21)

Three-Dimensional Stresses
and Strains

1-1 Introduction

The forces acting on a body can be distinguished as : internal
forces and external forces. The internal forces are the reactive forces
which are set up due to external forces applied to the body. The stresses
and strains developed in the body are due to these internal forces. The
external forces are further classified as surface forces and body forces.
The surface forces are distributed over the surface or boundary of the
body and act from the surrounding medium, like atmospheric pres-
sure, hydraulic pressure and contact pressure exerted by one body on
another. The surface forces are described in terms of forces per unit
area and are called applied stresses. The applied stresses are ex-
pressed as :

. AF,
S. = Lim —
YT AA50 A
S, = Lim AFy
YT AAS0 AA
s - Lim 2
ST AA0 AA

The body forces act throughout the body and are defined as
forces per unit volume or mass. Some examples of body forces are :
gravitational force, electromagnetic force, centrifugal force and inertia
force. The body forces are expressed as :

X

B. = Lim —* r Lim ete.
T Avo0 AV or  Am—0 Am’

1-2 Three-Dimensional Stress System

The state of stress at a point is described by a double subscript
system. The first subscript denotes the direction of the outward drawn
normal on the plane on which the stress acts, and the second subscript
denotes the direction towards which the stress acts. In the x, y, z coordi-
nate system, the stress components are denoted by t;;, where 7,7 = x, y,

2
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Tor Tay Taz
Thus, 7 =Ty Ty Ty

Tax Ty T2z

The normal components t,,, 7y, T.; are often written as o, or o,,

z

Oyy Or oy and o, or o, respectively. The shear stresses are complemen-
tary. Therefore t;; = 1;, i # j. Thus we are left with six independent
stress components, as given below :

Ox Txy Taz

Ty Oy Ty

Txz Ty: O
1-3 Direction Cosines

The direction cosine is the cosine of the angle between two lines.
Consider two set of rectangular axes x1, x9, x3 and xy’, x9", x3”. Let a;; be
the direction cosines. Then

r
ail a2 a3

a, =|0G21 a2 a3
a31 a2 as3

’ ’ ’

cos (x;, x1) cos(xy,xg) cosix;,x3)
’ ’ 4

= cos (x,,x1) coS(xy,x2) cosl(xy,x3)

’ ’ ’
cos (x5, x1)  cos (x3,x2) cos(xg, x3)

The normality conditions for direction cosines are :

2 2 2 _ s
ay; + a5 + a3 = 1 and soon.

The orthogonality conditions are :
a11@91 + @19a9g + a13ag3 = 0 and sv on.
1-4 Normal and Shearing Stresses

Consider a rectangular parallelopiped as shown in the Fig. 1-1.
Let o, be the resultant stress and o,,, 6y, 0,; its components along the
three rectangular axes. The direction cosines of ¢, are defined as :

Orx Ory Or:
Apy = G, ’ apy = 6’ a,; = o,

Let a,,, any, a,, be the direction cosines of normal stress. Then
Normal stress, ©,=0,"a,,
where Upp=Qpy . Qpy + Qpy - Gy + Ay - Az

Gy = O Upy . Qpy + Ay - Qpy + Ay - Q)
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=0y . Qpy + Opy . Gpy + Opy . Gy, (1)
Also
Opx = Oy -Qpy + Ty -y + Ty -Gy,

Oy = Tyy -Opy + Oy .Qpy + Ty, Ay,
Op = Tyz -py + Tyy -Qpy + G, .0y,

.(2)

Substituting Egs. (2) in (1), we get

2 2 2
Op = Oy.Qyy +0,.0py +0,.0p, +2(‘ny.anx Qpy

+ Ty QpyQpy + Tyy - Qpx Qpy)  -.(3)

2 2 2

Now o} +1,, =0}

where  t,; = shear stress

_[2_=2
=40,-0,
and Or = |02, + 0% + 0%,

Let ag, ayy, a,; be the
direction cosines of 1,,. Then

On - Qpx + Tpg - Qgx = Opx

1 y

Ay = G —0,.0Q
ST Tps [01x = 0 - and Fig. 1-1 Stresses on an oblique plane.

= [(0x = Gp) Qpx + Tay - Any + Tz - Ayl

1
Similarly a,, = — [Ty Qne + (0y = Gp) Qpy + Ty - Qg
ns

1
Qg = Tns (Tez - Qny + Tyz Qpy + (0, - 0;) ay,l

1:5 Equilibrium Equations

Consider an elementary rectangular parallelopiped of sides dx,
dy and dz subjected to stresses as shown in Fig. 1-2. Let B, B, and B,
be the body forces per unit volime. Considering the equilibrium of
forces in the x-direction, we have

fele] o,
(Gx + B_xx dx) .dydz - 0,. dydz + (‘cxy +Wy . dy) . dxdz -1y, . dxdz

0Ty,
+ | Tez + 92 dz | . dxdy -1, .dxdy + B, . dxdydz = 0

Simplifying and dividing throughout by dxdydz, we get

acx + atxy + asz
ox ay 0z

+B,=0 (D)
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Jo,
T O + rdi’

a1t
Ir +a—dz Tu+fdz
|9

” Txy 0 }"Bx °x+rxdx .
Ox <= S T
e I ‘ryz+%yy’dy 1’,,+de
Tez 5
/ xy
i Tyt 3y dy -(,1:,, i
o Y d -
/ y+-a—)-,-— Y Tz *
o7
y dx

Fig. 1-2 Stresses on an elementary rectangular parallelopiped.

Similarly considering equilibrium of forces along y- and z-axes,
we get

ot JdG, Ot
Oty 90y 9Ty

% oy o tB=0 (2)
a‘c\-z atyz aO';

—= 4+ ==+

I 3 3% +B,=0 A3

The Eqgs. (1), (2) and (3) are the equilibrium equations in
Cartesian coordinates.

Problem 1:1 Determine the values of A and B so that the follow-
ing stress distribution represents an equilibrium state

= 24x2y, o, = Ay’ Ty = — Bxy?
The body forces are zero.
Jdo Jo Oy Oy
Solution. —* =48xy, —2 =34v?, —2 =—_By?, - = _ 2Bx
- 8uxy > e v oy
d
90 AL 0 gives 48xy —2Bxy =0
ox dy
or B=24
dTyy d0
Y2 _90 gives —-By2+34y2=0
ox dy
or A =B/3=8

1-6 Principal Stresses

Consider an infinitesimal tetrahedron having three faces with
known stresses on the reference planes, as shown in Fig. 1-3. Assume
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that the inclined face ABC is a principal plane. The principal stress ¢

on this plane is along the normal 7 to this plane having direction co-
SInes a,,, @,y and a,;.

Fig. 1-3 Stress components on the faces of elementary tetrahedron.
Applying Newton’s second law of motion in the z-direction and
neglecting body and inertia forces, we have
6.ABC .a,,-0,.AOB -1, . AOC-1,,.BOC=0
Dividing throughout by area ABC, we get
0.Qp:—0; Ay — Ty Qpy — Typ - A= 0
or Tee - Ay + Tyz - Qpy + (0, = 0) ay, =0
Similarly, by considering forces in the x- and y-directions, we get
(Ox=0) @py + Ty - Apy + Ty, . @y, =0
Ty - Qe + (Oy = 0) Ay + Ty, . @y, =0
The three equilibrium equations can be written as :

Gy —O Txy Tz fo 0
Tyy Oy=—0C Ty any ¢ =40
Tz Tyz G:—O | |Qn: 0

This is a set of three homogeneous linear equations. For a non-
trivial solution, the determinant of the coefficient matrix should be
equal to zero.
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Expanding the determinant, we get
3 2 2 2 2
6° —(0x + Oy + 0;) 6* + (0,0, + 6,0, + G,05 — Ty " T " Te )o
2

2 2
vz =0y Ty =02 T, + 27T, ) =0

-(0,0,0, -Gy . T

This is a cubic equation and have three distinct roots, giving
three principal stresses.

1-6:1 Stress Invariants

The combination of stresses at a point which do not vary with the
orientation of axes are called stress invariants. We define :

I, =0, + 0, + 0, = First invariant of stress
2 2 2
I = 6,0, + 0,0, + 0,0, — Ty~ Ty " Ta

= Second invariant of stress

2 2 2
I3 = 0,0,0, - OxTy, = OyT,, —OzT, + 2Ty Ty; Tz

= Third invariant of stress
Thus the cubic equation can be written as :
o3 —110'2 +120 —13 =0

This equation can be solved by Newton-Raphson method, hit-
and-trial, or some numerical technique giving three principal stresses
03, 09 and a3.

1.6-2 Principal Planes

On the principal planes, the normal stress is either maximum or
minimum. For o, let

Gy=01 Ty Ty Ty
A=) ¢ o.-oy |0 Bi=- ’
yz 2~ 01 Txz Oz—O1
T Gy — 01
xy Oy
C=
‘sz Tyz
For non-trivial solution, let
Qnx1 _ %ny1r _ CGnz)
— = = =K,
A B G
2 2 2
Jam +ay, +ag, 1
where K, = 2 o2 2 =% 2 )
\/A1+BI+CI \/A1+BI+CI

B C

A
Thus @nn =T{i_’ Qny) '-'E, Qnz1 = K

The principal planes for other principal stresses can be deter-
mined likewise.
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1-7 Deformation of an Infinitesimal Line Element

Consider an infinitesimal line element A = sz? + Ay} + Azl;,
where i , J , k are unit vectors and Ay, A, A, are the components of A
along the three coordinate axes. On infinitesimal deformation, the de-
formation of the line element A can be written as :

A, duy/ox  duyldy duyloz | |Ay
8Ay p =|duy/ox duyldy duy/dz| <A,
0A., duy/ox  Jdu,ldy Jdu,/dz| | A,

ou: | ) .
where [5—'— = gradient of the displacement vector
x,
J |
ox; 2\ dx; Ox 2\ ox; ox
=g+
= Strain tensor + Rotation tensor
) £y Y xy Y_\;
Exv €y Ew 2 2
Yy Yyz
_8\'3 Eyz €z Y xz Yy:z ¢
2 2 )
(0n 0y O
(0’:/ = (JJ-VV\- (-0'\'_\' (Dy;
W:y Ozy O
It may be noticed that ¢;=¢;
Wj==j I # ]
€= Vy/2

Thus strain tensor is symmetric and rotation tensor is skew-
symmetric. If 8¢ is the angle of rotation, then

80 = 80,1 + 80, j + 0. k
where 8¢, = 0zy, 8¢y = (e, 09, = Wyx
1-8 Normal and Shearing Strains

The normal strain on a plane having direction cosines a,,, a,,,

a,, are :
2

9
+ €4, + Yy Qnx Qny + Yyz Uny Unz + Y xz Unx Anz

2
E" = E.\-ax + E_va”y
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Resultant strain, €, = efx + s?y + Efz
where € = ExQpy + Yo Qny + Yoz Qnz
2 2
€,y=1§y‘anx+€y.any+%z_-anz
€ = I-S—Z-anx +——2yiany +E& .Qp,

Shearing strain,

Yns_/2 2
€ps = 2 =VE &,

1.9 Principal Strains
The principal strains are the roots of the cubic equation :
g3 —J182 +J2€—J3 =0

where J1 =€ + € + €, = First invariant of strain
2 2 2
Yoy Y
Jo = €8, + §)E, + EE, — LE-TRNLET J P53
4 4 4

= Second invariant of strain
1 2 2 2 1
J3 = €&y€; — Z (ex Yy T €y Y 82 Yy, )+ Z Yy Yyz Yaz-
= Third invariant of strain

The solution of cubic equation gives three principal strains €;, €9
and €3.

1:10 Principal Planes

For principal strain €y, let
€y —€1 sz/2
Yyl2 € -8

Yo/2  Yyd2
Yxdf2 €2—E1

Yo/2 €,-8

sz/z Y_)’Z /2

) 1=

A1= , 1:—

1
————— and so on.
JAZ + B2+ C2
1-11 Generalised Hooke’s Law

For isotropic materials, the stress-strain relationship is :

Then any =%1— where K, =
1

ox] [2G+r A A 0 0 0]fe
Cy A 2G + A A 0 0 0f]esy
G A A 2G+A 0 0 O} e,
Ve[| 0 0 0 G 0 0||vy
Tyz 0 0 0 0 G 0f]|yy:
te] | 0 0 0 0 0 GJ|lye
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where G = Shear modulus
A = Lame’s constant
G (31 +2G) .
E = T <G - modulus of elasticity
v = 2_(%}3 = Poisson’s ratio
2G
K=A+ ? = bulk modulus
1-12 Stress-Strain Relationship
1
& =g [0, — V(o + 6,)]
1
Sy = E [Gy - V(G_t + 62)]
1
€, = E[Gz —vio: + o,
Yoy = T/G
e = Ty:/G
Yz = Y.\'z/G

1:13 Compatibility Equations

aQ'Yx_\' _ 828‘5 + 328),

axay - ay2 ax2 y eeeeee y meeens
2825,\' :_a_ _ asz . asz N ayxy

Byc')z o0x ox ay 2z ) y eenens

Problem 1-2 The Cartesian components of stress at a point are
given as below :

0x=15 O'y=62=8,
T =6, 1,, =4, T, =4 MPa.
Determine the normal and shear stresses on a plane whose direc-
1 1 1
tion cosines are _ﬁ T T

Solution.

1 2
Normal stress, o, = 5(15 +8+8)+ 5(6 +4+4)

= 19-67 MPa
25
(15+6+4)=—= MPa
J” J3
18
o =—(6+8+4)— MPa
CANEY NE)
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16

=

(4+4+8)= MPa

Cp = J—

1
Resultant stress, o, = ‘[“E (625 + 324 +256) = 20.04 MPa

Shear stress,  T,; = /(20-04)2 - (19:67) = 3-83 MPa

Problem 1:3 The Cartesian components of stresses at a point are
given as below :

06,=7,0,=6,0,=5,1,=2,1,=-2,1,=0MPa

Determine the values of principal stresses.
Solution.
Stress invariants are :

I,=7+6+5=18

I, =42+30+35-4-4-0=99

I3=210-28-0-20+0=162

-18062+996-162=0

I
o=rcos®@+_-=rcos0+6

3
324
= |2[22% _g9| _3.
r 3( = ) 3.464
4 (2 18 x99 )
- % [2 5832- +162] =
cos 39 4157(27’< 3

6 = 30°, 90°, 150°
Gy =rcos 0; + 6 = 3-464 cos 30° + 6 = 9 MPa
G = 3:464 cos 90° + 6 = 6 MPa
o3 = 3-464 cos 150° + 6 = 3 MPa

Problem 1:4 The state of stress at a point for a given reference
xyz is given by the following array of terms :

[15 8 -6
8 -12 5|MPa
-6 5 8

Determine the principal stresses.
Solution.
I,=15-12+8=11
I,=-180-96 + 120 — 64 — 36 — 25 = — 281
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I3=-1440-375 + 432 - 512 - 480 = - 2375

4 (%1 + 281) =207

33
cos 30 = — = (l x1331 + 11281 2375)
88683 | 27
= 0562
30= 124-2°
0, = 41-4°, By = 71-4°, 5 = 131-4°
o1 =207 cos 41-4° + 1—31 =19-19 MPa
Gy = 10-27 MPa

63 = — 10-02 MPa

Problem 1-5 The Cartesian components of stress at a point are
given below :

o, =10, oy =5, o, =4,
Ty =2, Ty, =—4, T, =—6 MPa
Determine the normal and shear stresses on a plane whose direc-
o cosinesare L 2 2
tion cosines are 3 33
Solution.

1
o,= 5[10+2O+ 16 + 2(— 4 + 16 — 12)]
=5-1 MPa

1
Oy = 5(10—4—— 12)=-2
16

1
0p=3(2-10-8)= -

1 10
o,z=§(—6+8+8)=—3—

256 100
+—+ o = 6-6 MPa

Tns = \/(6-6)2 - (51)2 =4-17 MPa

Problem 1-6 The principal stresses at a point on a plane are
oy =50, op =40 and o3 = -20 MPa
Determine the normal and shear stresses on this plane if its direc-

. . 1 2 3
tion cosines are ——, 7=, —7—.
Ji4’ V4’ J14

Gr= 4
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Solution.

G, = §(5o + 160 — 180) = 2-14 MPa

6, = \f% (2500 + 6400 + 3600) = 29-88 MPa

= /(29.88)2 - (214)* = 29-80 MPa

Problem 1-7 A cube
with an edge of 2-5 cm as
shown in Fig. 1-4 was tested
in compression. Under a load
of 400 kN it failed along a
plane passing through the di-
agonal of the top, and through
the diagonals of the adjacent
sides. Determine the result-
ant normal and shear
stresses on this plane at the
instant of the failure.

Solution.
3
o, = - 200x10° 1 _ 9133 MPa
625 3
400x10° 1
Or=" g5 <[z =~ 3695 MPa

Tns = /(369:5)2 - (2133)2 = 301-7 MPa
Problem 1-8 The strain components at a point are given by :
=200, g, = 100, €, = 50 p-strains, and
Yoy = Yyz = Yaz 40 p-radians.

Calculate the normal and shearing stresses on a plane having

1
direction cosines ”ﬁ —f

-

Solution.
1 1
Normal strain, ¢, = —(200 + 100 + 50) + —(40 x 3) = 156-67

240

€1 (200 +20 +20) = E—

ﬁl

140

3

€y = (20 + 100 + 20) =

5
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1 90
€ = 73‘(20+20+50)='\/‘§‘

1
Resultant strain, €,= \/g (2407 +140% + 90%) = 168-62

Shearing strain, y,; = 2\/(168-62)2 - (156-67)% = 124-72

Problem 19 Calculate the principal strains in Problem 1-7.
Solution. Strain invariants are :

J1=200 + 100 + 50 = 350

Js =200 x 100 + 100 x 50 + 200 x 50 — 400 x 3 = 33800

J3 =200 x 100 x 50 — 200 x 400 — 100 x 400 — 50 x 400 + % x 403
= 876000

€3 - 350 x 10-6¢2 + 33800 x 10-12¢ — 876000 x 10-18 =0

4](350x107%)? -
- ‘/.3{_*3_* - 33800 x10 12} =96-84 x 10-6

4 2 -18
e — 2 12, 49875000x 10
€08 30 = 508164 x 10-1° [27

350 x 33800 x 1078
3

+ 876000 x 10-13}

= 0-47829687
0, = 20-475°, By = 50-415°, B3 = 99-525°

-6
€1 = 96-84 x 1076 cos 20-475° + ﬁ%)—— =207-4 x 10-6

€g=—42 x 1075, £5 = — 100-6 x 10-6
Problem 1:10 The stress componenis at a point are given by :
Oy =0, =0; =50 MPa, 1, = 10, 1, = 20, 1,, = 15 MPa.
Calculate the strain components. Take E = 200 GPa and v = 0-30.
Solution.
1
€ = W[SO —0-3 x 100] = 100 x 10-6
g, = ¢, = 100 x 10-5
5 5
= E = 2x10 - 10° N/mm?
2(1+v) 2x13 13

___E _2x10° _10°
=90 +v) 2x13 13

N/mm?-6
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20x1-3 .
he= =5 =260 x10°
r, =22 "_15'3 =195 x 10-6

10

Problem 1-11 The state of stress at a point is given by : 6, = 20,
o, =40, o, = 60, 1, = - 20, 1y, = - 40 and 1, = 50 MPa. Calculate the
normal, shear and resultant stresses on a plane whose normal is in-
clined at 40° to x-axis and 54° to y-axis.
Solution.
[ = cos 40° = 0-766, m = cos 54° = 0-588
n=41-12-m? =0-260
0, =02 + oym? + o.n% + 2t Im + 1,mn + 1, )
=20 x (0-766)2 + 40 x (0-588)2 + 60 x (0-260)2
+2(- 20 x 0-766 x 0-588 — 40 x 0-588
x 0-260 + 50 x 0-766 x 0-260)
=19-291 MPa

O =0l +1qym+1,n

=20 x 0-766 — 20 x 0-588 + 50 x 0-260 = 16-56
Oy =Tyl +oy,m+ 1,0

=—20x 0-766 + 40 x 0-588 — 40 x 0-:260 = — 22
O =Tl + T, m+o,n

=50 x 0-766 — 40 x 0-588 + 60 x 0-260 = 30-38

o, = 11656)% + (- 2212 + (30-38)% = 34-67 MPa

Tos = o2 = 02 = /(346712 - (19291)° = 28-8 MPa
Problem 1-12 The state of stress at a point is given by : c, = 40,
0,=50,06,=-70, 1y, =40, 1,, = 80 and 1., = 30 MPa. Determine the state
of stress by rotating the axes about the x-axis through 30° in the anti-
clockwise direction.

Solution. The direction cosines after rotation are :

X y z
x| V32| 12 0
y | -y2 | V32| o
2’ 0 0 1

Stress components after rotation are :

3 1 V3
0, =40 x 7 +50x 7 +0+2 40x7+0+0}
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=77-14 MPa
1 3 V3
= — = -40x—+0+0
Gy—40x4+50x4+0+2( x 4 j
= 12-86 MPa
o./=-"70 MPa
‘CX'),':—40x§+50x§+0+40(§—i—)+O+O
= 58-97 MPa
ty=80x Y3 _30x L _ 5428 MPa
2 2
Ty —80x§+3 —3— = 65-98 MPa

Problem 1:13 The state ofstress at a point is given by : 6, = 80,
o, = 100, o, = 120, 1y = - 60, 1, = 40 and t,, = 20 MPa. Determine the
principal stresses and principal planes.
Solution.
I, =80 + 100 + 120 = 300
I, = 8000 + 12000 + 9600 — 3600 — 1600 — 400 = 24000
I3 = 960000 — 288000 — 16000 — 48000 — 96000 = 512000
- 300 62 + 240006 — 512000 = 0

I
Put o:rcos6+§l=rcose+100

r3cos30+ 106+ 30072 cos20+3x 104rcos 8—3000r2cos26 + 104
+ 2007 cos 0) + 24000 (r cos 6 + 100) — 512000 = 0

r3 cos3 8 — 60007 cos 6 — 0-112 x 106 = 0

. 6
cos3 0 — 6030 cosG—Onz;10 =0 s
r r
3 1
Now cos39—zcose—zcos 360=0 (2)
Comparings coefficients of Egs. (1) and (2), we have
6000 _ 3
2 4 or r =89-443
) 6
0112;10 =lc0536
r 4
i 6
or cos 30 = M— =0-62609

(89-443)3
30, = 51-2375°
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0, = 17-08°
30, = 360° — 51-2375 = 308-7625°
0, = 102-92°
305 = 360° + 51-2375 = 411-2375°
05 = 137-08°

61 =1 cos 0; + 100 = 89-443 cos 17-08° + 100 = 185-5 MPa
O9 =71 ¢0S 8y + 100 = 89-443 cos 102-92° + 100 = 80 MPa
o3 =r cos 63 + 100 = 89-443 cos 137-08° + 100 = 34-5 MPa

Problem 1:14 Determine whether the following strain field is
compatible :

£c =32 +xy, €, =2y +4z + 3, €. = 32x + 2xy, Yoy = 4XY, Yy, = 232, and
Yar = 2xy2.

Solution.
aZY.\'y _ aZE.\' + aze_\’
xdy oyt P

Mo gy Doy _,
ox Taxdy
aai"“ =gy +x, a;;"’ =6
Jey
e

4=6+0

The strain field is not compatible.
1-14 Plane stress

For the plane stress case, 0, = T = T,, = 0 and oy, 0, Ty, = flx, y).
Thus, equilibrium equations become,

0y . OTxy
P oy +B,=0
Ty . Jdoy
PN 9y +B,=0
B,=0
The strain-displacement relations are :
duyx
e.\‘- &
du,
g = ay
. = du,
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= au-r + .aiy.
dy  ox

Stress-strains relations are :

Yry

€. = E(cx - vG,)

Tyr
Yty=_g
sz=sz=0

Strain-compatibility equation is :
aZSx a2€y _ 82ny
a?  w?r oxdy

Stress-compatibility equation in the absence of body forces, be-
comes :

V2(o,+0,)=0
where V2 = 92/9x2 + 32/9y?

Airy’s stress function ¢ :

Define o,= ¢

8y2
%0
Gy = ax2
2
Ty = — 9 0
dxdy

The stresses defined above in terms of Airy’s stress function sat-

isfy the equilibrium equations. When substituted in stress-compatibil-
ity equation, gives

Vip =0

ot ot ot
~Tt2 37t 5a

0x ox“dy® dy
This is called the Biharmonic equation.
1-15 Plane strain

where Vé =

Here €, = ¥y, = Y;x = 0. The governing equations are :
Equilibrium equations :
aox a‘t_‘.y
_—r 2 -
3% 3 +B,=0
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0Ty .\ do,,
3 Y +B,=0
Jo,
e +B,=0
Strain-displacement relations :
_ Ouy
& o
du,
=
_ Juy 9
Yoy dy ox

Stress strain relations :

sx=(1;\l)[(1—v) Oy — vo,]

eyz(lgvj[(l—v)cy—vcx]

Tyy

Yoy = ?

Strain-compatibility equation.

0%, . azsy ~ a2y_\.y

d?  ox®  dxdy
Stress-compatibility equation, in the absence of body forces, is

VZ(c,+0,) =0
Biharmonic equation :

Vig =0
Problem 1:15 Prove that the following are Airy’s stress func-
tions :

(a) ¢ =Ax? + By?

(b) ¢ =Ax?

(€) ¢ =Ax! - 3x%y2)

Solution.

99 %2

(a) - 2Ax, - 2By
A 90
23 22 -9B
ox? Ty
a4 a4
90y 2oy
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9% B
8x23y2

oo A% o'
= + — = O
Vi = ot ax23y2 oy

Hence, it is an Airy’s stress function.

90 %0 %0 2%
- = = = -, = 0
(b) . 3Ax2, el = 6Ax, p 6A, Py
2 9% o q>
=~5=77=0
dy Iy’ a
a4
% -0
dx“ady
Thus V4 ¢ = 0 and it is an Airy’s stress function.
0 _ 4w gry), 20 2 gy
(c) n = A(4x> — 6xy?), 2 = A(12x% — 6y%)
3 4
0 %0
=A(24x), —F =24A
0x v ox*
92
?—¢=—6A,xy, i)——GAxQ
dy dy
3 ot
J ? = _j) =0
dy”
9% d'o
oy 124y, wZy? T 124

Vi =24A-244+0=0

Hence, it is an Airy’s stress function.

1-16 Theories of Failure

A material is said to have failed when it is stressed beyond the
elastic limit. If the material is subjected to a single type of loading.
then its failure can be predicted easily. If, however the material is sub-
jected to a complex stress system then it is not easy to predict its fail-
ure straight away. Thus the need of a theory of failure arises.

Let 63, 09, 03 be the three principal stresses in descending order
and o, be the yield strength in simple tension for the material. The
various theories of failure are :

(1) Maximum Principal Stress (or Rankine’s) Theory. The
material is said to have failed when the maximum principal stress o,
becomes equal to or more than o,, i.e.
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O1= Gy

The yield strength in tension and compression is assumed to be
same. It is suitable for brittle materials.

(2) Maximum Principal strain (or St. Venant’s) Theory. The
material is deemed to have failed when the maximum principal strain
£1 becomes equal to or more than that calculated in a simple tensile
test, i.e.

1 o,
z 61— Vv(oy + 03)] = E
or 01— V(og + 03! = 0,

This theory over estimates the behaviour of ductile materials.

(3) Maximum Shear Stress (or Guest-Coulomb’s or Tresca’s)
Theory. The failure of the material is said to have taken place when
the maximum shear stress exceeds the maximum shear stress in a
simple tensile test, i.e.

0;-03 Oy
2 2
or G1 —03= 0Oy

This theory is suitable for ductile materials. Its serious draw-
back is that it does not consider the intermediate principal stress.

(4) Maximum strain Energy (or Bellrami-Haigh’s) Theory.
The failure is assumed to take place when the total strain energy ex-
ceeds the strain energy determined in a simple tensile test. Thus
2

1 . ‘
—— [0 + G) +0F —2V(0,0 + G0 + 55011 = =2
2F - ' 2E
2 2 2 b
¥ S +05, +05 =2V + 4+ 0490,)=0_
or O, +05 + 05 —2V(G10y + G903 + 030, o,

This theory is suitable for ductile materials.

(5) Maximum Shear Strain Energy (or Distortion Energy)
Theory. This theory is due to Mises-Hencky. The failure is assumed to
take place when the maximum shear strain energy exceeds the shear
strain energy in a simple tensile test, i.e.

2
1 [ 2 2 21 _ Oy

——|(0; = 09) + (09 —0C3)" +(03-0 ]zw—

oG |01~ 02 2 —03)" +(03 - 01) e

or (01—02)2+(02—03)2+(03—<54)2:‘2(5y2

This theory is suitable for ductile materials.
(6) Mohr’s Theory. According to this theory,
o1, O
c

=1

vt 0»\@
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where o,,; and Oy are yield strengths in simple tension and compres-
sion. This theory is suitable for brittle materials.

1-16-1. Graphical Representation for Plane Stress

(1) Maximum Principal Stress Theory. The failure will occur
when o7 or 63 = 0, or o,.. These conditions are represented on 6; — 63
coordinates in Fig. 1-5.

G2A

=)
Q
3

A\

Oyc O1

Oye
Fig. 1-5 Maximum principal stress theory.

(2) Maximum Principal Strain Theory. For yielding in tension,
01— VO =0y
and for yielding in compression, with 6, compressive
G — VO] = Oy,
These equations when plotted on 6, — oy coordinates produce the
rhomboid failure envelope shown in Fig. 1-6.

Oyc G2 Oyt
l-v T  1-v

G_yt
— 0,
~~«_y—Shear
~ diagonal

Fig. 1-6 Maximum principal strain theory.
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(3) Maximum Shear
Stress Theory. For yielding Gg
in tension, 67 = 6,; when 6y =
0 and o5 = 6, when o7 = 0.
When o, is compressive and 7
oy is tensile in the second ~ .
quadrant, then ~1

N :01
01 + O = Oy Gye 9 ZN Gyt

and in the fourth quadrant, K AN
p “v&—— Shear

G1 — Og = Oy K s diagonal
In the third quadrant, ”
both the stresses are negative.
These equations plotted on Fig. 1.7 Maximum shear
01 — Oy coordinates produce a stress theory.
hexagon shown in Fig. 1-7.

(4) Maximum Strain Energy Theory

2, <2 2
G +0; - 2V06,65 =0,

2]l

This represents an ellipse with semi-major and semi-minor axes

G c . .
and respectively. cach at 45° to the coordinate axes, as
Ji-v Jil+v

shown in Fig. 1-8.

GZﬂ

~&—— Shear
\. diagonal

Fig. 1-8 Maximum strain energy theory.

5. Maximum Distortion Energy Theory.

2 2 _ 2
0, +G2 —Glcz—cy
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2 2
. RGN IR
Gy Oy Gy J\ Oy
This represents an ellipse with semi-major and semi-minor axes

’2
1/2(5), and 3 0, respectively at 45° to the coordinate axes as shown
in Fig. 1-9.

(2 02
AN Oyt ¢
51
\(\‘ ’/,
Oyc 0.\, /Oy >
Shear K Oyc
diagonal
Fig. 1:9 Maximum distortion Fig. 1-10 Mohr’s theory.
energy theory.
(6) Mohr’s Theory
c c
1422
Gy Oy

It is shown in Fig. 1-10.
1:16-2 Derivation of Equations For Failure Theories
(a) Elastic strain energy due to principal stresses.

Let 61, 09, 63 be the principal stresses acting on a body at a point.

2
Work done per unit volume by o; = ;_;;

Lateral strain produced by oy and o3 along o,
\Y
€1 = E (0’2 + 0‘3)
Reduction in work done per unit volume due to lateral strain,

}-O'E
=9 1%

1
=-5g O1V(oz +03)

Net work done by 6, per unit volume,
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1
wy= ﬁ[of -vo, (o + 03)]
Similarly work done by o5 and o3 per unit volume is,
REP
Wy = ok [0’2 VO (0'3 +0'1)]
1
wg = ﬁ[cg -vo3 (o) + 02)]

Total work done per unit volume by all the stresses,
Ww=w)+wy+ w3
21113 (512 +05 + 05 = 2v (0105 + 6,03 + 0301)>

= Total strain energy stored in the body per unit
volume.

12 2
For 0‘3=O,u=§E(Gl +62 -2v 0102)
(b) Shear strain energy due to principal stresses.

Shear strain energy = Total strain energy — Strain energy due to
volumetric strain.

Total strain energy per unit volume,

uy = 612 + 03 + °3 -2v (0,05 + 6503 + 030, )) (D

1
2E(

1
Mean stress, o, = 3 (o1 + 09 + 03)

If O; =0y =03 =0, then
1
uy = E (362 — 6va?]
3c2 o2
=—[1-2v
2E [ I= 2K
where K = bulk modulus

Volumetric strain energy per unit volume due to 6,,,

1-2v
UQ=30‘31( ok )

2 1-2v
(01+02+03) ( oFE )

CO|H

1-2v
6E

[}
~—

)(01 + Og + 03)2 .(2)
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Shear strain energy per unit volume,

Uy=Up —Ug
L 212 2v ( )
2E 0'1 02 + 03 V(0,09 + 0303 + G30;

1-2v 0
\TeE (07 + 09 + O3)
2

1
=3 [012 +0, +o§ —-2v (0,09 + 0903 + 030, )]

1-2v
( ) 01 + 022 + cg +2(0,09 + 0503 + 630, )]
1+

( 6F ) (61 — 09)2 + (069 — 63)% + (03— 6,)%

= ——[(67 — 69)? + (09 — 63)% + (063 — 01)%]

12G
If o3=0, then
1
Uy= oo (01 +02 0102)

Problem 1:16 At a point in a structural member subjected to
plane stress, the state of stress is : 6, =70 MPa, 6, =- 56 MPa, 1., = - 28
MPa. Determine which of the theories of failure will predict failure by

yielding for this state of stress if the yield strength of the material in
tension and compression is 250 MPa.

Solution.

2
o, +0 c,—-0O
y x y 2
0’1‘3: 2 i‘\/( 2 ) +Txy

2
_ 1056 t\/(70+56) . o
2 2
= 74 68-94 = 75.94, - 61-94 MPa
0= 75-94 MPa, Og = 0, 03 =— 61-94 MPa

(1) Maximum normal stress theory. For failure to occur,
G120y

Here 61 < 6,. Hence, no failure.
(2) Maximum shear stress theory.

G; — O3 _ 7594 + 61-94
Tmax = 2 - 9

= 68-94 MPa
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o,
For failure to occur, T,,,4, > ~2i

c
Here 1,4, < ?y Hence, no failure.

(3) Maximum distortion energy theory.

(012 - 0,03 + 032) < 032,
(75-94)2 — (75-94) x (— 61-94) + (- 61-94)2 < 2502
14307 < 62500

Hence no failure.
Therefore, yielding of the structural member will not occur.

Problem 1-17 A 200 mm diameter solid circular shaft is sub-
Jected to a torque T. The shaft is made of a material with an ultimate
tensile strength of 620 MPa and an ultimate compressive strength of 820
MPa. Determine the value of maximum torque T according to the Mohr
theory of failure.

Solution.

Shear stress in shaft, t = % = 1;?% = r:_xl(%TQ—F = 636-62 TN/m?
Principal stresses are :

01 =636-62T, o9 =0, 63 =-636-62T
According to Mohr theory, we have

S1 %3 _ 1
oul 0'uc

636-62T - 636-62T _
620x10% 820 x10°
1-8032 x 10-6T = 1
T =554-578 kN.m

Problem 1-18 The principal stresses at a point are : 40 MPa, 30
MPa and - 20 MPa. Calculate per unit volume the (a) total strain en-

ergy, (b) volumetric strain energy, and (c) shear strain energy. E = 200
GPa, G = 80 GPa.

E 200

. . 3 3 - - _ 1: - 1 =0
Solution. Poisson’s ratio, v 2G 2% 80 0-25
1
(a) u= E_E[ 12 +c522 +o§ - 2v (0109 + 0503 +0301)]
101
= m[16+9 +4-2x025(12-6 - 8)]
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3
Z30x 107 e kNS

1-2v
() u=|\ "6 (07 + 09 + 03)?
[ 1-2x025
6 x 200 x 10°

= —3—3 x 25 x 103 = 1-04 kN.m/m3

](40 +30 - 20)% x 1012

(c) uy=u—u, =75- 104 = 6-46 kN.m/m3

1
or Uy= EEKGI_GQ)Q +(02-—0'3)2 + (03—-01)2]

]
" 12w 80 % 109110730 2+ (- 20 - 4012 x 1012
50 g9 (40~ 3017 + (30 + 2007 + (20— 4012

10
= —6[100 + 2500 + 3600]
_ 620 x 10°

- 96
Problem 1:19. A mild steel hollow shaft of 100 mm external di-
ameter and 40 mm internal diameter is subjected to a twisting moment
of 6 RN.m and a bending moment of 4 kN.m. Find the direct stress,
which acting alone, would produce the same (a) maximum elastic strain
energy, (b) maximum elastic shear strain energy, as that produced by the

principal stresses acting together. Poisson’s ratio is 0-30.

= 6-46 kN.m/m3

Solution.
16Td,
n(dg - d*)
16 x 6 x 10% x 100
n(100* - 40%)

32 Md,
Bending stress, o = ndf—dh
0 1

Torsional shear stress, T =

= 31-36 MPa

32 x 4 x 10% x 100
n(100* - 40%)

=41-81 MPa

Principal stresses, 01 o = o

-209+ %\/(4}81)2 +4x(31-36)

=209 £ 37-69
= 58:59 MPa, - 16:79 MPa
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(a) of +022 —2V0,09 = 62
(58-59)2 + (- 16-79)2 — 2 x 0-3 x 58-59 x (- 16-79) = 52
o2 =4304-93
or o =6561 MPa
(b) 012 +<522 — 0109 = G2
(58-59)2 + (- 16-79)2 — 58-59 x (- 16:79) = ¢2
o2 = 46984
6 = 68:54 MPa
1-17 Yield Criteria

A yield criteria is a hypothesis concerning the limit of elasticity
under any possible combination of stresses. The two yield criterias
are : 1. Tresca’s, and 2. Von-Mises-Hencky yield conditions. Both
criterias neglect the effect of mean stress and require the knowledge of
yield strength in simple uniaxial state of stress, assumed to be identi-
cal in tension and compression.

1:16-1 Tresca’s yield Criterion

According to this criterion, yielding of a ductile metal begins
when maximum shear stress reaches a definite value prescribed for a

1
material. If 6y > 09 > 03, then T, = ;z'(cl - 03). If 6¢ is the yield

strength in simple tension, then yield strength under pure shear is
o¢/2. Hence, for yielding to occur,

01-03 _%o
2 2
or Gy — 03 =0y
1:16-2 Von-Mises-Hencky yield criterion

This yield criterion is based upon the theory of maximum distor-
tion energy. The yielding will occur when the distortion energy attains
a critical value for a ductile material. The distortion energy under prin-
cipal stresses are :

1
u="155lc1- 69)2 + (69 — 63)2 + (03 — 61)%]

For universal state of stress at yield,

1 o
u=%¢G 0

For yielding to occur,
(01 - 02)2 + (02 — 03)2 + (03 — 01)% = 20¢

For the plane stress case, 63 = 0. The Von-Mises criterion be-
comes,
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2 2 _ 2
0, — 010y + 0,5 =0

This is known as Von-Mises ellipse, with

Major axis = 22 o

2
Minor axis = ‘/g .20

Tresca’s criterion gives,
61 = 0 for 67 and o9 to be of the same sign.
01 — 09 = 0y for 0; and o5 to be of the opposite sign.

This represents a hexagon. The two criterias are shown in Fig.
1-11.

G2

Von-mises
Tresca's ellipse
hexagon

Fig. 1-11 Yield criterias for plane stress.

118 Ideally Plastic Solids
The materials can be classified as follows :

(1) Rigid material—A perfectly rigid material is one which
does not deform under the action of any amount of load.

(2) Rigid-Perfectly plastic material—This type of material is
rigid upto the yield point and then deforms plastically at constant yield
stress.

(3) Perfectly linear elastic material—This type of material
obeys Hooke’s law.

(4) Rigid with strairn hardening—This type of material is
rigid upto the yield point and then deforms plastically with strain
hardening.
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(5) Elastic-perfectly plastic—In such like materials, stress is
proportional to strain upto the yield point and then the material de-
forms plastically at a constant stress.

(6) Elasto-plastic with strain hardening—Here the stress is
proportional to strain upto the yield point and then the material de-
forms plastically with strain hardening.

These types of materials are shown in Fig. 1.12.
o C‘T

60 p—>—»

0 > e ot—
(a) Rigid material (b) Rigid perfectly plastic
O, G,
o0
tan’l €
0 € 0 3
(c) Perfectly linear elastic (d) Rigid-strain hardening

o) |---

0 €

(e) Elasto-plastic (/) Elasto-plastic with strain
hardening
Fig. 1-12 Types of materials.

1-19 Beams on Elastic Foundation

In many practical cases the beam is supported elastically, where
the elastic support is provided by a load bearing medium, referred to as
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the ‘foundation’, distributed continuously along the length of the beam.
In some of these problems, the identity of the beam and the foundation
can be easily established, as in the case of actual foundation structures
or rail-road track. We shall study the Winkler type of foundation where
the pressure in the foundation is proportional at every point to the
deflection occurring at that point only.

1-19-1 Differential Equation of the Elastic Line

Consider a straight beam AB supported along its entire length
by an elastic medium and subjected to vertical forces as shown in Fig.
1-13 (a). Pressure p in the supporting medium is proportional to the
deflection y of the beam at that point, i.e., p = ky, where % is a constant
for the supporting medium, called the modulus of the foundation. For
unit width of the beam, the units of £ will be N/m?.

Let us consider an infinitely small element dx of the beam en-
closed between two vertical cross-sections acted upon by a distributed
load ¢ N/m. The forces acting on this element are shown in Fig. 1-13 (),
where @ is the shear force and M the bending moment.

y

(@) Beam supported on entire length.

gdx

M

dx M+dM

T leww
pdx = kydx

(b) Forces acting on elementary beam.

Fig. 1-13 Beam on elastic foundation.
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For equilibrium of the element dx, we have
Q- (Q+dQ)+ kydx—qdx =0

a@Q_,
or dx - Y —q
dM
Now =—(~i:
4Q _d’M

dx  de® ky-q
Also for the bending of a beam, we have

Ly

EI—=

dx

4
EI%:—kerq A1)

This is the differential equation for the deflection curve of a
beam supported on an elastic foundation.
Now EI = D = flexural rigidity of the beam.
dy k__gq
ey . 2,-9 .(2)
&' D7D
The general solution of Eq. (2) can be written, as,

y =eM(cy cos Ax + cg sin Ax) + e™™

(c3 cos dAx + ¢4 sin Ax) + ]% .(3)
k
h M= —
where 4D
and c; to ¢4 are unknown constants.
Now
dy _ tan 0
dx
d2
EI4Y-_M 4)
dx®
d3y
El — =-
da® @

1-19-2 Infinite Beam
(a) Concentrated Load on an Infinite Beam

Consider an infinitely long beam having a single concentrated
load P at the point O as shown in Fig. 1-14. Due to the symmetry of the
beam we consider only right half of the beam.
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As x and y tend to infinity, the deflection of the beam should be
zero. Hence in Eq. (3),¢y =c9 = 0.

Fig. 1-14
y=eM(c3cos Ax + ¢4 sin Ax)
dy

— =0 =0.
Also dx atx=0
dy _ )
Now Ir = e A(—c3 sin Ax + c4 cos Ax)

— ke ™(c3 cos Ax + ¢4 sin Ax)
= Ae™™[=(c3 + c4) sin Ax + (cq — c3) cos Ax]
or cg—c3=0
or €3 =Cq4=¢C (say)
y = ce~™(cos Ax + sin Ax)

Now pP=2 j ky dx
0
P 2k
= 2kcJ‘ e ™™ (cos Ax +sin Ax) dx = )\_c
0
_ P
“= ok
P\
2 :
y =5 (cos Ax + sin Ax) (1)
At _o, y=1
TEDOY T ok
Now y =0, when cos Ax +sin Ax =0
3n Tn
or M=—4—’T’ .., etc.
2
Further 6= Y i e~ sin Ax ..(2)
dx k
d’y P
M=-EI S =" oxccos hx—sin Ax (3

dx? 4\
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d3y P
=-El —=-— eM™cos Ax LA
@ dx® 2
For two or more concentrated loads, the principle of superposi-

tion may be used.

(b) Udl on a part of Infinite Beam. Consider a beam of infinite
length carrying Udl of intensity w over a central region BC of length [
as shown in Fig. 1-15. The deflection etc. is to be calculated at point A
which is at a distance ‘@’ and ‘b’ from the ends B and C respectively.

w per unit length

I“ a <-——b—>[

sy V1 ] 1Ple .,
777777777 7777777777 77777777777

A
4—»‘ 4<‘>dx
x

{ >|

-oo<—/

Fig. 1-15

An elementary load wdx at a distance x from A produces deflec-
tion at A,
wdx .\
2k
Total deflection at point A,

dy = .e™™ (cos Ax — sin Ax)

y = J w—k.e'k" (cos Ax + sin Ax) dx
. 2k

a
+ J‘ »li)-)i.e‘h(cos AX + sin Ax) dx
2k
w 0
= 5% [2 — e cos ha — e cos Ab]

If a=b= é, then

Similarly, we can get
w
M = = [e™™ sin Aa + e sin Ab]
4
For a =b=1/2, we get

w
My = pYel e™M12 sin (M/2)
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A
0= w—[e‘Aﬂ (cos ha + sin ha) — e~A? (cos Ab + sin Ab)]

2k
8 =0
Q= %[e’h (cos Aa — sin Aa) — e (cos Ab — sin Ab)]
@ =0

(c) Concentrated Moment on an Infinite Beam. Let a con-
centrated moment M, be applied at point O on the infinitely long beam
as shown in Fig. 1-16 (a). The concentrated moment can be regarded as
a limiting case of the loading shown in Fig. 1-16 (b), where two concen-
trated loads, each equal to P, separated by a distance ‘a’ are applied
such that as a — 0, Pa — M. This gives,

b)
Fig. 1-16

Px
y = —[-e M+ acos Mx + a) + sin AMx + a))

2k
+ e™(cos Ax + sin Ax)]
_ P Aot Al o
T2k a orx
where A= e (cos Ax + sin Ax)
Al(x+a)+Akr d
Axra T A =% AL _
Now [ o . 7 ) = — 2B,
where B;, =e™Msin Ax
and (Pa)u -0 =M0
M)\*
y=—Bu
3
and dy _g. Mot Ci,

dx k
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where C). = e (cos Ax — sin Ax)
d?y M
~-El—2=M=-—D
dx® g M
where Dy, = e™™ cos Ax
d3y M\
-El-==Q=--24
dx® @ g M

1-19-3 Semi-Infinite Beam

A semi-infinite beam may be defined as a beam which has unlim-
ited extension of length in one direction only and having a finite end on
the other side.

(a) Semi-infinite Beam with Free End.

q
Py r P; Py

et IT

Fig. 1-17

Consider an infinitely long beam subjected to some loading due
to which at point A (finite end), we have a bending moment M4 and
shear force Q4. If this moment and shear is made to vanish then the
infinite beam would become a semi-infinite beam, since the end A of
the semi-infinite beam has been assumed free. This can be achieved by
applying at A a moment M, and force Py which will cause a bending
moment — M, and a shearing force — @4 at that section as shown in Fig.
1-17.

As the end A is free, hence

PO MO
Matr "2 =0

PO =—(WA+QA)

2
M0=“7\‘

The forces Py and M are called the end-conditioning forces.

(2WA + QA)

Let us consider that a force P, is applied at end A, as shown in
Fig. 1-18, so that M4 = 0 and @4 = P;. Then
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PO =4QA=4P1
2Q 2P,
Mo=-=0="5"
—_—— X
| m L
"
Fig. 1-18

When these are applied to the infinite beam, we get

2P A 2P\
=T A B
Similarly
2
o 2R,
P

Q@ =-PCy
(\Ml
Agm e

Fig. 1-19

If we apply moment M; at end A, as shown in Fig. 1-19, then
My=-M,;, Q4=0

which gives,

Po = — 4AM; (X\Ml X
M, = 4M,

and y = —
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3
9: 41‘21)\' D}J.
M = M)A,
Q =- 2M1}\Bk\‘

(b) Semi-infinite beam with hinged end
At the hinged end A, we have

y=0,M=0
and yA+%']}:O
MA+5—(})¥+—A§g =0
Po=‘%yA

k
M, ='75§yA —-2My4

Let us apply a moment M, at end A, as shown in Fig. 1-20. Then
putting y4 = 0 and M4 = — M, we get

P0=0, M0:2Ml

}\2
and Y= 2M1 e Bk\‘
k
)\3
0=2M,—C
1 k Ax
M= M\D;,
Q=_M1)\Ak\'

(c) Semi-infinite beam with free end having udl over a fi-
nite length

Consider a semi-infinite beam with free end carrying a ud! as
shown in Fig. 1-21. For an infinite beam,

f——t—|
lv I I 1 liq raiiiiies,

f —> +©
X —>
y\M




THREE DIMENSIONAL STRESSES AND STRAINS 39

q
M=7 Bu
9 ;
Q =4r (1-Cu)
which gives
Py =%(1+BM—C;\1)

M0=—ﬁ<1+23u—cm

Applying Py and M on the infinite beam together with g, we get

y=%[(1+BM—CU)A;_\.—(1+ZBM—CM)BM
+(2-Dy—Dyy_] for 0 <x<!
and y=%[(1+BM-CM>AM.—(1+2BM-CM)BM

+ D)y =Dy _pl forx>1

The expressions for 6, M, @ can be obtained by differentiation.
1-19-4 Beams of Finite Length

For a beam of finite length the correct solution is the one which
besides fulfilling the differential equation of the elastic line also satis-
fies the required conditions at both ends of the beam.

The solution is obtained by resolving the original loading into
two parts a symmetrical part and an antisymmetrical part, and deter-
mining the end-conditioning forces in each of these parts. For further
details the readers may refer to Theory of elasticity, 4th ed., Khanna
Publishers, written by the author.

Problem 1:20 Compute the maximum bending moment, maxi-
mum deflection and the maximum bending stress for a railroad rail
subjected to a single wheel load of 100 kN. The foundation modulus k =
15 MN/m?2. Assume that I =400 x 108 m%, E = 200 GN/ m?2, the depth of
the rail is 180 mm and that the distance of the centroidal axis of the
cross-section of the rail from the top surface is 100 mm.

4 k4 15x 108 -
A= = =1-4714 m™!
V4EI \/4x200x109 <400x10° "

P 100
Mn S T T T T a1 a
YT 4N 4x14714

Solution.

=16-99 kN.m

P\ _ 100x10° x1-4714

Ymax= "op = 2 %15 x 10° =49 mm
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16: ¥ x100x107
Omac = M’Z“" - 1699 XJ)% *10_2 107 _ 49475 MPa
X

Problem 1-21 A steel beam has a square cross-section with 50
mm sides, 20 m long and supported by an elastic Winkler foundation of
modulus & = 5-6 MN/m?. It is subjected to three equal loads of 20 kN
each 5 m apart at the centre. Compute the deflection and the bending
moment of the beam under the middle load. E = 200 GN/m?.

Solution.

5x125
= - i 4
I D 52-08 cm

4 k4 56 x10* _
A= ,/— = =0-60549 m™!
4EI J4 x200x10° x5208x10°® "

x1=5m,xp=-5m
1 2

Axy = 302745, Axy = — 3-02745

P
Yo =5, 1+ 2e7M(sin Ax + cos M)

20 x10°% x 0-60549
~ 2x56x10°
=0-989 mm

[1 + 2e-302745(sin 3-02745
+ cos 3-:02745))

P
M, = H[l + 2e~M(cos Ax — sin Ax)]
=7-372 kN.m

Problem 1-22 A wooden beam of cross-section 80 mm x 240 mm
rests on an earth foundation. The modulus of elasticity of wood is 10
GN/m?2 and modulus of foundation is 5 MN/m?2. A uniformly distrib-
uted load of 2 kN/m acts on the middle portion of this very long beam
over a span of 2 m. Compute the maximum deflection and the maximum
bending stress in the beam.

Solution.

3
-8 "124 = 9216 x 10-8 m*

4k _4 5x 108 »
M= VTEI T \1x100x9216x10° - 1079175 m

Ymax = % [1 - e M2 cos (M/2)]
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W 1079175x 2

—=——=1-079175
2 2

Ymax = 52)??(())6 [1 - 9—1'079175 CcoS 1079175] =0-336 mm
T T

—~:_=1.
9% 2x1070175 ~ 1490 m

[=2m,ie l>i

21
M,.,, occurs at ﬁ from either end.
207278 m

4\
ha = 1079175 x 0-7278 = 0-7854
Ab =1-079175 x (2 - 0-7278) = 1-3729

wooo b o
Mmax=a§[e— sin Aa + e™*° sin Ab]

) Z—(i%o'zgs%ﬁ [e07854 sin 07854 + e~13729 sin 1:3729]
x (1

245-07 N.m
M _ 24507x12
Omax = " 9216 %1070
Problem 1-23 A long concrete footing rests on an earth founda-
tion for which the value of the foundation modulus is 5-6 MN/m?2. The
footing has a cross-section 200 mm wide and 200 mm deep. The footing
supports a uniformly distributed load of 2 kKN/m of length which ex-

tends over a 3 m length. Compute the value of the maximum bending
moment in the footing and the maximum bending stress. E = 14 GN/m?.

=0-319 MPa

Solution.

20* .
1= 19 = 13333:3 cm

A 09306 m™

4] k 4 56 x 106
4EI 4x14x10° x133333x1078 ~

T -168793m
2% 2x0-9306

n
l=3m>2k

M,q, Occurs at

?1% = 0-84396 m from either end.
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Aa = 0-9306 x 0-84396 = 0-7854
Ab = 0-9306 x (3 — 0-84396) = 2-0064

Moy = Zw}?[e"“’ sin Az + e sin Ab]

= 4—(%%)?(’)0-7)2 [e=07854 5in 0-7854 + e~20064 gip 2.0064]
x .
= 256-52 N.m
Oy = Mmex . _25652x10 1504 Mpy

z 13333-3x1076
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