 × 1.5

Tensile stress in bolts,  = 44.44 MPa.
Problem 1.2. Find the total elongation of a steel bar as shown in Fig. 1.24 subjected to

an axial load of 200 kN. E = 210 GPa.

Fig. 1.24

Solution. Elongation,  =
P
E

l
A

i

i
  = 

200 10 4

210 10

0 1

0 05

0 15

0 075

0 1

0 1

3

9 2 2 2

 
 

 
L
NM

O
QP

.

( . )

.

( . )

.

( . )
= 0.093 mm

Fig. 1.23
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Problem 1.3. A steel bar of 30 mm diameter is loaded as shown in Fig. 1.25. Determine
the stress in each portion and the total elongation. E = 210 GPa.

Solution. The forces in the various parts are shown below in Fig. 1.26.

Fig. 1.25

Elongation,  =
1

AE
P li i  =

4 10

30 210 10

3

2 3


  

 [25 × 0.3 – 5 × 0.2 + 15 × 0.1]  = 0.0539 mm

AB =
25 10 4

30

3

2

 


 = 35.37 MPa

BC =
  


5 10 4

30

3

2
 = – 7.073 MPa

CD =
15 10 4

30

3

2

 


 = 21.221 MPa.

Problem 1.4. The ultimate shear stress for mild steel is 400 MPa. Find the force required
to punch a 20 mm dia hole in a mild steel plate 12.5 mm thick. What is the compressive stress
in the punch of dia 20 mm?

Solution. Area sheared, A = dt =  × 20 × 12.5 = 785.4 mm2

Punching force, P = uA = 400 × 785.4 = 314.159 kN

Compressive stress in punch =
4

2
P
d

 = 
4 314 159 10

20

3

2

 

.


 = 1000 MPa.

Problem 1.5. A column 2 m long tapers uniformly from 10 cm × 10 cm to 8 cm × 8 cm
cross-section. Determine the load under which the column will shorten by 4 mm. E = 200 GPa.
Assume that buckling is avoided.

Solution. The tapering column is shown in Fig. 1.27.

Side length at a distance x from top = 8
100

2

FHG
I
KJ

x  cm

Area, A = 8
100

2

FHG
I
KJ

x  cm2

Stress,  =
P
A

 = 
P

x
8

100

2

FHG
I
KJ

 N/cm2

Extension of element dx =
dx
E

 = 
Pdx

x
8

100
2 10

2
7FHG

I
KJ  

 cm

Total extension =
P dx

x2 10
8

100

7 2
0

200


FHG
I
KJ

z = 
P x


FHG
I
KJ 


z100

2 10
8

100
1

1007

2

0

200

dx

Fig. 1.26

Fig. 1.27
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= P
x

2 10

8
100

15

1

0

200



FHG
I
KJ





 = 
P

2 10

1
10

1
85

 L
NM

O
QP  = 

P

8 106
cm

P

8 106
 = 0.4

P = 3200 kN
Problem 1.6. A mild steel test piece was tested in tension and the following readings

were obtained:
Diameter of specimen = 20 mm, Length of specimen = 20 cm

Extension under 30 kN load = 0.08 mm, Load at yield point = 150 kN
Maximum load = 225 kN, Length of the specimen after fracture = 25 cm.

Calculate the values of (a) Young’s modulus, (b) yield point stress, (c) ultimate strength
and (d) percentage elongation.

Solution.

(a) E = 
Pl
A

0


 = 

30 10 200 4

20 0 08

3

2

  
  .

 = 238.73 GPa

(b) y = 
P

A
y  = 

150 10 4

20

3

2

 


 = 477.465 MPa

(c) u = 
P
A
u  = 

225 10 4

20

3

2

 


 = 716.197 MPa

(d) % elongation = 
l l

l
F
HG
I
KJ

0

0

 × 100 = 
25 20

20
F

HG
I
KJ  × 100 = 25%

Problem 1.7. The upper part of the arrangement shown in Fig. 1.28 is of steel, whereas
its lower part is of cast iron. The axial load P shortens the overall length by 0.2 mm. Determine
the magnitude of load P. For steel, E = 210 GN/m2 and for C.I., E = 102 GN/m2.

Solution.  = P  l
A E

i

i i

0.02 = P    


  

F
HG

I
KJ

25

5 5 210 10

30

7 5 7 5 102 105 5. .
P = 200.187 kN

Fig. 1.28 Fig. 1.29
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Problem 1.8. Determine by taking into account the weight of the bar, the displacement
of the free end of the bar shown in Fig. 1.29, if its cross-sectional area is A, the modulus of
elasticity E, and the specific weight of material .

Solution. Compression of part 1 due to P, 1 = 
Pb
AE

Compression of bar due to self weight, 2 = 
 ( )a b

E
 2

2

Displacement of free end,   = 1 + 2 = 
Pb
AE

a b
E


 ( )2

2
.

Problem 1.9. Determine the displacement of section x-x of the bar shown in Fig. 1.30, if
its cross-section is A, modulus of elasticity E, and the specific weight of the material .

Solution. Displacement of section x-x due to load P,

1 =
Pa
AE

Displacement of section x-x due to self weight of bar of length b,

2 =
A ab

AE
Displacement of section x-x due to self weight of bar of length ‘a’,

3 =
1
2

2a
E

Total displacement,  = 1 + 2 + 3 = ( )P Ab a
AE

a
E




  2

2
.

Problem 1.10. A stepped bar is loaded as shown in Fig. 1.31. Calculate stress in each
part and total elongation. E = 200 GPa.

Fig. 1.31

Solution. The forces in the various parts are shown in Fig. 1.32.

Fig. 1.32.

AB = 500

6 10 4 
 = 833.3 kPa; BC = 500

12 10 4   = 416.6 kPa; CD = – 1000

12 10 4   = – 833.3 kPa

Elongation, l =
1

2 105
 [– 0.8333 × 500 + 0.4166 × 500 + 0.8333 × 750]

= 2.083 × 10–3 mm.

Fig. 1.30
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Problem 1.11. A 50 mm diameter steel bar 200 mm long was subjected to a tensile force.
The length was found to increase by 0.08 mm and decrease in diameter was 0.006 mm. Determine
the Poisson’s ratio.

Solution. Longitudinal strain, l = 
l
l


0 08
200
.

 = 4 × 10–4

Lateral strain, d =



d
d

0 006
50
.

 = 1.2 × 10–4

Poisson’s ratio,  =



d

l








12 10

4 10

4

4

.
 = 0.3

Problem 1.12. Calculate the
stresses in various parts of the mild
steel member shown in Fig. 1.33. If E
= 200 GPa, calculate the total
extension of the member.

Solution. The free body
diagrams of various parts are shown
in Fig. 1.34.

AB = 
15 10 4

400

3 


 = 47.746 MPa

BC = 
  


15 10 4

900

3


 = – 21.220 MPa

CD =
35 10 4

1600

3 


 = 27.852 MPa

Total extension = 1 1
E

P l
A E

li i

i
i i  

=
1

2 105
 [47.746 × 0.3 – 21.220 × 0.4 + 27.852 × 0.5]

= 98.81 × 10–6 m or 0.09881 mm

MULTI-CHOICE QUESTIONS*
1.1. Strength of a material may be defined as:

(a) the maximum internal resistance offered by the material to the externally applied forces
(b) the capability of the material to absorb strain energy
(c) the maximum internal resistance offered by the material against deformation
(d) the capability of the material to resist bending.

1.2. Stress may be defined as:
(a) the load per unit area
(b) the internal resistance offered by the material per unit area
(c) the internal force acting on the material per unit area
(d) the internal resisting force per unit area.

Fig. 1.33

Fig. 1.34

*Answers to multi-choice questions are given at the end of the book.
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1.3. Strength of a material depends upon its:
(a) cross-section (b) type of loading (c) internal structure (d) volume.

1.4. Strength of a material is a:
(a) fixed quantity (b) variable quantity
(c) changes with time (d) remains constant at all times.

1.5. Conventional stress is based upon:
(a) the instantaneous area of cross-section (b) the original area of cross-section
(c) the average area of cross-section (d) the final area of cross-section.

1.6. True stress is based upon:
(a) the original area of cross-section (b) the final area of cross-section
(c) the average area of cross-section (d) the instantaneous area of cross-section.

1.7. In a two-dimensional body, the number of independent stresses can be:
(a) 6 (b) 5 (c) 4 (d) 3.

1.8. In the SI system of units, the units of stress are:
(a) kgf/mm2 (b) kg/mm2 (c) N/m2 (d) Pa.

1.9. Engineering stress is the same as the:
(a) true stress (b) conventional stress (c) average stress (d) final stress.

1.10. True stress is always:
(a) equal to the conventional stress (b) greater than the conventional stress
(c) lesser than the conventional stress (d) depends upon the type of loading.

1.11. Conventional strain may be defined as:
(a) the change in length per unit original length
(b) the change in length per unit instantaneous length
(c) the change in length per unit final length
(d) the change in length per unit average length.

1.12. Naturral strain may be defined as:
(a) the change in length per unit original length
(b) the change in length per unit final length
(c) the change in length per unit instantaneous length
(d) the change in length per unit average length.

1.13. The relationship between true stress   and conventional stress  is given by:

(a)



 1 (b)

 



1

1 (c)



 ( )1 2
(d)


 




1

1 2( )

where  is the conventional strain.

1.14. The relationship between natural strain   and conventional strain  is given by:

(a) 





1
1ln ( )

(b)   ln (1 + ) (c)   = ln (1 + )2 (d)  
1
2

 ln (1 + )2.

1.15. Poisson’s ratio may be defined as:
(a) the ratio of longitudinal strain to lateral strain
(b) the ratio of lateral strain to longitudinal strain
(c) the ratio of conventional strain to true strain
(d) the ratio of true strain to conventional strain.

1.16. Young’s modulus is defined as:
(a) the ratio of conventional stress to conventional strain
(b) the ratio of true stress to conventional strain
(c) the ratio of conventional stress to natural strain
(d) the ratio of true stress to natural strain.
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1.17. Hooke’s law holds good upto:
(a) the elastic limit (b) the yield point
(c) the limit of proportionality (d) the ultimate point.

1.18. Elasticity is a property of the material due to which:
(a) it does not come back to its original position after the external forces are removed
(b) it comes back to its original position after the external forces are removed
(c) it exhibits stress strain curve
(d) it does not deform.

1.19. Ductility is a property of the material due to which it can be:
(a) drawn into wires (b) beaten up into sheets
(c) drawn into thinner sections (d) rolled into bars.

1.20. Within elastic limits, Hooke’s law states that:
(a) stress is proportional to strain (b) strain is proportional to stress
(c) stress is inversely proportional to strain (d) strain is inversely proportional to stress.

1.21. Modulus of rigidity may be defined as the ratio of:
(a) shearing stress to longitudinal strain (b) shearing stress to shearing strain
(c) longitudinal stress to shearing strain (d) longitudinal stress to longitudinal strain.

1.22. The point in the stress-strain curve at which the cross-sectional area of the test specimen starts
decreasing is called the:
(a) elastic limit (b) upper yield point
(c) lower yield point (d) ultimate stress point.

1.23. The point in the stress-strain curve at which the strain increases considerably without any
increases in stress is called the:
(a) limit of proportionality (b) elastic limit
(c) upper yield point (d) lower yield point.

1.24. The necking in case of ductile materials begins at the:
(a) elastic limit point (b) upper yield point
(c) lower yield point (d) ultimate point.

1.25. There shall be no residual strain left in the material on unloading if load is removed at the
instant of:
(a) limit of proportionality (b) elastic limit
(c) upper yield point (d) lower yield point.

1.26. The yield point of brittle materials can be ascertained by drawing a line parallel to the stress-
strain curve at:
(a) 0.2 per cent of maximum strain (b) 2 per cent of maximum strain
(c) 5 per cent of maximum strain (d) 10 per cent of maximum strain.

1.27. Free body diagram is the diagram:
(a) having no forces acting on the body
(b) showing all the external forces acting on the body
(c) showing all the internal forces acting on the body
(d) showing all the external and internal forces acting on the body.

1.28. The extension produced by the self weight of the bar is equal to that produced by a load of:
(a) double of its weight applied at the lower end
(b) equal to its weight applied at the lower end
(c) half of its weight applied at the lower end
(d) half of its weight applied at its mid-length.
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1.29. A vertical hanging bar of length l and weighing w N/unit length carries a load W at the bottom.
The tensile force in the bar at a distance y from the support will be given by:

(a) W (b) W + wl (c) W + w(l – y) (d) (W + w) 
y
l

.

1.30. The units of strain are:
(a) m/m (b) dimensionless (c) N/m (d) m/N.

1.31. If a piece of material neither expends nor contracts in volume when subjected to stresses then
the Poisson’s ratio must be
(a) zero (b) 0.25 (c) 0.33 (d) 0.5.

1.32. The tensile stress-strain diagram for cast iron shows:
(a) a linear relationship upto the point of fracture
(b) a pronounced yield point
(c) no yield point at all
(d) large deformation before fracture.

1.33. The actual fracture strength of materials is:
(a) sometimes less than (b) always less than
(c) always more than (d) equal to the ultimate strength of the material.

1.34. A measure of toughness of a material is its:
(a) ultimate strength (b) percentage elongation
(c) yield strength
(d) area under the stress-strain diagram upto fracture.

1.35. If the radius of a wire stretched by a load is doubled, then its modulus of elasticity will be:
(a) doubled (b) halved (c) remain unaffected (d) become four times.

1.36. Which of the following materials is more elastic?
(a) rubber (b) plastic (c) steel (d) brass.

EXERCISES
1.1. Calculate the stresses in the bar shown in Fig. 1.35. Ecu = 105 GPa,  Es = 200 GPa.

[Ans. 58.13 MPa, – 18.93 MPa]

Fig. 1.35

1.2. Calculate the stresses in the bar and total elongation shown in Fig. 1.36. E = 200 GPa.
[Ans. 254.648 MPa, 254.648 MPa, 509.296 MPa, 6.68 MPa]

Fig. 1.36

1.3. A steel bar tapers uniformly from 20 mm diameter to 10 mm diameter over a length of 2 m. If
E = 200 GPa, calculate the elongation under a force of 10 kN. [Ans. 0.637 mm]

1.4. A conical bar of base 500 mm and height 1000 mm hangs vertically. If density of bar is 7400 kg/m3

and E = 200 GPa, find its elongation. [Ans. 60.495 × 10–6]
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1.5. A bar is loaded as shown in Fig. 1.37. Calculate the total
elongation. Take E = 210 GPa. [Ans. 0.2121 mm]

1.6. A steel bar round in cross-section tapers from 20 mm
diameter to 10 mm diameter over a length of 0.6 m. Calculate
the increase in length under a pull of 2 kN. Take E = 210
GPa. [Ans. 0.03638 mm]

1.7. A bar is loaded as shown in Fig. 1.38. Determine the
stresses in each part and the vertical displacement of points
A and B. E = 200 GPa.

[Ans. 1 = 150 MPa, 2 = 100 MPa;
A =  0.125 mm downwards,
B = 0.375 mm upwards]  

Fig. 1.38 Fig. 1.39

1.8. Calculate the total elongation of the steel bar of area of cross-section 600 mm2 loaded as shown in
Fig. 1.39. E = 210 GPa. [Ans. 1.23 mm]

1.9. A steel tie rod 40 mm in diameter and 2 m long is subjected to a pull of 100 kN. To what length
the rod should be bored centrally with a bore of 20 mm diameter so that the total extension will
increase by 20 percent? E = 210 GPa. [Ans. 1.2 m]

1.10. A tie bar has enlarged ends of square section 60 mm × 60 mm as shown in Fig. 1.40. Find the size
of the middle position, assuming circular, if the stress there is not to exceed 150 MPa and total
elongation is 0.5 mm. Take E = 200 GPa. [Ans. 0.136]

Fig. 1.40

1.11. Calculate the elongation of the bar loaded as shown in Fig. 1.41. Take  E = 200 GPa.
[Ans. 1.000 mm]

Fig. 1.41

Fig. 1.37


