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Fundamentals of Elasticity

1.1 Concept of Stress

When a certain system of external forces act on a body then
the body offers resistance to these forces. This internal resistance
offered by the body per unit area is called the stress induced in the
body.

To understand the concept of stress, let us select an arbitrary
system of co-ordinates, and divide the body by an arbitrary plane
and reject one part of it, replacing the part by the action of the forces
distributed through the cross-section as shown in Fig. 1.1. Having
determined the resultant of all the forces applied to the elementary
area, we define the stress as:

o= lim AF
r—0hA

T dA

zj ’/;_")(

4 -r.

'
% 0., AF
'l

o)

X
Fig. 1.1 Defining stress at a point.

The stress 0 may be resolved into two components : the first
perpendicular to the section under examination and the second
operating in the plane of the section ; the first component will be
called the normal stress o,, the second the shear stress t. If a
rectangular system of co-ordinates oxyz is selected, and the z-axis
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superimposed on the normal to the section under examination and
x and y axes lie in the section planes, the shear stress can be
projected onto the x and y axes, and the shear stress components T,
and 1, respectively, can be obtained. Therefore, at a point there is
one normal stress and two shear stress components.

If an elementary parallelopiped is separated from a body as
shown in Fig. 1.2, then the stresses in the body can be fully calcu-
lated from the nine stress components. The total number of inde-
pendent stress components reduce to six due to the symmetry of
shear stresses. The stress tensor 1;; in Cartesian components then
can be written as :

Oy Ty Ty

T Ty O
Oz
b4 b T
YZ/'C
\ off y
Tz 9,
Txy
dz g Ty dx
o:\r
dy
) y

Fig. 1.2 Stresses on a rectangular parallelopiped.

In a similar way, the stress tensors in cylindrical (, 6, z) and
spherical (R, 6, ¢) co-ordinates may be expressed as :

Or Tro Trz
tij =] Tg Og Tez
Trz Taz (o

OrR Tre TRy
and Ti=|TRe OCo Tep
TRe Tee O

1.2 Stress Transformation Laws

If a body under examination is broken down into elementary
cubes, there will always be an infinite number of elementary
tetrahedral volumes on the surface of the body. When it is of
arbitrary shape ; three planes of the tetrahedron coincide with the
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co-ordinate axes and the fourth, coinciding with a part of the
external surface of the body, will cut the co-ordinate axes at certain
angles as shown in Fig. 1.3. We will express the cosines of the angles
between the normal 7 to the surface with the co-ordinate axes by
@5 Qny and a,, respectively. Projecting all the forces acting on the
elementary tatrahedron on to the co-ordinate axes and solving the
expressions thus produced in relation to projections of the resultant
stress o on the inclined surface, we have

ORx = Ox0pny + TyyQny + Tap.Qp,

ORy = Txz- Oy + Oy.Ony + Ty, ..(1.1)
ORz = Tug-Opx + T 5705y + C,.0p,
ORZ = ORxZ + O'Ryz + ORZZ ..(1.2)

The normal stress o, on the inclined surface ABC may be
written in the form,
Oy = ORy:Qny + ORy. Qpy + OR,-Qy,
= 0,.0,2 + oy.a,S +0,.a,2 + 2(T4y G- Ony
+ TypQpy Ay + TupAx@y,)  --(1.3)
If <, is the shear stress on the plane ABC and its direction
cosines are a,,, a,, and a,, respectively, then

T, = \/o;z2 - or,,2 ...(1.4)

Also ORx = CpeQpy + Tp.Qyy

1
Qg = T [ops — Op.an,]
n

- ;1; [(Os = On)ains + Tay @y + TenBns]  -.(1.5)

z A (Onx., Gny,0nz)
o

%RA%Rz

Fig. 1.3 Stresses on a tetrahedron.
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Similarly, Qg = i:l [ty-an: + (0) — Op)ayy, + 1p.a0,]  ...(1.6)

1
Qg = - [Tey.@nsx + TyoOny + (0, — Op)ay,]  ...(1.7)

If it is desired to express the stress components with respect
to a co-ordinate system obtained by rotating the original co-ordinate
system xyz to the new system x'y'z’, the the direction cosines are
determined by :

x y P
x' Ay'x Ay Az
y Ay ayy Ay
z Az'x azy Azz

where a,/, = cos (x’, x) and so on.
The stress components in the new co-ordinate system may be
obtained from,
T = @ij Qjm Tim ...(1.8)
For example,
Tox' = O Qs + oy.a,,cfy2 + O,y,2
+ 2Ty 'y Oty + Ty Q' Qty + Ty Qi)
Tx'y' = Oxly'sQy'x + Oy.Qy'y.Qy'y + 0,.05/5.0y/,
+ Ty (@xsyy + xy Gy
+ tyz(ax'y + ay; + ayayy)
+ T (@xx Ay'z + Qx'z ay’x)
Other terms can be written in a similar fashion.

From the transformation law, we can determine the planes
on which the shear stress is zero, i.e. the principal planes. The
principal stresses are the roots of the cubic equation

o ~Iio*+I,o~-I3=0 ...(1.9)
where I;=o0,+0,+0,
I, = 0,0, + 0,0, + 0,0, — .2 — 1,2 — 7,2

I = 0,0,0, — 05,2 — 0,12 — 0,12 + 21T, T,

are the three stressinvariants. The solution of this equation may be

obtained either by hit and trial method or by using a numerical
technique like the Newton-Raphson method.
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1.3 Spherical and Deviator Stress Tensors

We can write that
T "
T =Ty + y

O, — Op Tay Ty
where vjj=| Ty Oy = Opm Tz | =Tj-8;0m
Txz tyz Oz = Om
[ 20,-0, -0,
—3 Ty Toe
202! -0,-0,
= ‘Czy 3 tyz
20,-0,-0,
Tz Tyz —3_—
...(1.10)
is the Deviator stress tensor’ and
o, O 0
t”('i =|0 (o S 0 = 6,'1’ (o ..(1.11)
0 0 Om

is the spherical or hydrostatic stress tensor
where o, = %(o, + O, + 0,) is the mean stress.

The deviator stress tensor consists of only pure shear stress
components. It will be seen subsequently that plastic deformation
can take place only, when deviatorial stresses, shear stresses, or
both of a certain combined magnitude are present.

1.4 Equilibrium Equations
1.4.1 Cartesian Co-ordinates

Considering the equilibrium of an elementary rectangular
parallelopiped subjected to a generalised state of stress, it can be
shown that the equilibrium equations become :

Sy 3% %% B _ol .(1.22)

do.
Lo L . =
—_— ¢ + +B,=0
x dy oz 2

where B, B, and B, are the body forces per unit volume along the
three co-ordinate axes. These equations hold good both in the elastic
and plastic range.



METAL FORMING PROCESSES AND PLASTICITY

1.4.2 Cylindrical Co-ordinates
In cylindrical co-ordinates (r, 8, 2), the equilibrium equations

can be obtained as :

are:

do dte T, O.-O ]
99 10t 94z =% . p _g

or +r a0 * 0z

dtg 1 dog Odtg, 2‘(,9

—— e ——+— = ...(1.13
ar+rae+az+r+B° \ (1.13)

e 1 0% 90
or r a0 0z

T
+T”+Bz=0

For problems having axial symmetry, tg, = 7,4 = 0, and we get
d0,. ﬁ O, — Og

or oz r t B,=0
313,-, a z TZ
Tz 9% T2 B =0 ..(1.14)
ar 0z

1.4.3 Spherical Co-ordinates
In spherical co-ordinates (R, 6, ¢), the equilibrium equations

)
dop 1 dtre 1 gy

R TR0 TRsin0 3

+%(203—09-—o¢+136cot 0) +Bp=0

ot
Opo  190p 1 OTey
R R 906 Rsin0 d¢ |

+'11_2[(09—0'¢)00t6+3'CR9]+B9=0

at
Ty 10%, 1 0o,
R R 90 RsinB d¢

+ 'I% (31:R¢ + 2194, cot 0) + B¢ =0
...(1.15)

we get

For spherical symmetry, when tgg = Tgy = Tgy = 0 and 0g = Oy,
]
22 2 or-09 =0
R R
...(1.16)
609 60'2

30~ 3
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1.5 Octahedral Stresses
A plane which is equally inclined to the three axes of
reference, is called the octahedral plane, i.e. its direction cosines are
1 1 1
VB VI tVE
plane are called the octahedral stresses. Using Eq. (1.3), the normal
octahedral stress in the principal co-ordinate system becomes,

(Ondoct = 3 (01 + Oz + T3 (117

. The normal and shearing stress acting on this

The resultant stress on the octahedral plane, by using Eq. (1.2)
becomes,

(OR)oct = V3(012 + 057 + 057) .(1.18)

Hence the octahedral shear stress becomes,

To = %\/(ol - 09)% + (02 - 03)% + (03 - 01)? ...(1.19)
Now (07 — 69)% + (03— 03)% + (03 — 07)?
= 2(0; + 02 + 03)? — 6(0103 + 0303 + O307)
=2I%2 -6,
Hence 9rv,,%=2I%-6I, ...(1.20)

For a generalised state of stress, substituting the values of I;
and I, we get

Toet = -;- \/(ox - oy)2 + (o, - 0,2+ (0,-0.)%+ 6(1,‘.3 + tyf +12)
...(1.21)
The effective shear stress
V2
Teff = 7 Toct (122)
Example 1.1 The stress tensor at a point is given by
50 50 150
tj=| 50 100 100 |N/mm?®
150 100 150
Calculate for the plane having direction cosines
1 1 1

anx=—‘/-g—’any=ﬁaanz=—‘/?

(a) total stresses, (b) normal stress, and (c) shear stress and
its direction.
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Solution.
(@) ORx = Oy Qpy + Tyy Gy + Tz Gy
=50 x —& + 50 x = + 150 x =
3 V3 v2
= 155.346 N/mm?
oRy=t,ya,,,,+oya,,y +1:y,a,,z
=5ox7_1€+ 100x—‘/%-+ 1oox%
= 148.858 N/mm?
ORz = Tz Gz + Ty Apy + O, Ay,
=150xi+ 100x—1-+ 150><—l—
V6 v3 v2
= 225.038 N/mm?
Total stress,
OR = \/0sz + ORyz + 0&2
= 311.34 N/mm?
(b) Normal stress is given by,
Op = ORpy Qpy + ORyany"l- OR, Qp,
= 155.346 x — \,_ +148.858 x — ‘/g +225.038 x —‘/17
= 308.488 N/mm?

(c) Shear stress is given by
1, = Vog - 0,2
= 42.05 N/mm?

Let a,, a,, and a,, be the direction cosines of t,. Then

1
Qo = — [0y — Op)any + Ty Qpy + Ty, @n.)
n

1

+50x\/_

[ (50 - 308.488) x —= +150 x

T 42. 05 \/— w/f]

=0.6992
Similarly a,, = — 0.6955 and a,, = 0.0238.

Example 1.2 The state of stress at a point is given by the
following stress tensor :

50 50 -40
wi=| 50 -30 30 | MPa

-40 30 -100
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(a) Calculate the stress invariants, (b) magnitude and direc-
tion of the principal stresses, and (c) spherical and deviator stress
tensors.

Solution.

(@) L=o,+0,+0,

=50-30-100=-80
I,=0,0,+ 0,0, + 0,0, - 1,212 -2
= 50(- 30) + (- 30)(- 100) + 50(~ 100)
—(50)% — (— 30) - (40)?
-85 x 10?
[ o |
= [50(30 — 9) — 50(~ 50 + 12) — 40(15 — 12)]102
=283 x 103
(b) Principal stresses are the roots of the equation,
o —Lo?+I,0-1I3=0

o® +8002-85x1020-283x10%=0

We shall use Newton-Raphson method to determine the roots
of this equation.

Let o; be aroot of this equation, then the better approximated
root can be obtained from the iteration process, given by

floy)
f'(o)

1]

I

Oiy1 = 0; —

Let us assume
o7 = 60 MPa, then first iteration gives,

o = 60 = 289 x 10°
P 1.19x 10°
= 84.2 MPa
Second iteration gives
1.653 x 10°
o =842 -5 501092
=77.9 MPa
Third iteration gives
0.13 x 10°
o ="11.9- 5.216.923 77.314 MPa

Further iterations do not improve upon this value by appreci-
able amount. Hence we take o, = 77.314 MPa. Dividing the cubic
equation by (o — 77.314), we get

o? + 157.3 o + 36604.63 = 0
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The roots of this quadratic equation are :
09 = —28.396 MPa
o3 = —128.90 MPa

To determine the principal directions, the following proce-
dure may be adopted :

(@) Determine the stress tensor t;j—0; I, where I is the identity
or unit matrix.

(#7) Determine the cofactors of elements of the first row of the
new stress tensor obtained in () above. Let these cofactors be
denoted by A;, B; and C;.

(2i) The principal directions are then given by,

A;
anxi VAi2+rBi2+ Ci2
Ay, = B:
i VAi2+Bi2+Ci2
Q. = G
VA B2+ C2

For o to be substituted, we find that

-27.314 50 -40
vi—ol = 50 -107.314 30
-40 30 -177.314

A; =107.314x 177.314 — 30 x 30 = 18,125.71
B; =—-(-50x177.314 + 40 x 30) = 7,665.70
C;=50x30-107.314 x 40 = — 2,792.56

Kl = VA12 +Blz+ Clz

=19.877 x 10°
A
Hence a,, = Fl =0.9119
1
B,
anyl = E = 0.3856
5}
ney =S =T 0.1405

Similarly, we find that
Anx, = — 0.2717, ayy, = 0.8240, a,,, = 0.4970
Unax, = 0.3074, apy, = — 0.4151, a;,,, = 0.8562
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(@) o =%(0x+oy+oz)
=3 (50 — 10 - 100) = — 26.667 MPa
Deviator stress tensor

v’ = 1 — §;; 0. Hence

23.337 50 -40
= 50 - 56.667 30 MPa
-40 30 - 126.667

Spherical stress tensor

- 26.667 0 0
vi=| 0 - 26.667 0 |MPa
0 0 - 26.667

1.6 Concept of Strain

Consider the deformation of a rectangular parallelopiped. As
a result of deformation the length of the edges of the parallelopiped
and the angles between them change. The element itselfis displaced
from one position to another. It is only this later part that enters the
definition of strain. In the small deformation theory, it is assumed
that the deformations are infinitesimal. The state of deformation in
the neighbourhood of a point of a continuous body is determined by
six components of strain, three normal and three shear. Physically,
the normal strain is defined as the change in length of a small line
segment per unit original length of the segment. Whereas the
shearing strain is considered as the change in angle between two
initial perpendicular line segments.

1.6.1 Strain Components in Cartesian Ce-ordinates

The strain tensor in Cartesian co-ordinates is given by

R

)

Yer Yz

2 2 =
au, du, _ou,

Wheresx=~5;,ey=-5,sz-—a—;
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12
ou, ou, |
W T
_Ouy du, (1.23)
'sz— 5z + &y b N ¢
u, Ju,
Yo = Tor ¥

and u,, u,, u, are the components of the displacement field.
The infinitesimal strain tensor can be expressed as :

dYy Y
d 3 2
dy Ay
dﬁij = —2£! dey ‘—ZL (124)
e Ay
9 9 de,
Similarly the strain-rate tensor can be written as :
Fo2 2
. Y. . Y.
&= % & - ...(1.25)
te Y
2 2 %

d
where - = (_1;
1.6.2 Strain Components in Cylindrical Co-ordinates

The strain components in cylindrical co-ordinates (r, 6, z) are :

g =, =—1-(-au—e+u )'s e

T T rlee T )T a2
dug ug 1 ou,)

e )

Yoz = %L—‘zﬂ + -'17 %% » ...(1.26)
du, Jdu,

Yrz = oz +F

For axial symmetry with ug = OJ, we get
T BT AT ..(1.27)
duy o,

Yro=Yo:=0; Y= = o
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1.6.3 Strain Components in Spherical Co-ordinates
The strain components in spherical co-ordinates (R, 0, ¢) are :

€ —M'e—l 6u9+u
R= 3R’ "R| a0 R

8"=Rsm<|> a

aue ue+ 1 dug
YRe=T3R "RTR 30

ouy
% (—-—-—+uRsm¢+uecose)

a0

__ 1 up duy uy
TR Rsin® a6  oR R

1 dug
= = _ — ! ...(1.28
Yoo Rsine(sme u,cose+a¢) (1.28)

For spherical symmetry with ug = u, = 0, we have
dup up Up
*REGRHTR MR ..(1.29)
YRe = Yo = YRy = 0

1.7 Deviator and Spherical Strain Tensors
Now &g;=¢;+¢e";
= Deviator strain tensor + Spherical strain tensor

where &'y = g5 — OyE,
[2-8 8 Iy Ye
3 2 2
_ Yay 2, - ¢, - &, Yyz
2 3 2
Yaz Yoz Y
2 2 3
~.(1.30)
g, O 0
e"i=|0 & O ...(1.31)
0 0 &
and En = % (e; + &, + &) is the mean strain.
If the volume remains constant during the deformation, then
g, +e +¢,=0 ...(1.32)
Hence e";=0

Therefore, gi=¢y ...(1.38)
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1.8 Strain Transformation Laws

Analogous to the stress transformation laws, the strain trans-
formation laws may be expressed as :

€' = @il Ajm €l ...(1.34)
The normal strain on a plane whose direction cosines are a,,,

a,, and a,, is given by :
En = Exllys + Ey Q2 + €,.8n2 + Yry-Bnx Ony + Yyz-Ony Onz + Yz Oz Gnz
...(1.35)

The components of strain acting on the above plane along the
co-ordinate axes are :

1

ERy = Ex0ny t E (ny.any + Yxz-Qnz)
1

€Ry = €y.Qpy + E (nyanx + sz'anz)

1
ER; = €,:Qp, + E (Vxz.Onx + sz‘any)
The resultant strain on the plane becomes,

ep=V Ex + £R§, + eR% ...(1.36)

Hence the shear strain on the plane becomes,

I VeF-¢? (1.37)

2
The direction cosines of the shearing strain may be obtained
from,

2
@ox = — (ERx — En @na)
Yn

2
Ty =~ (epy — &n @ny) ...(1.38)

2
A, = — (ep, — €, Aypy)
Yn

The principal strains are the roots of the cubic equation,
ed—d e+ Jye—Jg=0 ..(1.39)
whered) = ¢, + ¢, +¢,

1
Ja = &8y + £y, + &8, -2 (Ya.yz + szz +Y:2)

1
J3= €xE,E; — Z (8;:'sz2 + EyY:zz + &, Yx:)zr - 'YszyzY:z)

are the three strain invariants.
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The solution of Eq. (1.39) may be obtained by hit-and-trial
method or any numerical technique like the Newton-Raphson
method.

1.9 Octahedral Strains
The normal and shearing strains acting on a plane whose

. . . 1 1 1 .
direction cosines are + 7 * 73 + 73 are called octahedral strains.

In the principal co-ordinate system, the normal octahedral strain
becomes,

1
(8ndoct = 3 (81 + &2 + €3) ...(1.40)

and the octahedral shearing strain is

1
lg‘i =3 Vie; - £9)? + (65— £3)% + (g5 — £1)2  ...(1.41)

or %yz,,,, = 2J,% 6J, ..(1.42)

‘The resultant strain on the octahedral plane is

Ros = V1 (812 + €22 + £57) ...(1.43)
In the general co-ordinate system, Eq. (1.42) can be written

9
2 Yoo = (ex— &) + (5, — €)% + (e, — &,)°
3
+5 (M2 + ¥y2 + 7,2 ...(1.43)

and Eoff= —2@ Yoct ...(1.44)

Example 1.3 The strain tensor at a point is given by

0.001  0.0005 0.002
e;=|0.0005 0.002 0.001
0.002 0.001 0003

Determine the magnitude and direction of the principal
strains.
Solution. J; =¢,+¢, +¢,
=6x103

Jo = £8y + £y, + €8 — 1 (e + Yy + Yad)
=10%(2+6+3)-1x10%0.25+1+4)
=5.75x 10°
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Jy=| & |
=107[(6-1)-0.5(1.5-2) + 2(0.5 — 4)]
=-1.75x 107

The cubic equation becomes
e2-6x103e2+575x10%e+1.75x10°=0
Solving this equation by Newton-Raphson method, let

e=12x107
First iteration gives
1.738 x 107®
-4.33x 10°
Second iteration gives € = 1.545 x 107

Further iterations do not improve the value appreciably.
Hence, we take the root to be equal to 1.545 x 10~%. Dividing the
cubic equation by (¢ — 1.545 x 10~) and solving the quadratic
equation, we get the other two roots to be, 4.696 x 102 and-0.241x 1073
Hence the principal strains in descending order are :

£;=4.696x 103, &, =1545x107;
£3=—0.241x 107,

The principal strain directions are determined in the same
manner as discussed in Example 1.2 for stresses. Following this
procedure, we get

@nx, = 0.479,  apy, =—0.382, ap;, =0.790
@nx, = —0.245, apy, =0.923, ap,, = 0.297
@nx, = 0.751,  any, =0.455,  ap,, = 0.477.
Example 1.4 The strain tensor at a point is given by

0.002 -0.005 0.003
gj=| -0.005 0.003 0.002
0.003 0.002 0.004

Determine the deviator and spherical strain tensors.

£=12x103 - =1.6x10>3

Solution. ¢, = %(zsJc +8 +¢,)
= 1(0.002 + 0.003 + 0.004) = 0.003

Deviator strain tensor
8’,:,' = eij - Gije,,,
-0.001 -0.005 0.003

¢y = | - 0.005 0  0.002
0.003  0.002 0.001
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Spherical strain tensor is,

8”ij = 6,1 €n
0.003 0 0
g;=| 0  0.003 0
0 0 0.003

Example 1.5 The principal strains at a point in a body are
given by :
£;=0.002; &=02002; g¢3=~-0.001
Determine the octahedral normal and shearing strains.

Solution.  (e,)ou = (g1 + €2 + £3)

= 0.0004
(ER)oct = V3 (1% + 25 + £89)
=103 \/i‘ (4+0.04+1)
=1.296 % 107

Yoct = 2V (ER)ozzt - (En)og

=2 x 103 V/(1.296) - (0.4)?
=2.466 x 10>

1.10 Generalised Hooke’s Law

According to Hooke’s law, within the elastic (proportional)
limits, stress is proportional to strain. In its general form, for a
homogeneous, linear and isotropic material, this can be expressed
as:

(o, ) (A +2G A A 0 0 0) (&, )
p A+ 2G A 0 0 O e
o A+2G 0 0 Of |/
| % {=] Symmetric L] 2 | .(1.45)
Ty G 0 of|M™
Tyz G 0 sz
Tz | G LY‘u
vE
where A= d-vd-2v)
E
G= 2(1 +v)

are the Lame’s constant. E is the modulus of elasticity and v is the
Poisson’s ratio. There are two independent elastic constants for a
homogeneous, linear and isotropic material.
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The deviator stress and strain tensors can be related as :
‘II',‘J‘ = 2G£',J (146)
Similarly, the spherical stress and strain tensors can be
related as :

v = 3Ke";; ...(1.47)
E
where K= m
is the Bulk Modulus.
For volume constancy,
E'ii = 0.
Hence g =€
Therefore, Eq. (1.46) becomes,
t’ij = 2G eij ...(1.48)
The stresses in terms of strains can be written as:
(1 v v
£ %0
1 v
(&, ) E_EOOO (o, )
& % 00 of ¥
15 = L1721 (1.49)
Yoy 1 0o ol
Yz G Ty
Y= Symmetric % 0 %=
1
G |
1.11 Elastic Stain Energy
The elastic strain energy per unit volume is given by :
U:% (0'181 + Ogtg + 0383)
_1[01(20,-03-05) 05(202-03-0))
T2 6G 6G
03(203-01-09) (01+02+ 03)2
* 6G * 9K

_(01-09%+ (02 - 03)* + (03 - 0)? . (01 + 03+ 03)°
- 12G 18K
...(1.50)
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The strain energy of distortion U’ can be obtained from
deviator stress components.

(201 -0y - 03) (205 - 03 - 01)2 (203 -0y - 02)2

U= E 18G * 18G * 18G
= 255 [01=09% + (02~ 09 + (03— 1)
- % o .(1.51)

The strain energy of dilatation U” can be obtained from the
spherical stress and strain tensors.

2
G1+09+ 0
U = (‘1—&{3)- ..(1.52)

Thus u=U+U" ...(1.563)

1.12 Compatibility Equations

We have seen that there are six strain components, which are
obtained from three displacement components by taking the deriva-
tives. If the displacement relations are such that a given system of
strains gives rise to a continuous single-valued system of displace-
ments, then certain restrictions have to be imposed on the strain
ccmponents. The resultingequations are known asthe compatibility
equations. In Cartesian co-ordinates, these equatlons are given by

Py _ 0%, N %,

&y ay? 6x2
Py ) o, %,
aydz  az2  ay?

2628x _ i La:Yli a’Y;\z > ..-(1.54)
dydz  ox | & ay

2% _ o[ Om by 2

dxoz ady 8y iz  ox

2 r
26%=ﬁ__ﬂa+ﬂg e
axdy oz| oz dy
1.13 Theories of Strength

1: Maximum Principal Stress Theory (Rankine’s Theory).
According to this theory; the maximum principal stress in the
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material determines failure regardless of what the other principal
stresses may be, provided that the latter are absolutely smaller.
This theory cannot be applied as a criterion of yielding because three
equal tensile or compressive stresses as such belong to those states
of stress which should cause failure according to this theory, in
contradiction to the experimental experience, according to which
such states cannot produce a plastic distortion in compact solid
material. The surface representing this theory is a cube. The faces
of the cube are six planes symmetrically spaced around the origin
of the 0y, 05, 03 system of rectangular co-ordinates and parallel to
the co-ordinate planes. Parts of this surface, however bave served
as criteria of the cleavage fracture of materials.

2. Maximum Principal Strain Theory (St. Venant’s Theory).
According to this theory, the maximum positive elastic extension of
the material determines failure of either kind. Now the maximum
principal strain is given by,

1
&1 =g [01-v(oz + 09)]
and the strain under uniaxial tension corresponding to the yield
o
point is, —Eg . Hence for the material to yield.

g — V(O’z + 0'3) =0y ...(1.55)
This theory assumes same yield strain in tension and compression,
which is possible only if (0); = v (0p),, where the subscripts ¢ and ¢
stand for tension and compression respectively. This is not the case
in many materials.
3. Constant Elastic Energy of Deformation Theory (Beltrami
Theory). Total strain energy of deformation is given by

= Z—IE,‘ [0’12 + 022 + 0'32 —2v (0103 + 0903 + 0301)]
. . L op?
and the strain energy under simple tensionis U = °E
Hence for the material to yield,
012 + 052 + 032 — 2v (0109 + 0903 + 030)) = 62 . ...(1.56)

The total elastic energy stored in a material before it reaches
the plastic state can have no significance as a limiting condition,
since under high hydrostatic pressure, large amount of strain ener-
gy may be stored without causing either fracture or permanent
deformation.
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4. Distortion Energy Theory (Von-Mises-Hencky Theory). The
energy of distortion is given by

1
U=1q5 01~ 09)% + (02— 03)% + (03 — 0)?]

002
6-— .

At the plastic limit, the elastic energy of distortion reaches a
constant value, which may be expressed as :

Under simple tension, U =

(01— 092 + (03— 03)% + (03 — 07)? = 20> ..(1.57)
Also T =5 V(01 - 027 4 (02 - 09 + (03 - 01)°
Hence 9,2 = 20,2

Toct = g op = const. = 0.471 o, ...(1.58)

For simple or pure shear, according to this theory, the prin-
cipal stresses have the values,

Oy =—0y= % = 0.577 gy, 03 = 0 .(1.59)

For ductile materials, it expresses the equation of the limiting
surface of yielding. This surface is a straight circular cylinder. Its
axis coincides with the space diagonal in the positive quadrant of
the 0, 03, 03 system of rectangular coordinates. The radius of the

cylinder is equal to \/g_ 0y. For a3 = 0, we get
0'12 — 01092 + 022 = 002 (1.60)
which is called the “plasticity ellipse”.
5. Maximum Shear Stress Theory (Tresca’s Theory). Assum-

ing 0] > 03 > 03, the maximum shear stress is,

O1-03
Tmax = 9
Also under simple tension,
99
Trmax = o
max 2

Hence condition of yielding, according to this theory becomes,
01— 03 = O ...(1.61)
For simple or pure shear
S0
o =-03= 7 ...(1.62)
and T,z = 0.5 0p. ...(1.63)
In general form, o) — 03 = * 0y, 02 — 01 = + Gy, O3 — T3 = = .
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These represent a set of three parallel planes. Each set is perpen-
dicular to one co-ordinate plane and parallel to the plane bisecting
at an angle of 45°, the angle of the two co-ordinate axes which appear
in the corresponding equation of the two parallel planes. These
planes cut segments equal to o, on the co-ordinate axes. Conse-
quently, these intersect the plane expressed by
o1+03+03=0

and form a hexagon on it with apexes at the points 0, = = % O, Og =
t§00s O3 =t-§0’0,0’2= O3 = :%00, O3 =01 = 2%00, 01 =0g9= 1%00.
Length of each side of hexagon = VZ o. The surface represented by
this theory is a hexagonal prism. ‘f‘his theory assumes equal yield
stress in tension and compression, which is not verified for brittle
materials.

6. Mohr’s theory. A material may fail either through plastic
slip or by fracture when either the shearing stress t in the planes of
slip has increased to a cer- T
tain value which in general )

will depend also on the nor- p T - flo)

——
mal stress o acting across
the same planes or when % T
the largest tensile normal
stress has reached a limit- _
ing value dependent on the 0.
properties of the material.

Lett =f(0). Thecircle
which is tangent to the limit
curvet = f(0) at point P (Fig.
1.4) is the one representing Fig. 1.4 Mohr’s envelope.
the state of stress causing
slip at the prescribed values of 6 and t. The limiting curve 1 = f(o)
must, therefore, be the envelope of all largest principal stress circles
and the points of tangency of the major stress circles along the
enveloping curve t = f(0) must represent in their abscissa ¢ and
ordinates 7, the normal and shearing stresses in the plane of slip.

Now
o 405\ o\’
1T 2_(91-03
[o-25%) o= (25

Let = % (o1 + O3)

1
Tm =3 (01 —03)

then (c-p)lP+1t=1,2
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This equation represents the family of major principal stress
circles in parameter form. The equation of their envelope is obtained
by partially differentiating with respect to p.

. drx,,
o= =
Pt
2
Hence t=v, V1- (‘2—:") -(1.69)

This is the equation of Mohr’s envélope of the major principal
stress in parameter form.

7. Octahedral Shearing Stress Theory. The octahedral shear-
ing stress 1, at the limit of yielding is a function of the octahedral
normal stress (0,)oc i-€.

Toct = f(On)oct

Now (0p)ox = % (01 + 03+ 03) =0,

Voot = %\/(0 1-09%+(02 - 03)* + (03 - 0>  ...(1.65)

Therefore, this equation expresses a condition of flow in solids
in which the limiting value of the shearing stress 1, in the oc-
tahedral planes depends on mean normal stress ¢,,. This represents
a surface of revolution in a system of rectangular co-ordinates,
whose axis is equally inclined with respect to the co-ordinate axes
o1, 02 and 03.

The theories of elastic failure for the two dimensional case
have been represented graphically in Fig. 1.5.

\05"" Shear strain energy
Strain energy 4 :’ theory.

theory Maximum principal stress
theory.

0'1(-) (,—1(4-)

Maximum shear stress
theory

Iaximum principal
strain theory

Fig. 1.5 Graphical representation of theories of failure.
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METAL FORMING PROCESSES AND PLASTICITY

EXERCISES

The stress components at a point are :
O'x=20,0'y= 10,0’2 = 15,‘ny=1&Z= 10,
T =— 10 MPa.

Determine the normal and shearing stresses on the octahedral plane
and the direction of the shearing stress.

The stress components at a point are :
o, =-50, 0, = 30, 0, = 20, T, = - 60,
T,, = 40, T, = 50 MPa.
Determine the principal stresses and the principal directions.

The state of stress at a point is given by the following array of terms
in the xyz co-ordinate systerr. :

10 15 20
v;j=|15 25 15|MPa
20 15 30

If this system of axes is rotated by 30° about the z-axis in the
anti-clockwise direction, determine the new stress tensor.

The stress tensor at a point is given by :

60 40 50
v;j=[40 40 20 [MPa
50 20 80

Calculate the deviatoric and spherical stress tensors.
The state of stress at a point is given by :
O, = x3yz + xzyz, Ty = x? yz
oy = xgzg ; ¥z, T,= xy%z
0, =xy 2" +xz, T, =xyz".
In the absence of the body forces, determine whether the equilibrium
equations are satisfied or not at the point (3, — 4, 2).

The strain tensor at a point is given by

1 2 3 3
g;=(2 2 4 x 10
3 4 3

Calculate the deviatoric and spherical strain tensors.

The strain components at a point are given by the following array
of terms :

2 -3 4
gj=[-3 1 -2|x10°
4 -2 3

Calculate the principal strains and the principal directions.
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1.8

1.9

1.10

1.11

1.12
1.13
1.14

1.15

For the strain tensor given in Exercise 1.7, determine the new strain
tensor by rotating the axes about the z-axis through 45° in the
anti-clockwise direction.
The principal strains at a point are given by
£1=2x107,e9=-3x10",e5=—4x 107,
Calculate the octahedral normal and shearing strains.
The principal stresses at a point are
g = 30, Og = 25, Og = 20 MPa.
Calculate () strain energy, and (b) distortion energy. Assume v = 0.3,
E =210 GPa.
The strain tensor at a point in a body is given by
e = 0.005, ¢, = 0.006, ¢, = 0.004
Yy = — 0.002, y,, = 0.003, y, = — 0.001.
Calculate the stress tensor at this point assuming
E =200 GPa, G = 84 GPa.
Explain the different theories of strength and give their limitations.
Derive the equilibrium equation in Cartesian coordinates.

What is the necessity of compatibility equations ? Write the com-
patibility equations in Cartesian coordinates.

Explain the theories of elastic failure and give their limitations.
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