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Basic Equations of Elasticity

1.1 Introduction

Elasticity is the property of a deformable body due to which
the body recovers its original shape upon the removal of the forces
causing the deformation. Almost all engineering materials possess
to a certain extent the property of elasticity. In the Theory of
Elasticity, we assume the body to be perfectly elastic, homogeneous
and isotropic. The first discussions of elastic phenomena occur in
the writings of Hooke (1676) but the first real attempts to construct
-a theory of elasticity using the continuum approach, date from the
first half of the eighteen century*. Since that time, the theory of
elasticity has developed tremendously. In this chapter, we will study
the basic equations of the Theory of Elasticity without giving their
proof or deriving themft.

1.2 The State of Stress at a Point

There are two types of forces acting on a material body to
produce stresses : Surface forces acting on the boundaries of the
body, and body forces distributed throughout the volume of the body.
These applied forces are resisted by a system of stresses throughout
the body.

The state of stress at any given point of a continuous body is
determined entirely by the components of stress in three mutually
perpendicular planes which pass through the chosen point. The
planes are usually taken perpendicular to the co-ordinate directions
of some orthogonal co-ordinate system. The stress at a point on a
plane section through the point is defined as the force per unit area
transmitted through that section at the point. The stress com-
ponents are a function of both the positian of the point in the body

*For the early history of the theory of elasticity, the reader may refer
to I. Todhunter and K. Pearson : A History of the Theory of Elasticity and
of the Strength of Materials, 2 vols. Cambridge, 1893.

fFor the derivation of these equations the reader may refer to :
Singh, S., “Apulied Stress Analysis”, Khanna Publishers.



2 THEORY OF ELASTICITY

and the orientation of the plane passed through that point. Each of
the above stress components, being a vector, can be resolved further
into three components along three co-ordinate axes.

Let us refer the continuous body in a state of stress under the
influence of some external forces to a Cartesian co-ordinate system
x, y, z and at a given point let us consider three planes which are
normal to the axes of the co-ordinates. The stress which actson each
area is resolved into three components along the axes. We denote
the normal components (the normal stresses) by the symbol o with
an index which indicates the direction of the normal to the area. We
denote the tangential components (the tangential stresses) by T with
two indices. The components of stress acting on an area normal to
the x-axis are o, 1.y, T., ; the components of stress acting on an area
normal to the y-axis are 1,,, 0, T,, ; the components of stress acting
on an area normal to the z-axis are v, 1,,, 0, (Fig. 1.1). These nine
components define the state of stress at a point given by the stress
tensor :
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Fig. 1.1 Stress components on a rectangular parallelopiped.

The stress tensor is symmetric because t,, = T, ; T,y = 7, ;
T.x = Ty, (generally, t; = t;;, ¢ = j, where : and j denote mutually
perpendicular directions).

Similarly the stress tensor in cylindrical co-ordinate system
r, 6,z is given by :
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where T, = T9; T,r = Trz ; To0 = Tz, and

¢ by,
(0, To Try]
[vil=|% Oo Toy
Te- T O

[ Or Tre Trz ]
[til=]|T O Te
Tor Tz0 o,

in spherical co-ordinates r, 0,

where g, = 1,9 ; Ty = 1:,', s Too = Togr

If we know the stresses in three mutually perpendicular
areas we can always determine the stress which acts on any area
passing through the same point. We have the formulae :

X, =0,cos(n,x)+ Tay €OS (1, y) + T, cOS (, 2)

Y, =1,cos(n,x) + o, cos (n,y) + 1, cos (n, 2)

Z, =T, cos(n,x) + Ty €08 (n,y) + 0, cos (n, 2)
where X,, Y,,, Z, are components of stress which act on an area with
the arbitrary normal directionn .

If it is desired to express the stress components referred to
co-ordinate system 0, x’, 5, 2’ in terms of the components of system
0, x, 5, z, then the direction cosines are determined by :

..(1.1)

x y z
x' Ay'x ayy ay,
y N O
2’ ayx | ayy a;

where a,, = cos (x', x) ; a,, = cos (¥', 2) and so on.
The stress components in the new co-ordinate system may be
obtained from :
Tij' =@ iy, Uy, ..(1.2)
Thereby, we get
’_ 2 2 2
Oy =0,a x’x+°ya x'y+ 0, q %,
+2(Ty Gyry - Ay + Ty Ay By + Ty, A @) LL(1.3)
Tey = Ox Qy'x - Qy'x + Oy Qyy Ay,
+ Ty Ay ayy + ayy ay)
+1,(axy ay, + ay, ayy)
+ txz(ax'x ay, + Ay, ay'x)

+ 0, ay, ay'z
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The rest of the stress components can be found by cyclic
permutation of symbols x, y and z. The formulas for the transforma-
tion from the system x', 5, z' to x, y, 2, can be written as :

O, =0y az,,', +0o, azy', +a, azz.x )
+ 2 (Tey Qux Qyx + Ty Qyrx Gy
+ Ty Ay ax’x)
’
Ty = O, Qyy Qyy + O, Ay A,y
zy = Ox Qy'x Ax'y + Oy Qy'x Ay'y | ...(1.4)
+ 0, Qyy ay
+ Ty (@yy ayy + ayy ayy)
+ Ty @y, ayy + ayy ayy)

+ Ty (ax'x a;y + ayy az'x) J
The expressions for the remaining stress components can be

obtained by a cyclic permutation of the symbols x’, y /, 2'.
Analogous formulas hold for other orthogonal co-ordinate

systems. For example the relations between the stresses in the

Cartesian and cylindrical co-ordinate systems with the same z-axis
are:

x y z
r x' cos @ | sinB 0
0 y' ~sin@| cos® 0
z 2' 0 0 1
_ 2 . 2 :
O, = 0, cos“ 0 + o, sin” 0 + 2t,, sin B cos 6
Op = 0, sin% 0 + oy cos® 0 — 2t,,, sin 6 cos 0
0,=0,
T =—0,cos 0sin0 + o, sin 0 cos O ...(1.5)
+ Ty (cos? 8 — sin? 0)
Tg; = Ty, . COS 0 —1,, sin O
T, =Ty, Sin 0 + T, cos O
and g, = G, cos? 0 + O sin® 0 — 21,4 sin 6 cos 6
O, = 0, sin’ 0 + 0 cos 0 + 21,4 sin 6 cos O
'y r [¢] ro
02 = 02
Ty = (0,—0g) sin B cos 0 + 1,9 (cos® 0 — sin? 0) ...(1.6)
Ty, = Tg, c0s 0 + 7, sin O
T =—Tg,Sin 0 +71,cos0
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The importance of these stress-transformation equations is
that they can be used to determine the planes on which the shear
stress is zero. It can be shown that, for the most general state of
stress, three such planes exist. These planes, referred to as principal
planes, are mutually perpendicular. The stresses on these planes,
01, 03 and o3 are called principal stresses. The principal stresses are
the roots of the cubic equation :

03—110‘2+120—I3= 0 ..(1.7
where I} =0,+0,+0,
Iy=00,+0,0,+0,0, -1, -1, -12 ..(1.8)

I3 = 00,0, - U,tyf - Oy‘tuz - 0,1,3 + 24T, T,

are three stress invariants.
Eq. (1.7) may be solved by hit and trial, Newton-Raphson

method or any other numerical method and the principal stresses
and principal directions may be determined.

1.3 The State of Strain at a Point

The displacements of the different points of a material body
are resolved into two parts, rigid-body displacements and deforma-
tion. The first corresponds to a translation or rotation of the body as
a whole, and the second corresponds to displacements of points
relative to each other. It is only this later part that enters the
definition of strain. In the linear theory or small deformation theory
of elasticity, it is assumed that the deformations are infinitesimal
and it applies to a small neighbourhood about the point in question.

The state of deformation in the neighbourhood of a given
point of a continuous body is determined by six components of strain ;
three components of normal strain, which we shall denote by ¢, with
one index, which indicates the primary direction of the segment ;
three components of shear strain which we shall denote by y with
two indices. Physically, the normal strain is defined as the change
in length of a small line segment divided by the length of the
segment. The shearing strain is visualized as the change in angle
between two initially perpendicular line segments. The components
of strain determine the strain tensor,

. .

. Iy tm
* 2 2
Y Yyz

=13 & 3
Yz  Yyz
2 3 &
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which, as in the case of stress tensor, is symmetric, i.e. g = ¢;; : 1 =,
andy;=2¢g;;i=].
The components of rotation tensor are :

0 Wy Oy
(o] = | - 0y 0 Oy,
-0, -, 0

which is skew-symmetric.

If u,, u,, u, are the components of the displacement field u,
then

1 Sy
Po9=9 |y " ox
1(du, odu,
O =5 | ——-
2| oz &
1(y
=3 " gy
so that the components of rigid body rotations are :
o =L _ %%y
%:=05=5| % &
1/(ou, OJu,
5¢y—(ﬂu-2 = o | ...(1.9)
co L[
=03 % o
J
and the components of strain are :
o, )
S
ou
=%
Yy
ou,
&=
Yo 1 fﬁ+% * ...(1.10)
2 Ty T
Yo _1(0w ou
2 72| 9z
Yoo _ o _1(0U; O,
2 ~%=%2| 5z "o




BASIC EQUATIONS OF ELASTICITY 7

For the transformation of strain components from one
orthogonal co-ordinate system x, y, z to another orthogonal co-
ordinate system x', ¥', 2/, the same laws of transformation as for the
stress components hold good, i.e.,

&= Qi Qi Eim ..(1.11)
X

Therefore, it is necessary to substitute ¢ in place of o and 2
in place of T in Eq. (1.3). Thus, for example

[ 2 2 2
€& =& Q x’x+£yax’y+ezax’z
+ Yxy Gx'x Qx'y + Yyz Qx'y Ax'z
+ Yz Qs Qx'2

'Yx' ’

—5‘1 = 8 Gy Gy + &y . Gy Gy + 6,0y, Ay,
ny L ...(1.12)
+ - (a,:x Qy'y + Qay'y ay'x)

+‘E(xy yz ¥ Qx; Qyy)

Yoz
+ 7 (ax’x ay; + Ay, ay'x)
and conversely,
€, = &' a%, + ¢/ a’ + g0l
+ Yx'y' + Qx'x Qy'x + Yy'z' Gy'z' Qy'x Qzy
t Yx'z Ax'x Qs

Yoy
2 "ex Ayx @ x'y +5y y'% yy

+8 a,+ay, s ...(1.13)

sz
+ @z ayy + ayy ayy)

Yy'z‘
t g @iayt+aya)

Yx'z'
+ 5 (@yx ayy + ayy ayy) )

other components may be written by cyclic permutation of the
symbolsx, y, zorx', y', 2.

As in the case of stresses, there exist three mutually perpen-
dicular planes on which the shear strains are zero. The normal
components in these directions ¢;, €5 and &3, which include the
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algebraically largest and smallest of all normal strains at the point,
are called principal strains and the directions, principal
strain directions. The principal strains are the roots of the cubic
equation:

-l +Je—J3=0 ..(1.14)
where  Ji=eg +¢g+¢e,

Ja=e. 8 +E 8, +E 8,

2 2

_lﬁ_Y_Z;E_Y_xz
4 4 4 | ..(1.15)
¥ Yo
J3 = e,eye,—ex-—‘iﬂ—sy—z—

2
"eszy"'Znyszsz

are the three strain invariants.

Eq. (1.14) may be solved by hit and trial, Newton-Raphson
method or any other numerical method to determine the principal
strains and principal directions. The first invariant of strain J; is
called dilatation and has the physical significance of representing
the change of a unit volume of the material.

1.4 Basic Equations of Elasticity

1.4.1 Cartesian Co-ordinates

() Equations of equilibrium (3)

Consideration of the variation of the state of stress from point
to point leads to the equilibrium equations given by

™ -E;X+ 5 tB:e=0
oz O 9% p _
Fw + ™ + = +B,=0

where B,, B, and B, are the components of the body force (in N/m?),
such as gravitational, centrifugal, or other inertia forces.
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(27) Strain-displacement relations (6)

ou,
LA™
g = 2
oy
_ou,
Y
[ (1.17)
_ s ou,
Yo = ot |
du, du,
M
ou, oJu,
Y= = VT

(tit) Stress-strain relations (6)

For an isotropic material, we have only two independent
elastic constants A and G, known as Lame’s constants and the
generalised Hooke’s law gives the following stress-strain relations.

3

& = % [0, - V(o + 5,)]

&y = —é— [o, - V(o, + 0,)]

1
g = E [Gz -v(o, + Gy)]
Ty . ...(1.18)
Yoy = G
Tyz
Yyz = —GL
Tz
Yoz = E

where v is Poisson’s ratio and E is the modulus of elasticity
E
G‘2u+v)

(¢v) Strain compatibility equations (6)

Given a displacement field, a unique strain field can be
computed. However, given a strainfield, the corresponding displace-
ments are not necessarily unique and continuous, unless certain
conditions are satisfied. These conditions, known as the com-
patibility equations, are expressed as,

= Modulus of rigidity



u
+ 20 LT

du,

ou,
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...(1.19)

ou,
0z

0z

...(1.20)

dz

10
Py %, %,
xdy -t | a?
¥y ) %, .\ o%,
Wiz 22 gy
P e, N 3%,
ozdx  ox? 922
oo _ 3 (_ My, M BNy
oz ox| a  dy @ oz
ey 0 (_ N Ny e
dzax ay | dy @ oz @ ox
g 86 _ 0 ( Ny O
&y oz| oz  ax  .ay
(v) Stress-displacement relations (6)
The stress-strain relations using Egs. (1.17) may be written
as,
o ou
=2G—= —=
o, e +A T oy
Ju u 173
=92G -2 ntet. N der 4
o, P +A oy
ou, ou, duy
o,=2G " +A = ™ +
g2, B
ay ox
du, Ju
-c| %, %Y
1,,=G > * P
u au
=G 2 —=
Ve x 9z
where A = vE = Lame’s constant

1-v)1-2v)

(vi) Equilibrium equations in terms of displacements (3)

Using the stress-displacement relations Equations (1.20), the
equilibrium Equations (1.16) can be expressed in terms of displace-
ments. These equations are known as Navier equations and are

given by,
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9t B
2 . m | Tx
Vu,+(1_2v ax+G-0
9t B
2 _m Y _
Vuy+(1_2v 6y+G 0 ...(1.21)
2 38 \%m B._
Vu""(l—2v az+G-O

where V2 & il &
A A
ox

1(6u duy au)

8"‘3aaz:ay

(vii) Stress-compatibility equations (6)
Using Egs. (1.18) and (1.16), the compatibility equations
(1.19) may be expressed in terms of stress components. These
equations are known as Beltrami-Michell equations and are given

by :
2 3 azom__ v E
Vo,+(1+v) po akald I pep V.B-2 F™
2
2 __3_ aom__ _L —-_
Voy+(1+v)—2—ay = (l-v)V'B
3 d“c,
2 m_
Vo,+(1+v) el (I—V)VB 2 ...(1.22)
3\ om 3B, 4B,
Vz"”“(lw way | oy | ax
3 \d,. (9B, 4B,
V2‘:"‘4'(1+v dyoz | 9z oy
3 \ %o, oB, oB
Vi + ( 1+v | adzox | ax = 9z
d i) d
where V-ax+8y+az



12 THEORY OF ELASTICITY

(viit) Boundary conditions in terms of stresses (3)
When the stresses are prescribed over the entire boundary,
then the boundary conditions can be expressed as :

Xn =0y Qpy + Ty Qpy + T Ay,
Y, =1y . +0y. apy + 7, . @, ...(1.23)
Zy =T Qpy + Ty @y + 0, . Ay,

(ix) Boundary conditions in terms of displacements (3)

Using Egs. (1.20), the Egs. (1.23) can be expressed in terms
of displacements as given below :

ou, ou, du
X, = 3\g,, . a,,,+G[ ™ am+(—5y—-+——1)any

du, du,
+ az+ax Oz
ou, ou, Ju
Yn=3Mm-any+G[2?yx.a,,y+(—+—l)am
au,

ay ax
(au
+

) ] ...(1.24)
Z,=3 e, .a,, +G [

ou, au,
St 5t

au auz
Qpy

1(% Juy auz)

wheres,,,:-g Pl P + %

1.4.2 Cylindrical Co-ordinates
() Equations of equilibrium (3) (Fig. 1.2)
9, 13 3% Op-
or "7 98 Taz T r 2 +B.=0
T 1300 O 2t

e +Bg=0 ..(1.25)

dt, 10Ty, 00, T
ar r a0 z+r+Bz—0

(@) Strain-displacement relations (6)
ou,
or

€. =
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13

Y4
0z+ %czdz
dee
0z
2
+61_zr dz
O'a‘ 6 SBds
!’l're+a1a"de dz
0 % y
8 L'Iéz + d__Tez de
< (o]
Trz4 ‘m ar—__1
X Tre-raTre
OO'r
or+—d
r ar r
Fig. 1.2 Stresses on a cylindrical parallelopiped
1w
=90 T r
ou,
g, =
0z
1 du, OJdug Uug
Yro = r 39 T 7 ...(1.26)
_ dug 1 ou,
Yo oz r 00
u, du,
Yor = "or ¥ oz
(ii) Stress-strain relations (6)
g = E [0, —Vv(og + G,)]
€9 = E_ [Oe - V(Or + 02)]
£ —1~[cr —v(og + 0,)]
z E r
T
tro =" ...(1.27)
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Toz
Yez=§

tzr

YZ" - G
@) Sb‘ain-compatibility equations (6)
3Yez _19d 1 o, . d?e
raz 69 Tr w*?%’f a2

Har ra(lay,e) Pre a(ae,)
—+_— —_—— ——
2 or

2ro8dz r o2 | 2922 =or | roe
ox, 3%, o%,
ooz~ a2t oE (1.28)
19( o\ 134 ,261 18 19),
2or| ) 2o 2 o2 r2or
1 10( Mo\, 1% 0% _13( %) 10
2 7Zor F] ra0dz 2290 ror| oz r oz
1a(1a 1 9 (20, 0 (1%
20r|ror ez o2 or 9 or| or 90
_ 628,.
" robaz

(v) Stress-displacement relations (6)
_2G«3ur (au, 1aue Uy %)

3r+r 66 +az

_ 1 dug u, du, 1 aue Ur %
06-2G(r 66+r)+}‘(6r+r 9 T +a,

ou, du, 10dug u, du,
02-2G62+)\( ar Tr o0 1 oz

1 du, Jdug Uug
= = —_= ...(1.29
o G(r86+ar r) (1.29)
dug 1 du,
tez-G( oz r 69)
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(vi) Equilibrium equations in terms of displacernents (3)
2y o[~ )\ U2 Mg By
Vu,- (1-—2\' r ;; 7'269+G-0
83 9%, up 2 du. By
2 Oem By _
v 9(1—2\')7‘89 ﬁ*’;j 90 + G 0 ...(1.30)

V2u2+( _3 )ai+%=0

1-2v
h 1 u, 1 aue u, du,
where Em =3\ or *7 90 T T oz

V2=<32+1<9 1 82 &?
R rat 2wt

(vit) Stress-compatibility equations (6)
In the absence of body forces, we have
2(0s-0,) 4 e ( 3 ) ¥o,,

2 — —_— e— -
Vo + 2 ;269+ 1+v a,-2 0

V209-2(06-0')+4@+( 3 )(lao’"+620"‘)=
T2 290 1+v ]l r or 2902

V2o, + (l—fv ) % = ..(1.31)
V- —gae(ﬁe- oy) — T:e+( )ai(%?—em)=0
V%%—%+é%+(l+v)raeaz=o
Vo555 S

where o, = % (o, + 0g + 0,)
(viii) Boundary conditions in terms of stresses (3)
Tp=0p.Qn + TrgAng + Try Ay
0, = T0 . G + Og - Qnp + To, Tn, ...(1.32)
2p = Tpr Qpr+ T, Qpg + 0, Ay,
(ix) Boundary conditions in terms of displacements (3)
rpn=3\e, - Anr+ G 28 . apn + Y9 Ano + Yrz Tzl
0, = 3\e, . anp + G (286 . @no + Yr0 Anr + Yoo Aol ...(1.33)
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zﬂ = 3}'8”1‘ anz + G [282 M anz + YZ" anr + Yez any]
For axis symmetric bodies, if z is the axis of revolution, then
all stresses and strains are independent of 6.

1.5 Methods of Solution of Elasticity Problems

Given the geometry of the body, the manner in which it is
loaded, i.e. specified boundary conditions, the distribution: of body
forces, and the elastic constants, it isrequired to determine stresses,
strains and displacements as a function of location. Depending on
the form of the boundary conditions, problems, can be classified in
three groups :

1. First Boundary-Value Problem : where normal and shear
stresses are prescribed on the whole boundary of the body.

2. Second Boundary-Value Problem : where only displace-
ments are prescribed on the boundary.

3. Mixed Boundary-Value Problem : where stresses are
prescribed on some parts of the boundary and displacements on
other parts.

In the most general case, it is required to solve 15 equations :
3 equilibrium equations (1.16) or (1.25), 6 strain-displacement rela-
tions Eqgs. (1.17) or (1.26), 6 stress-strain relations Eqgs. (1.18) or
(1.27)] for 15 unknowns [6 stress components, 6 strains components
and 3 displacement components]. With the requirement that com-
patibility equations (1.19) or (1.28) and boundary conditions (1.23)
or (1.32) be satisfied. The boundary conditions serve to solve for the
integration constants that arise in the solution of the system of
differential equations. Such a formulation of elasticity problems is
known as stress formulation. Another approach suitable for the
second boundary value problem is to solve the three equations of
equilibrium in terms of displacements. Egs. (1.21) or (1.30) for the
three displacement components subject to the displacement bound-
ary conditions, Eqgs. (1.24) or (1.33). This formulation of elasticity
problems is called displacement formulation. However, these direct
methods of solving elasticity problems are too complicated to yield
practical results. In order to simplify the solution methods, inverse
and semi-inverse methods can be used. In the inverse method, a
judicious guess of the solution is made and is checked against the
basic equations and boundary conditions. If all conditions are satis-
fied the solution is the correct one ; otherwise, corrections are made
and a revised solution is checked in the same manner. In the
semi-inverse method, some of the upknowns are guessed and a
simplified group of equations is solved for the remaining unknowns.
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These educated guesses are based on experience, intuition, solutions
of similar problems, or experiments.

1.6 Plane Stress

If a thin plate is loaded by forces applied at the boundary,
parallel to the plane of the plate and distributed uniformly over the
thickness (Fig. 1.3), the stress components o,, 1., 7,, are zero on both
faces of the plate, and if also assumed to be zero within the plate,
then the state of stress is called plane stress.

t

y

(@ ®)
Fig. 1.3 State of plane stress.

For plane stress case, o,, 0,, T, = flx, y) ...(1.34)
and governing equations become.

(?) Equilibrium equations
4o, JT.
x Olxy =
ax oy +B.=0
e % ...(1.35)
—2+—24+B,=0
ax oy Y
B,=0
(%) Strain-displacement relations
o, )
SR
Ey - 21;‘1
e ...(1.36)
_ Ou,
2= 5
u, Jdu
W e
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(tii) Stress-strain relations

€ = -I% [o, - vo,]

[o, - vo,]

1
€y=E

v
g, =— E [0, + o,
T
Yoy = 'g
Yyz = Yzx = 0 J
(v) Strain-compatibility equations
%, aze, a’y
o m?  axdy
(v) Stress-displacement relations
0,=20%= 2, (—

ax

(vi) Navier equations

U, + 1
=Tl 1-2v
2 3

1
P “”'(1-2\')5;
(vit) Stress-compatibility Equations

2 3
gy

) (ex + &) +

32 9
V2(0,+0y)-—(1 +v)(

(o,+oy)=—(1+v)(aB

a

or

(viii) Stress-boundary conditions
X, =0, . Qpy + Ty Ay
Y,=v,.a.,+0,.a,

(e,+s,,)+——-

THEORY OF ELASTICITY

..(1.37)

...(1.38)

{ ...(1.39)

J

RE
==0

B, L ...(1.40)

)
_B; ...(1.41)
%y

)

...(1.42)
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(ix) Boundary conditions in terms of dlsplacements
Xn= Mg, + &) Qny
a ou,
+G 26u, a,,,+(—i‘l+——-) J

&

Yo=h(e + ey) Qny (1.43)

au du, ouy
it 4 L%
+G[2Qy'a"y(ax+ay) ]
(x) Biharmonic equation
Let there exist a body force potential V such that,

and define

Oy = 52' -V r ...(1.44)

where ¢ = Airy’s stress function.
Substituting Eq. (1.44) in Eq. (1.35), we get

3 [ o[ 2% _
= —V]+ay[- +B.=0

a? dxdy
Fo V% .p .o
axay? & axgy® -
o[ 2% %
and ax[ ] &y[ V]+B =0
a*" Vo
ax“’ay ok +B,=0

Hence, we see that the stress components given by Eq. (1.44)
satisfy the equilibrium equations.

Now substituting Eq. (1.44) in Eq. (1.41), we get

0% o> 0B, aB
v2[&x¢2’ ay“’-zv]:-(uv)( ay)
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AL 2V2V‘-(1+v)(? fgz)
Vi =2 V2V (1+v)(a£"+‘%)
A(F Gl )
3B (2R
vip=(1- v)("’i a:;) (145)

Eq. (1.45) is known as the Biharmonic equation for plane
stress problems.

Py 34 P
where V“-—‘-|»2‘—3?—-2 _7

If body forces are zero, then Eq. (1.45) becomes
Vip=0 ...(1.46)

1.7 Plane Strain

When the length of the member in the z-direction is either
very large so that no displacement is possible or the movements
along the z-axis are otherwise prevented so that ¢, = y,, = y,, = 0,
then the state of strain is said to be plane strain. A retaining wall
with internal pressure, a culvert or tunnel and a cylindrical tube
with internal pressure are some of the important problems of this
kind.

The governing equations for plane strain case are :

() Equilibrium equations
90 Oy o _
= " P +B,=
at Jdo.
T2+ 4B,=0 | (1.47)
d0,
ac; +B,=
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(27) Strain-displacement relations
u,

&y = | ...(1.48)
ouy

€ -sz sz"o

D

&
%

[~5)

(tii) Stress-strain relations
€, = % [0, -Vv(o.+0)]=0
o, = v(o, + o))

-1 [0, -v(o, +0,)]

ex_(1+v)[0x(1 —v)-va,] . ...(1.49)

Hence €

Y ) [o,1 -v) -vo,]

Tay
G )

(v) Strain compatibility equation
o% 62 a2y

yt—p =2 ...(1.50

W axdy (.59

(v) Stress displacement relations

o, au
2G——— }"(ax ay)

...(1.51)

—

(v?) Navier equations

P 3 1 y
ax2+ay2)u‘+(l_—§5) (—+—)+—G—=o (152 a)



22 THEORY OF ELASTICITY

&, 1\ (% ou) By
(ax2+ay2)uy+(1_zv)ax(ay+ax)+G-O...(1.52b)

(viz) Stress compatibility equation

Vio, +a,) = - (ﬁ—; ) (% ¥ ‘%) .(L53)

(viit) Biharmonic equation

9% a% - %
Leto,=— -V, o,=—% —Vand )
a. 52 Uy & an Txy (% ay

)

Substituting in Eq. (1.53), we get

(s st) (w5

. 9By
ay
B
vip=avey_ (L) (3B=, By
(i)

1-v
_of®B=, 3By _ = 9By
Tox ay 1 v dy
i} B, 4B,
Vi = (11—_2\,!) (% aay ) ..(1.54)

Eq. (1.54) is the Biharmonic equation for plane strain case.
When body forces are zero, then

Vip=0 ..(1.55)
1.8 Spherical Coordinates
(2) Equilibrium equations

With reference to Fig. 1.4, the equilibrium equations can be
written as :

0 10 1 vy

ar r a0 rsin® ¢
+—[20,—09—0¢+t,ecot9]+B,=0

at

e 19% 1 Oty

ar r 390 rsinB a¢
+;[(oe—o¢)cot9+3t,9]+Be=O

ITry la'fe¢+ 1 9o,
or r 40 rsin® 9,

+ % [3t + 2Tepcot 0] + By =0 ...(1.56)



BASIC EQUATIONS OF ELASTICITY
z

~<

X
Fig. 1.4 Stress components on a spherical parallelopiped.

(2Z) Strain-displacement relations

LM w13
"3 ' r " r o8

JYr, 98 1 94y
e‘_r+rcote+rsin9’6¢

S10ur Oup U S N:1))
=23 tor

__ 1 ou Oduy uy
=7 sin0 0p  or or

Lou, ot 1
Yos = 7 50 r *"rsin®’ a¢p

(@ii) Equilibrium equations in term of displacement components

nea(T"r”Q]+39=0

loe 2G [oo,
*+20) 8 7sin0 | 30 -
1 9 2G[0(rws oo,
Q+2G)rsin66¢_ r[ or _69]+

B¢=O
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2G d(wy sin 0)  dw,
A+ 2(?)5—,‘5&1e [ ( ¢ae ) _T:] +B,.=0 ...(1.58)
3 (Fu in 0
where = r?sin @ [sine (ar ’)_,_,. a(ueasem )+r%t]
_ 1 dugsinB)  Juy
" 2rsin® 30 "o

- 1 al‘l'r . a(ru!)
@0 = 2rsin6[ L) -sin @ or

_1 [ 8(rue) ou,
©¢ = 2r ar 90

Example 1.1 The state of stress at a point with respect to the

xyz system is

3

2 0 kN /m?
-2 -

Determine the stress tensor relative to the x'y'z' coordinate
system obtained by a rotation through 30° about the z-axis.

Solution. The direction cosines are,

V3 1 o
ax’x‘?’ax'y='§,ax'z=
1 V3
Uyz= =5 8y =5, 8y, =0

a; =0, Ay = 0,a;,=1
Using Eqgs. (1.2), we get
oy =0,a%, + oya a?, y + 0, az,,
+ 2(Ty Ay By + Ty Ay By + Ty Ay )

3 v3 1
-1000[3xz+0+0+2(2x7x§+0+0)]

= 1000 [% +¢§] = 3982 N/m?

Similarly
o, =— 982 N/m?, o, = 1000 N/m?

Tyy = O0x . Qyy Qyy + Oy . Gy . Gy + 0, Ay, Gy,

+ Ty (Qrx @y + Qyy Q)
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+ 1, (ayy ay, + ay, ay,)
+ Ty, (@px @y, + @y, Q)

tx'y'=1000[3x§( 1)+0+0+2{\/§x‘/§

2 |72 2 "2
1/ 1
+2(—§)+0+0}
=1ooo[-3f+1]=-299N/m2.

Similarly, ‘
ay, = 134 N/m? 1, = — 2232 N/m?
Example 1.2 The state of stress at a particular point relative
to the xyz coordinate system is given by the stress matrix

15 10 -10
10 10 0 (MPa
-10 0 40

Determine the normal stress and the magnitude and direction
of the shear stress on a surface intersecting the point and parallel to
the plane given by the equation

2¢-y+32=9

Solution. The direction cosines of the normal to this plane
are

2 -1 3
In= =14 O =VIZ = TVIZ

The normal stress is,
o, = 0,.a%,, + Uyaz,,y + 0,02, + 2(T,y Qpx Any

+Tys e Qny Az + Tz« A+ Q)

4 1 9

cx,,-15><——14+10x—14+40x—14
-3 6
+2(IOXT4_+O_1OX§

=—112[90+10+360-60—60]

310
=4 - 22.1428 MPa
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The resultant stress op is
O [(05Qpy + Ty Qpy + Top Q) + (Tay- Qs + Oy @y + 1:3,z.a,,,)2

+ (Tage Gy + Ty Gy + 0,0, ]2
2

15 2 _ 10 30
vVi4 V14 V14

2

2 1
+(10xm—10xm+0)

2 3
+ (—IOXW+O+4OX‘/1—4-) ]

_[ 100, 100 , 10000 )\"* _{10200)"*
Tl 147 14 14 Tl 14
= (728.57)12 = 26.992 MPa
Hence shear stress is
v=Vogt - 0,2 = V728.57 - 490.30
=V238.27 =15.436 MPa .

To determine the direction cosines for 7, let a,,, a,, and a,, be
the direction cosines of T. For equilibrium of forces in the x-direction

opA.a,, + TAa,=X,A

where A is the area over which these stresses act.

au"_‘%[Xn—on'anx]

= % [Ox‘ a,, + txyany + Taz- Az — on'an:r]
1
=7 [(0; — 0p)apy + Toy@ny + Tyl
1 2 1 3
= 15436 [(15-22.1428)m— 10xm— 10 x T3 ]

1 [ _54.2856 ] _ [ gao0

~15.436 Vid
Similarly
1 .
Ay = [ty-@ns + (Oy - Oplay, + Tyz'anz:I
1 2 1
=15.436 [ 10xm+(10—22.1428).(-—12)4'0]
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__ 1 [20 121428 _ 32.1428 _ ...
=15436 | viZd = Viad | 15436vid
- 1 .
%z = 15436
1 2
=548 | " 0% Vg
__1 [_20 535716
“15436| Vid ' Vvia

33.5716
= Tsasevid - o012
Example 1.3 For the stress tensor given below, determine the
principal stresses and the direction cosines associated with the
normals to the surface of each principal stress.

3000 1000 1000
1000 0 2000 | N/m?2.
1000 2000 0

Solution. The stress invariants are
I, = 3000
I, = — (1000)2 — (2000)2 — (1000)?
=—[10% + 4 x 10 + 10%] = — 6 x 10°
I3 = 3000 (- 4 x 10%) — 1000 (- 2 x 10%) + 10002 x 10°)
=-12x10°+2x10° +2x 10° = -8 x 10°

[Tee-@ns + T,y + (0, — O,)a,]

+0 + (40 - 22.1428) . %

The cubic equation is
0® - 3000 6% -6x 10% + 8 x 10°=0

Its solution is
o; = 4000 N/m?
o3 = 1000 N/m?
03 = — 2000 N/m?
To determine the direction cosines for o;, we have

- 1000 1000 1000
[vj—oidl=| 1000 - 4000 2000
1000 2000 - 4000

where [ is the unit matrix.
A;=(16x 10— 4 x 10°%) = 12 x 10°
By =—(—4x10°-2x10% =6 x 108
Ci=2x108+4x108=6x108
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ky=VA?2+B2+C;? = 10° V44 + 36 + 36 = 10%V216

e = T 105x V216 V6
o o Bx10° 1
™1” V216 x 105~ V6
o o Bx10° _ 1
™17 V216 x 106 V6
Similarly,

1 -1 -1

Gney =73 2 Iy, = 3 0 W22 = 7

=0 _1 -1
Qg = :any;;"\/_g'aanz:,:'\/_g

Example 1.4 The stress components at a point are given by
the following array :

100 5 6
5 8 10|MPa
6 10 6
Calculate the principal stresses and principal planes.
Solution.

IL=zo,+0,+0,
=10+8+6=24
I, =00, + 0,0, + ozox—rxf—tyf—t,f
=10x8 +8x6 +6x10-5%-10%-62
=80 +48 + 60-25-100-36 = 27
I3 = 0,0, —oxtyf - oyt,:‘ —021:,3 21T, T,
=10x8x6-10x100—-8x36—-6x25
+2x5x10x6
=480 - 1000 - 288 — 150 + 600
=—358
0®-240% + 270 + 358 = 0 (1)
Now cos 30 = 4 cos® 0 — 4 cos 8
or cos® 6—%cose—icos 30=0 ...(2)
Put 0=rcose+%

=rcos0+8
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Eq. (1) becomes,
r®cos® 0+ 512 + 24 r% cos? 0 + 192 1 cos 8 — 24 1% cos? 6 — 1536
~384rcos0+27rcos0+216+358=0
r3cos®0—-165rcos 0 —450=0

or cos® 9—1’%—5— c059—4—r5£ = ...(3)

Comparing Eqs. (2) and (3), we have

or r=14.8324
and 939 _ cos 30
r 4
450 x 4
cos 30 = —5(14.8324) =0.551618
36 = 56.5219
6, = 18.84°
0, = 138.84°, 05 = 258.84°
oy=rcos0; +8
= 14.8324 cos 18.84° + 8
= 22.04 MPa
g =rcos 0; + 8
= 14.8324 cos 138.84° + 8
=-3.17 MPa
o3 =rcos s + 8
= 14.8324 cos 258.84° + 8
=5.13 MPa.

Example 1.5 Calculate the principal stresses for the stress
components given below :

100 200 100
200 -200 -300|MPa.
100 -300 400

Solution. I; = 100 — 200 + 400 = 300
I, = —100 x 200 — 200 x 400 + 100 x 400
— 2002 - 3002 - 1002
=(-2-8+4-4-9-1)x10*
=-20 x 10*
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I;=[1x(-8-9)—2x@B+3)+1x(-6+2)]x10*
=[-17-22 - 4] x 10*
=—-43x10%
flo) = 0® —300 0% - 20 x 10* 5 + 43 x 10*
Consider the cubic equation :
y3+py2+qy+r=0

Substitutey = x —g—

(+-5 )p( &) +a(x-§)r=o

2 3 3
x3—x2p+%—%+px +%—% 2+q::c—1131+r 0

2 3
x3+x(93— :-23-p2+q) L+ 2 AP

I
(=]

27 3

+r=0

w[B

2 3

7P T
L +rax+b=0

Wherea:%(3q—p2),b =2—17(2p3—9pq +27r)

Put CcoSs 0= _ilﬁ

(5

/_2

g_2 -3
then y1=8 cosg—e
! 33

Y2 = g cos ( 120° +

A
A

Here p = — 300, q = —20 x 104, r = 43 x 104

-1 [8 x (- 20 x 10% — (300)?]

colcn cplcb
oorc oaru

y3 = g cos ( 240° +

[-60 —9] x 104 = — 23 x 10*

oal»—' co
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i7 [2 x (- 300)% — 9 (- 300) (- 20 x 10%)
+27 x 43 x 104]
- 2—17 [~ 54 — 540 + 1161] x 10°

=21 x 108
_ 8
cos 0 = 231 0 040462
23 6
2 27 x 10°
0 =119.645°
4
g=2V 33%0— = 553.775
o1 =y, = 553.775 cos (11?—45 ) +100
= 524.95 MPa
o2 =y3 = 553.775 cos (159.8817)° + 100
=—419.986 MPa
o3 = y3 = 553.775 cos (279.8817)° + 100
= 195.035 MPa
1.9 Computer Program for Principal Stresses and Principal
Planes
Nomenclature

SX =04 SY=0y,SZ =0,
SXY = 1y, SYZ = 1., SXZ = 7y,
aj=1l,ay=Ia3=13
S(1) = 61, S(2) = 05, S(3) = 03
1G) = Anyjs m() = Anyjs n(j) = apgj
Program for principal stresses and planes
developed by Dr. Sadhu singh
Mechanical Engineering Department
Pantnagar University
Dimension a(3),b(3),c(3),s(3)
Integer x,y
Real 1(3),m(3),n(3),k(3)
open(unit=7,file=‘ps.in’,status=‘old)
Oopen(unit=8,file=‘ps.out’,status=‘new’)
Write(8,5)
5 Format(1x, ‘Input’,11,‘Given Stress Components are :’', //)

nnaoan
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Read(7,*)SX,SY,SZ,SXY,SYZ, SXZ
Write(8,10)sX,SY,SzZ

Format (1x, ‘SX=',F7.3,5X, ‘sy="',£7.3,5X, 'Sz=",£7.3,//)
Write(8,15)SXY,SYZ,SXZ

Format (1x,’SXY=',£7.3,5x,'SYZ=',F7.3,5x,'SX2=",£7.3,//)
a;=SX+SY+SZ

a, = SX*SY+XY*SZ+SX*SZ—SXY**2—SYZ**2—-SXZ**2

a; = SX*SY*SZ+2SZY*SYZ*SXZ-SX*SYZ**2
1-SY*SXZ**2—-SZ*SXY**2

Write(8,20)

Format (1x,‘Ouput’,//,‘Principal stresses are :')
r = (1./3.)%al**2-a2

t=SQRT[(1./27.)*r**3]

q = (1./3.)*al*a2—-a3—(2./27.)*al**3
st=SQRT(1./3.)*r)

alpha=aicos(—q/(2.*t))
S(1)=2.*st*(cos(alpha/3.)+(1./3.)*al
S(2)=2.*st*cos((alpha/3.)+2.0944)+(1./3.)*al
S(3)=2.*St*cos((alpha/3.)+4.1888)+(1./3.)*al
Do50x=1,2

Do40y=x,3

If(S(X).1t.S(Y))Go To 30

Go To 40

temp=S(X)

S(X) = S(Y)

S(Y) = temp

Continue

Continue

Write(8,60) S(1),S(2),S(3)
FORMAT(/,1x,‘S1=',£7.3,5x,'S2=',£7.3,5x,'S3=",£7.3,/)
Write(8,65)

FORMAT (/, ‘Direction cosines are :', //)

Do 80j=1,3

a(j)=(SY-S(J))*(S2-S(3))-SYZ**2

b(j)= —(SXY*(SZ—S(j))~SXZ*SYZ)

C(j)=SXY*SYZ-SXZ* (SY-S(j))
k(3)=1./(SQRT(a(j)**2+b(j)**2+c(j)**2)
1(3)=a(3)*k(3)

m(j)=b(3)*k(J)

n(j)=c(3)*k(3)

Write(8,70)3,1(3),m(3),n(3)
Format(1x,‘1(’,il,’')=',£7.4,10x,'m(’,il1,")="',
1£7.4,10x,‘n(’,i1,’)=",£7.4)

Continue

Close(7)

Close(8)

Stop
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END

Input

Given stress components are :

SX=21.450 SY=5.740 SZ= —6.850

SXy= -5.720 SYZ=11.750 SXZ=5.500

Output

Principal stresses are :

S1=23.428 S2=12.391 S3= —-15.479

Direction Cosines are :

1(1)=0.9621 m(l)= —-0.2628 n(1)=0.0728
1(2)= —0.1810 m(2)= -0.8155 n(2)= -0.5497
1(3)=0.2038 m(3)=0.5157 n(3)= -0.8321

EXERCISES
The state of stress at a point relative to an xyz coordinate system is
400 100 -100
[ 100 0 200 |N/mm?
-100 200 0

Determine the complete state of stress relative to an x' y' 2
co-ordinate system if

x y z

x 30° | 60° | 90°

y | 120° | 30° | g0°

z 90° | 90° | g0°

At point @ in a body the state of stress relative to a xyz co-ordinate
system is

-200 400 300

Using the cube shown in Fig. 1.5, determine the normal and shear
stress at point @ for surface parallel to the following planes.

() BCGF, () ABEF, and (1) BGE.

500 200 -200
200 0 400 | MPa

C
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13 If 0y,=4,0,=2,0,=-2,
Ty =3,7, = 8,5, =—2,MPa,

compute the stress vectors on planes with unit normals (% ’ % , % )

and (—\’;_T , -w/% , —\,%.- . Compute the normal and shearing stresses
on these planes.
1.4 Determine the magnitude and the direction of the principal stresses
and the maximum shearing stress when,
o, = 1500, o, =-1000,
o, = 1000, Ty =— 300,
Oy, =0, T, = 100 MPa.
1.5 Show that
() 9% = (01 - 02 + (02— 03) + (03— 01)?
@) 90t = (0x = 0y)° + (ay = 02)% + (02— 0% + 6(Fgy + Pz + Pd)
(i) 9Pot = 21I1% - 6.
1.8 For a given displacement field
us= (xzy + Szz)f + (xyzz + yz) f+ x2y2z2£
determine the strain tensor, rotation tensor and the angle of rotation
at the point (2, - 1, 2).
1.7 Show that
& = cl(xz +y2), &= cl(y2 +29),
Yoy = C2XY2, €2 = Yxz = Yyz = 0.
where ¢; and ¢y are constants, is not a possible state of strain.
1.8 Given the following displacement field,
7= (xyz i + 3’yz + dyzk) x 1072
and a very small segment As having the following direction cosines
before deformation :
g, = 0.200,
gy = 0.800,
a,; = 0.555.
This segment is directed away from the point (2, — 1, 3). What is the
new vector As’ after the displacement field u has been imposed ?
1.9 The state of strain at a point is given by
&, = 0.001, ¢, = - 0.008, ¢, = 0.002,
Yay = 0.001, y,, = 0.0005, y,, = — 0.002.
Determine the strain invariants and the principal strains.
1.10 The state of stress at a point is given by
a, = 200, Oy =— 100, o, =50,
Ty = 40, T, =50, T, =60 MPa.
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111

1.12

1.13

1.14

1L.15

1.16

1.17

It E = 2.05 x 10° N/mm?
G = 0.8 x 10° N/mm?
determine the strain components.
The state of strain at a point is defined by the given strain tensor
below. For a fibre with direction (0, — 1#/5, = 2/5), calculate (a) the
normal strain for the fibre (b) the magnitude of the strain vector.
200 183 -25
le;1=| 183 100 -125 l x 10,
-25 -125 150
At a point, the stress components are :
= 600, oy = 300, o,=900
Ty = 500, T, =400, Tt =-200kPa.
Show that the principal directions of stress and deviative stress
coincide.
The state of stress at a point is given by
o,=100,0y=200,o,=—100,1',g =-200, ¢, = 100

and T = — 300 kPa.
Determine :
(a) the stress invariants,

(b) the principal stresses, and
(c) the direction cosines of the principal planes.
The dxsplacement ﬁeld ina bo_c? is specified as :
= &2 + 3)x 10

uy 3y 2 x 107

u, =(x +32) x 10°
Determine the strain components at a point whose co-ordinates are
1,2,3).

The state of stress at a point is given by
20 -6 10
-6 10 8 |MPa.
10 8 17

Determine the principal stresses and principal directions.
The stress field in a continuous body is given by :

1 0 2

[l = [ 0 1 4 ] kPa.

2y 4 1

Find the stress vector at point P(1, 2, 3), acting on a plane
x+y+z=6.

The given displacement components are : u, = cx(y + z) uy =cylx
+2) u, =cz(x + y)2 where c is a constant. Find
(a) the components of linear strain.
(b) the components of rotation.
(c) the principal strains at a point whose co-ordinates are (1, 1, 1).
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1.18 A plate whose thickness is 3 mm is stretched as shown in Fig. 1.6.
Find the principal strains and the maximum shearing strain in the
plate.

e L P
- 100mm —=| |je—0-0125mm *
Fig. 1.6
1.19 The stress field cn a body is given by
O, = 2042 + y2 Ty =2X
Oy = 30«° + 200 T = y2z
o, = 3()()'2 +29 T, = xsy.
What are the components of the bedy force required to ensure
equilibrium ?
1.20 The state of stress at a point is given by
10 5 -10
5 20 -15
-10 -15 -10

Find the magnitude and direction of the stress vector acting on a
plane whose normal has direction cosines (1/2, 1/2, 1~2). What are
the normal and tangential stresses acting on this plane ?

121 Atapoint P of a continuous body, the components of the stress tensor
are :

fx;] = 102 MPa.

1 -3 VI
[1=10°|-3 4 -vZ|MPa.
V2 -vVZ 4J;

{a) Find the principal stresses and the principal directions.
(b) Find the octahedral normal and shearing stresses.
(c) What is the equation of the stress quadric ?

1.22 Obtain the principzl stresses and the related direction cosines for
the following state of stress :

3 4 6
4 2 5|MPa.
6 5 1

[Ans. 12.049, — 1.521, — 4.528 MPa, 0.618, 0.533, 0.577]
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1.23 The state of strain at a point within a material is given by :

200 100 0
100 300 400 |x 1078
0 400 0
For E = 200 GPa and G = 80 GPa, ascertain the components of stress
tensor. [Ans. 72, 99, 40, 16, 64, 0 MPa]

124 For the following state of strain, determine the principal strains.
2 3 2
[ 3 -1 5 } x 1078,
2 5 -4
[Ans. 6.01, - 1.26, — 7.72 microns]
125 The state of stress at a point is given by ;
oy =-120, o, = 140, o, = 66, T, = 45, T, = - 65 and T, = 25 MPa.
Determine the three principal stresses and the directions associated
with the three principal stresses.
[Ans. 180.2,40.1,-143.3 MPa,
1} =0.913,m, = 0.8740, n; = - 0.4773
I = 0.2584, mg = 0.4422, ny = 0.8589
lg = 0.9598, mg = — 0.2062, ng = — 0.1904]
1.26 The state of stress at a joint is given by
o, =120, 0, = - 55, 0, = - 85, %, = - 55, v, = 33, and 7, = - 75 MPa.
Determine the three principal stresses and the maximum shearing
stress. [Ans. 162.5, - 114.1, - 68.4, 138.3 MPa]
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