Electronic Devices and Circuits

G.K. Mithal

Khanna Publishers

Electronic Devices and Circuits

By the same author:

- 1. Electromagnetic Fields
- 2. Electrical Engineering Materials
- 3. Radio Engineering (Principles of Communications)
- 4. Industrial and Power Electronics
- 5. Pulse and Digital Electronics
- 6. Network Analysis

Other Useful Books:

- 1. Digital Signal Processing by Prof. N. Sarkar
- 2. Digital Electronics—Principles and Applications by A.K. Maini
- 3. Engineering Electromagnetics by Dr. J.P. Tewari
- 4. Electronics Measurements and Instrumentation by Dr. R. Prasad
- 5. Fiber Optics by S.D. Personick
- 6. Field Theory, Antennas and Wave Propagation by Prof. K.A. Gangadhar and P.M. Ramanathan.
- 7. Handbook of Electronics by A.K. Maini
- 8. Integrated Circuits by K.R. Botkar
- 9. Information Technology and Wireless Communication Systems by Prof. S. Rao
- 10. Linear Control Systems by Prof. B.S. Manke
- 11. Microwave Signals and Systems by S.K. Das
- 12. Microwaves & Radar by A.K. Maini
- 13. Monograph on Electronics Design Principles by Dr. N.C. Goyal & R.K. Khetan
- 14. Operational Amplifiers & Linear Integrated Circuits (Analysis, Design & Applications) by K.R. Botkar
- 15. Power Electronics by Dr. P.S. Bimbhra
- 16. Power Electronics and Solid State Devices by Dr. M.N. Bandhopadhyay
- 17. Principles of Digital Communications by Prof. N. Sarkar
- 18. Radar Systems and Radio Aids to Navigation by Dr. A.K. Sen & Prof. A.B. Bhattacharya
- 19. Satellite Communications by Dr. D.C. Aggarwal
- 20. Switching Theory and Digital Electronics by V.K. Jain
- 21. Telecommunications by S. Ramabhadran
- 22. Thyristor Engineering by Prof. M.S. Berde
- 23. Wave Shaping and Digital Circuits by Agarwal & Rai
- 24. Computer Communication and ISDN System by Dr. D.C. Agarwal
- 25. Modelling & Analysis of Computer Communication Networks by J. F. Hayes

Special Books of Interest for the preparation of exams conducted by Colleges, Technical Institutes, I.A.S., I.E.S. & GATE

ELECTRONICS & COMMUNICATIONS SIMPLIFIED by A.K. Maini

This book comprehensively covers all topics of Electronics and Communication Engineering in the form of short but probing questions/answers with illustrations, solved problems and objective type exercises with solutions.

This book is a ready reference for all concerned with Electronics & Communications. (Answers with 500 Solved Problems and Solved Self Evaluation Exercises & Objective type questions.)

CONVENTIONAL AND OBJECTIVE TYPE QUESTIONS ON ELECTRONICS AND COMMUNICATIONS (for all type of Competitions) by A.K. Maini

[Features: Every topic starting with Important Terms, Definition and Concepts and Important Mathematical Expressions and Formulae.

In addition to a large number of Multichoice Questions in each exercise, other varieties of objective type questions such as Fill in the Blanks, True/False statements, Match the two parts, Identifying devices and circuits. One word/sentence answers etc., has been provided keeping in view the latest examination trends.

The answers to exercises are given with justification wherever necessary. Also, includes a section on - Facing the interview board with sample interviews.

Electronic Devicesand Circuits

Prof. G.K. Mithal, M.E.

Formerly, Professor and Head, Department of Electronics and Telecommunication Engineering Govt. Engineering College, Jabalpur, (M.P.)

Ravi Mithal B.E., M.Tech., Ph.D.

&

Dr. Manesha Gupta

Deptt. of Electronics N.S.I.T. Dwarka, Delhi

KHANNA PUBLISHERS

Operational Office
B-35/9, G.T. Karnal Road, Industrial Area,
(Near Telephone Exchange), Delhi-110033
Phones: 011-27224179 • Mob. 09811541460
email: contactus@khannapublishers.in

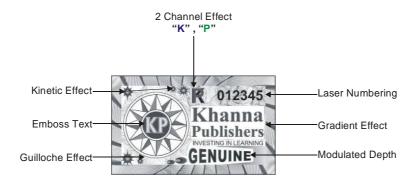
Published by:

Romesh Chander Khanna & Vineet Khanna for KHANNA PUBLISHERS
2-B, Nath Market, Nai Sarak

Delhi- 110 006 (India)

Website: www.khannapublishers.in

© 1979 and onward


This book or part thereof cannot be translated or reproduced in any form without the written permission of the Authors and the Publishers. The right to translation, however, reserved with the author alone.

Copyright: Author and Publishers Jointly

Hologram & Description

To all readers of our books, from yourself if being defrauded by pirates to prevent, please make sure that there is an Hologram on the cover of our books with the below specifications. If you find any book without Hologram and Description, please mail us at **contactus@khannapublishers.in**

Thanking you

ISBN No. 978-81-7409-177-7

First Edition : 1988 Twenty Third Edition Ninth Reprint : 2017 This book is intended as a textbook for the students of Electronics, Communications, Instrumentation and Information Technology preparing for B.E., B.Sc., Grad. IETE, UPSC, GATE, A.M.I.E. and other professional courses.

This revised edition of the book, now covers the courses of all the Indian Universities, State boards and Technical Universities offering this subject at under graduate level.

The book has been divided into two parts. Part-I, covers the chapters on Semi-conductor Electronics Devices. It starts with the introductory part and covers at length all aspects of semiconductor Physics, followed by indepth coverage of Discrete Semiconductor Electronics Devices and Linear and Digital Integrated Circuits. Towards the end of this section two chapters are devoted to Instrumentation and Electronic Measuring Instruments, followed by information on Electronic Gas Filled Devices.

Part II begins with the comprehensive treatment of different types of Electronics Circuitry that can be built around discrete semiconductor devices discussed in Part I.

The Circuits covered include different types of amplifiers such as low frequency, FET, BJT High Frequency, Multistage, Large Scale, Vacuum Tube, Large Signal Vacuum Tube, Feedback and Tuned Amplifiers.

Oscillators Circuits, Wave Shaping and Multivibrator Circuits; Regulated Power Supplies; Combinational and Sequential Logic Circuits are also covered in depth.

The Op-Amps covers fundamentals and application circuits using Op. Amps.

The book is written in a very simple and lucid language and the contents are framed in such a sequence that reader begins with fundamentals and as he proceeds goes on the application part.

Keeping in view of examination trends, the contents of the book are well supplemented by number of solved examples, unsolved numericals, problems and objective type of questions, to make this a self study textbook.

Though every care has been taken to avoid any mistakes it is possible that some unintentional errors might have been overlooked we request the readers for their support in pointing out the errors.

Any suggestions and comments for further improvement of text will be welcomed.

The author sincerely acknowledge with thanks the contribution on the part of Mr. Vineet Khanna, Pritam Negi and his team for their editing, checking and excillent figure work, without whom it would not have been possible to bring out the book in this form.

At the end we sincerely acknowledge with thanks the contribution in way of suggestions recieved from numerous. Professors, Head of Departments of Engineering Colleges and students across the country, which has encouraged us to present this Twenty Third edition of the book.

In end we dedicate this book to all fellow professors throughout the country for the patronage given to this book.

—Prof. G.K. Mithal —Dr. Ravi Mittal —Dr. Maneesha Gupta

PART—I : Electronics Devices

1. Introd	luction to Semiconductor Electronics	155
1.1.	Definition of Electronics	1
	Development of Electronics	
	Applications of Electronics	1 2 3 3
	Electron and other Charged Particles	3
	Motion of a Charged Particle in Electrostatic Field	3
	Motion of a Charged Particle between Two Parallel Plates	6
	The Electron Volt	8
	Motion of a Charged Particle in Magnetostatic Field	27
	Atomic Theory	30
	Atomic Energy Level Diagram	33
	Electronic Configuration of Elements	37
	Energy Band Theory Crystals	38
	Energy Band Structures of Insulators, Semiconductors and Metals	40
2.20.	• Summary	42
	• Review Questions	45
	Numerical Questions	46
	Multiple Choice Questions	51
		50 00
	action in Semiconductors	56—86
	Introduction	56
	Crystalline Structure	56
	Imperfections in Semiconductor Crystals	57
	Conductivity of a Metal	58
	Covalent Bond in Pure or Intrinsic Semiconductor	61
	Extrinsic Semiconductors	64
	Mass Action Law	67
	Effect of Other Chemical Impurities	67
	Charge Densities in an Extrinsic Semiconductor	67
	Heavy Doping	68
	Electrical Properties of Germanium and Silicon	69
2.12.	The Hall Effect	77
	• Summary	79
	Review Questions	81
	Numerical Questions	82
	Multiple Choice Questions	83
3. Semic	onductor Physics	87—133
3.1.	Introduction	87
3.2.	Energy Distribution of Electrons in a Metal	87
3.3.	Electron Emission	89
3.4.	Concentrations of Free Electrons and Holes in Intrinsic Semiconductor	96
	Fermi Level in an Extrinsic Semiconductor	100
3.6.	Carrier Generation and Recombination	107
	Diffusion of Carriers	109
	The Continuity Equation	112
	Injected Minority Carrier Charge	113
2 10	Potential Variation within a Graded Semiconductor	118

(viii)

3.11.	Basic Semiconductor Equations	121
	• Summary	122
	• Review Questions	125
	Numerical Questions	127
	Multiple Choice Questions	131
4. Juncti	on Diodes	134189
4.1.	Introduction	134
4.2.	Fabrication PN Diodes	134
4.3.	Open Circuited p-n Diode	138
4.4.	Energy Band Diagram of an Open Circuited pn Junction	140
4.5.	Reverse Biased pn Diode	144
4.6.	Forward Biased pn Junction	145
4.7.	Short Circuited and Open Circuited pn Junction	146
4.8.	The Current Components in pn Diode	146
4.9.	Current Voltage Characteristics	152
4.10.	Temperature Dependence of Current Voltage Characteristic	154
4.11.	Diode Resistance	157
4.12.	Transition Capacitance	160
4.13.	Carrier Injection in a Forward Biased Diode and Charge Control Description	1
	of a Diode	170
4.14.	Carrier Injection in Reverse Biased Diode	172
4.15.	Diffusion Capacitance	173
	Transients and A.C. Conditions	175
	• Summary	179
	Review Questions	182
	Numerical Questions	183
	Multiple Choice Questions	187
F. D. 446	iers and Other Diode Circuits	100 001
	Introduction	190—23 1
	Diode as a Circuit Element	190
	Piecewise Linear Model Diode	191
	Rectifiers	194
	Classification of Rectifiers	194
	Halfwave Rectifiers	195
	Fullwave Rectifier	200
	Comparison of Halfwave and Full Wave Rectifier	202
	Fullwave Bridge Rectifier	206
	Bridge Rectifier Voltmeter	208
	Voltage Multiplying Rectifiers	208
	Rectifiers with Filters	209
	Halfwave Rectifier with Capacitor Filter	210
	Fullwave Rectifier with Capacitor Filter	218
	Diode Clippers (Limiters)	216
	Two Level Diode Clipping Circuit (Silcer)	219
	Clamping (or Catching) Diodes	220
	Comparator	220
	Sampling Gate	22
0.10.	• Summary	223
	• Review Questions	22'
		228
	Numerical Questions	22

6. Bipola	r Junction Transistor	232-287
_	Introduction	232
6.2.	Fabrication of BJT	232
6.3.	Conventions for Polarities of Voltages and Currents	236
	Letter Symbols for Semiconductor Devices	237
	Biasing Combinations in a Transistors	239
	Potential Variation and Minority Carrier Concentrations	241
	Current Components in a Transistor in Active Region	242
	Expressions for Current Components in a Transistor	246
	Emitter Efficiency, Transport Factor and Transistor	251
	The Early Effect (Base Width Modulation) and Punch Through	253
	Dynamic Emitter Resistance	258
	Other Modes of Operation of a Transistor	259
	Amplifying Action of a Transistor	259
	Characteristic Curves of Junction Transistor in Common Base Configuration	a 261
	pnp Transistor in Common Emitter Configuration	264
	Static Characteristic Curves of a pnp Transistor in common Emitter	
	Configuration	267
6.17.	Typical Values of Junction Voltages in a CE Transistor	272
	Common Collection Configuration	274
	• Summary	278
	• Review Questions	281
	Numerical Questions	283
	Multiple Choice Questions	285
- 13: 11:	Diee 4 M3 - 1 4 .	288—311
	Effect Transistors	288
	Introduction	288
	Junction Field Effect Transistor (JFET)	290
	Static Characteristic Curves of FET	290 292
	Pinch-off Voltage	292 294
	Current Voltage Relations in JFET Commercial FET Structure	294 297
	FET Parameters	297 297
		299
	Small Signal Models for FET Metal Oxide Semiconductor FET (MOSFET)	301
		304
	Depletion MOSFET Gate Protection in MOSFET	305
	Symbols and Small Signal Models of MOSFETs	305
	Merits and Drawbacks of p-channel and n-channel MOSFETs	306
	Comparison of JFETs and MOSFETs	306
7.14.	• Summary	306
	• Review Questions	309
	Numerical Questions	310
	Multiple Choice Questions	310
8. Thyris		312—354
	Introduction	312
	Structure of Thyristor (SCR)	312
	Operation and Static I-V Characteristics of a Thyristor	313
	Thyristor Turn-on Methods	315
	Switching Characteristics of Thyristors	316
	Thyristor Gate Characteristic	318
	Two-Transistor Model of an SCR	323
8.8	Thyristor Commutation Techniques	325

8.9.	Class A Commutation: Self Commutation by Resonating the Load	326
8.10.	Class B Commutation: Resonant Pulse Commutation	329
	Class C Commutation: Complementary Commutation	332
8.12.	Class D Commutation: Impulse Commutation	335
	Class E Commutation : External Pulse Commutation	338
8.14.	Class F Commutation : AC line Commutation	338
8.15.	Types of Thyristor Construction	339
8.16.	Thyristor Ratings	340
8.17.	Voltage Ratings of Thyristors	340
8.18.	Current Ratings of Thyristors	342
	Power Ratings of Thyristors	343
	Thermal Ratings of Thyristors	344
	Turn-on and Turn-off Time Ratings	344
8.22.	Thyristor Protection	344
	di/dt Protection	344
8.24.	dv/dt Protection	344
8.25.	Over-Voltage Protection	345
	Overcurrent Protection	346
	Gate Protection of Thyristors	348
	Cooling and Mounting of Thyristors	348
0.20.	• Review Questions	350
	Multiple Choice Questions	352
9. Specia	al Semiconductor Devices	355-412
9.1.	Introduction	355
9.2.	Temperature : Sensitive Bulk Semiconductor Devices	355
9.3.	Light Absorption and Photoconduction	356
9.4.	Photoconductive Devices	358
9.5.	Photoconductive Cells	359
9.6.	Photo Diode	360
9.7.	PIN Photodiode	362
9.8.	Avalanche Photodiode	363
9.9.	npn Photodiode	363
9.10.	Photo-transistor	363
9.11.	Miscellaneous photo-transistor	365
	Photo-voltaic Effect	365
9.13.	Solar Cells	367
9.14.	Photo-emissive Electron Tube	368
9.15.	Infra-red (IR) Emitted Diode	368
9.16.	Light Emitting Diode	370
	Laser Diode	372
9.18.	Varactor Diode	372
9.19.	Tunnel Diode	374
9.20.	Zener Diode	378
9.21.	Schottky Barrier Diodes (Hot Carrier Diodes)	381
9.22.	Unijunction Transistor (UJT)	384
9.23.	Liquid Crystal Display (LCD)	387
9.24.	Gunn Effect and Gunn Diode	389
9.25.	Impatt and Trapatt Devices	393
	IMPATT Diode	393
9.27.	Pin Diode	396
9.23.	Trapatt Devices	398
	Backward Diode	400
	Point Contact Diode	400
9.31.	Voltage Variable Resistance (VVR)	401

9.32.	Current Regulating Diode (CRD)	402
	• Summary	404
	• Review Questions	407
	Multiple Choice Questions	409
10. Tech	nology of Integrated Circuits	413-460
	Introduction	413
	Area of Micro-electronics	413
	Basic IC Technology	413
	Monolithic Integrated Circuit Technology	416
	Processes involved in Formation of IC chips	419
	Substrate Preparation	419
	Epitaxial Growth	419
	Silicon Dioxide Growth	421
	Masking and Photo-etching	421
	Diffusion of Impurities	421
	Basic Theory of Diffusion	423
	Diffusion Apparatus	426
	Isolation Methods	427
	Monolithic Bipolar Junction Transistors	429
	Merged Transistor Logic	434
	Monolithic Diodes	435
	Integrated Resistors	439
	Integrated Capacitors	442
	Diffused Junction Capacitors	442
	MOS Capacitors	444
	Integrated Inductor	445
	Thin Film Technology	445
	Thin Film Resistors	446
	Thin Film Capacitors	447
	Thin Film Conductors	448
	Thick Film Technology	448 449
	Comparative Study of Thin Film and Thick Film Components	
	Monolithic Circuit Layout and Fabrication Sequence	450
	Design Process	452
	Final Assembly of Integrated Circuits	452 452
10.31.	Large Scale Integration (LSI)	453 453
	• Summary	457
	Review QuestionsMultiple Choice Questions	459
11 Instr	umentation	46 1— 4 84
	Instrumentation Systems	40 1— 46 4
	Analog Instrumentation System	461
	Digital Instrumentation System	461
	Transducers	462
	Classification of Transducers	462
	Selection of Transducer	464
	Measurements of Force and Pressure	464
	Measurement of Temperature	465
	Resistance Thermometers	465
11.10.	Thermistor	467
	Thermocouple	468
	Displacement Transducers	469
	Linear Potentiometer Transducer	470

	(xii)	
11.14.	Linear Motion Variable Inductance Transducer	471
	Proximity Inductive Transducers	472
	Linear Variable Differential Transformer (LVDT)	473
	Capacitive Transducer	475
	Photo-Electric Transducers	475
11.19.	Piezo-Electric Displacement Transducers	477
11.20.	Velocity Transducer	477
11.21.	Acceleration Transducer	478
	Strain Gauges	478
	Resistance Type Strain Gauge	478
	Metallic Sensing Element	480
	Gauge Configurations	481
	Variable Inductance Type Strain Gauge	482
	Applications of Strain Gauges	482
11.28.	Measurement of Radioactive Emanations	482
	• Review Questions	483
	Multiple Choice Questions	483
12. Elect	ronic Measuring Instruments	485511
	Introduction	485
12.2.	Constituents of Cathode Ray Oscilloscope	485
12.3.	Cathode Ray Tube	485
12.4.	The Electron Gun	485
12.5.	Focusing	486
	Electrostatic Focusing	486
	Magnetostatic Focusing	488
	Deflection System	489
	Electrostatic Deflection System	489
	Magnetic Deflection System	493
	Magnetic Deflection Sensitivity	493
	Defects of Deflection	495
	Fluorescent Screen	499
	Time Base	500
	Common Time-base Circuit or Voltage Sweep Generators	501
	Power Supply for C.R.O.	502
	Uses of Cathode Ray Oscilloscope Merits of Electronic Instruments	502 504
	Classification of Electronic Measuring Instruments	505
	Analog Electronic Voltmeter	505
	TVM Type DC Voltmeter	505
	Copper Type Transistor DC Voltmeter	506
	Balanced Bridge TVM	507
	Electronic AC Voltmeters	507
	Current Measurements using TVM	508
	• Review Questions	508
	• Numerical Questions	508
	Multiple Choice Questions	510
13. Elect	ronic Gas Filled Devices	512—536
	Introduction	512
	Ionisation in Gases	512
	Current-Voltage Relation in Cold Cathode Gas Tube	513
13.4.	Glow and Arc Discharges	514
	Classification of Gas Tubes	514
	Glow Discharge Tubes	514
13.7.	Glow Discharge Tubes as Sources of Light	515

(xiii)

13.8.	Voltage Regulator (VR) Tubes	515
	Glow Discharge Rectifier Tube	516
	Glow Tube as Relaxation Oscillator	517
	Grid Glow Tube	518
	Starter Anode Glow Tube (Cold Cathode Gas Triode)	518
	Glow Tube Protective Devices	519
	The Strobotron	520
	Photography Flasher	520
	Thermionic Gas Diode	520
	Influence of Gas Pressure on Thermionic Gas Diode Performance	524
	Negative Grid Thyratron	524
	Positive Grid Thyratron	527
	Shield Grid Thyratron (Double Grid Thyratron)	528
	Ionisation and De-ionisation Times of Thyratrons	529
	General Theory of Tubes using Mercury Pool Cathode	530
	Mercury Arc Rectifier	531
	Excitation	533
	Ignition	533
10.20.	• Review Questions	535
	Multiple Choice Questions	536
	Muniple Onoice Questions	000
	PART—II: ELECTRONIC CIRCUITS	
	CIRCUITS	1—53
	Introduction	1
	Diode as a Circuit Element	1
	Piecewise Linear Model of Diode	3
	Diode Clipper or Limiters	5
	Two Level Diode Clipper (Slicer)	11
1.6.	Clamping (or Catching) Diodes	13
	1.6.1. Clampers	13
	Comparators	16
	Sampling Gates	17
	Rectifiers	19
	Classification of Rectifiers	20
	Halfwave Rectifiers	20
	Fullwave Rectifiers	26
	Fullwave Bridge Rectifiers	32
	Bridge Rectifier Voltmeters	35
	Voltage Multiplying Rectifiers	35
	Rectifiers with Filters	37
	Types of Filters	38
	Capacitor Filter	38 38
	Halfwave Rectifier with Capacitor Filter	36 44
	Fullwave Rectifier with Capacitor Filter	46
	Series Inductor Filter	47
1.22.	L-C Filters	48
	• Summary	51
	Review Questions Multiple Chains Questions	51 52
	Multiple Choice Questions	52
2. TRANS	SISTOR BIASING AND THERMAL STABILIZATION	54—99
	Introduction	54
	The Operating Point	55
	F	

2.3.	Causes of Shift of Quiescent Operating Point	60
2.4.	Means of Achieving Operating Point Stability	61
2.5.	Different Biasing Methods	61
	Two Battery Bias	62
2.7.	Fixed Bias	62
2.8.	Collector-to-base Bias	63
2.9.	Fixed Bias With Emitter Circuit Resistor	64
	Self Bias (emitter Bias or Potential Divider Bias)	65
	Stability Factors	68
	Stability Factors S' and S" in Self Bias Circuit	73
	BJT Baising for Integrated Circuits	77
	Widlar Current Source	79
	Operating Point Stability With I_{CBO} , V_{BE} and $beta$ Changing Simultaneously	80
	Relative Performance of Silicon and Germanium Transistors	83
	Bias Compensation	83
	Thermal Runaway	85
	Thermal Resistance and Derating Curve	86
	Selection of Quiescent Operating Point For Unconditionally Avoiding	
2.20.	Thermal Runaway	87
9 91	General Design Requirements for Ensuring Thermal Stability	88
	Three Transistor Current Sources	90
2.22.	• Summary	92
	• Review Questions	96
	Multiple Choice Questions	97
	· Multiple Offoice Aucstrolls	01
3. LOW-	FREQUENCY AMPLIFIERS	100155
3.1.	Introduction	100
3.2.	Graphical Analysis of CE Amplifier	100
	Two-port Devices and Network Parameters	103
	Open-circuit Impedance Parameters or z-parameters	103
	Short-circuit Admittance Parameters or y-parameters	104
	Hybrid Parameters or h-parameters	104
	Two-generator Hybrid Model for Two-port Network	105
	Transistor Hybrid Model	106
	Graphical Determination of h-parameters from Static Characteristic Curves	108
	Variation of Common Emitter Hybrid Parameters	109
	Conversion Formulas for the Parameters of the Three Configuration	110
	Analysis of Transistor Amplifier Using h-parameters	111
	Comparison of the Three Transistor Configurations	117
	Linear Analysis of A General Transistor Circuit	119
	Thevenin's and Norton's Theorems and Corollaries	119
3.16.	Miller's Theorem and Its Dual	120
	Common Collector Amplifier or the Emitter Follower	122
	Common Emitter Approximate h-model	123
	Analysis of CE Amplifier Using Approximate h-model	124
	Analysis of CB Amplifier Using the Approximate h-model	127
	Analysis of CC Amplifier (Emitter Follower) using Approximate h-model	128
	CE Amplifier with Resistor R_e in the Emitter Circuit	132
	Emitter Follower with Protection Resistor R_c in the Collector Circuit	137
	Darlington Emitter Follower	139
	Reduction of Input Impedance of an Emitter Follower Caused by Biasing Circ	uit 142
	Bootstrapped Emitter Follower	146
3.27.	Darlington Emitter Follower with Bootstrapping at the First Emitter	148
	Double Bootstrapped Darlington Emitter Follower	150
	• Summary	151

	Review Questions	153
	Multiple Choice Questions	154
4. FET A	MPLIFIERS	156—176
4.1.	FET Parameters	156
	FET Small Signal Models	158
	Small Signal Models for MOSFET	159
	Low Frequency Common Source (CS) Amplifier	159
	Low Frequency Common Drain (CD) Amplifier	163
	Biasing of FET	166
	Fixed Bias in JFET Amplifier	166
	Source Self Bias in JFET Amplifier	167
	Self Bias Plus Fixed Bias in JFET Amplifier	168
	Biasing of Enhancement MOSFET	169
	FET as a Voltage Dependent Resistor (VDR)	171
	High Frequency Common Source Amplifier	173
	High Frequency Common Drain Amplifier (Source Follower)	176
4.10.	• Summary	177E
	• Review Questions	1770
	Multiple Choice Questions	177E
	• Multiple Choice Questions	11112
	IIGH FREQUENCY AMPLIFIERS	177-208
	Introduction	177
	High Frequency Hybrid- π Model for CE Transistor	177
5.3.	Expressions for Hybrid- π Conductance Elements in Terms of low	
	Frequency h -parameters	178
5.4.	Capacitances in Hybrid- π Model of CE Transistor	182
5.5.	Frequency Limit of Validity of Hybrid-π Model	183
5.6.	Variation of Hybrid-π Parameters	183
5.7.	The CE Short circuit Current Gain	184
	Current Gain of CE Amplifier with Resistive Load	189
5.9.	High Frequency Response of Single Stage CE Amplifier Considering the	
	Source Resistance	192
5.10.	Gain-bandwidth Product	199
5.11.	Summary of High Frequency Response of a CE Amplifier	200
5.12.	High Frequency Response of Emitter Follower	200
	• Summary	204
	• Review Questions	206
	Multiple Choice Questions	207
e MIII T	TISTAGE AMPLIFIERS	209258
	Introduction	209
	Classification of Amplifiers	209
	Distortions in Amplifiers	21
	Cascading of Transistor Amplifiers	212
	Choice of Transistor Configuration in a Multistage Amplifier	216
	C.EC.C. Amplifier	217
	Frequency Response of an Amplifier	219
	Bode Plots	222
	Step Response of an Amplifier	229
	Passband of Cascaded Stages	23:
	R.C. Coupled Amplifier	233
	Analysis of R.C. Coupled CE Amplifier	234
	Small Signal Transformer Coupled Transistor Amplifier	24
	Spurious Response in Amplifiers	249

(xvi)

6.15.	Noise		249
	• Summary		25
	Review Questions		25
	Multiple Choice Questions		25
7. LARG	E SIGNAL AMPLIFIERS	259-	-280
7.1.	Introduction		259
	Class A Large Signal Amplifier		259
	Haromic Distortion		260
7.4.	Transformer-coupled Audio Power Amplifier		26
	Collector Dissipation and Conversion Efficiency		26
	Maximum Collector Circuit Efficiency of Class A Amplifier		266
	Pushpull Amplifiers		26'
	Class B Pushpull Amplifier		26
	Class AB Pushpull Amplifier		273
	Special Power Amplifier Circuits		273
	Typical High Power (20 Watts) Class B Power Amplifiers		278
	• Summary		276
	Review Questions		278
	Multiple Choice Questions		279
8. VACU	UM TUBE AMPLIFIERS	281-	-322
8.1.	Introduction		28
8.2.	Vacuum Tube Amplifier as a Linear Device		283
	Symbols for Voltages and Currents		282
8.4.	Zero-signal Operation of a Vacuum Tube Amplifier		283
	Working of Vacuum Tube Amplifier with Small A.C. Grid Signal		284
	Dynamic Transfer Characteristic		286
	Class A, AB, B and C Operations of Vacuum Tube Amplifiers		287
	Effect of Grid Current Flow		290
8.9.	A.C. (or Incremental) Equivalent Circuit of Linear A_1 Amplifier		293
8.10.	Voltage Gain of a Single Stage Untuned Linear A ₁ Amplifier		293
8.11.	Voltage Gain of a Single Stage Amplifier Using Pentode (or Tetrode)		297
8.12.	Inter-electrode Capacitances in a Triode		299
8.13.	Voltage Gain of a Triode Amplifier Considering the Interelectrode		
	Capacitances		299
8.14.	Input Admittance of a Triode Amplifier Considering the Inter-electrode		
	Capacitances		300
8.15.	Inter-electrode Capacitances in a Tetrode		302
	Inter-electrode Capacitances in a Pentode		304
	Method of Biasing the Control Grid		308
	Small Signal Cascade Amplifiers using Vacuum Tubes		309
	Direct Coupled Amplifiers (d.c. Amplifiers)		309
	Resistance Capacitance Coupled Amplifier		310
	Analysis of R.C. Coupled Amplifier		311
	Frequency Response Characteristic of R.C. Coupled Amplifier		314
8.23.	Voltage Gain and Phase Angle of Cascade Amplifier Consisting of Several		
	Stages		315
	Gain-bandwidth Product of R.C. Coupled Amplifier		315
	Effect of Cascading on the Bandwidth		316
	Untuned-transformer Coupled Amplifier		317
	Inter-stage Transformer Coupled Amplifier		318
8.28.	Input Transformer Coupled Amplifier		318
	• Summary		320
	Review Questions Multiple Choice Questions		$\frac{321}{321}$
	* wouldne choice wireshous		- 371

9. LARG	E SIGNAL VACUUM TUBE AMPLIFIERS	323-358
9.1.	Introduction	323
9.2.	Series-fed A ₁ Power Amplifier with Resistive Load Impedance	324
	Series-fed A_1 Power Amplifier with Complex $(R - L)$ Load Impedance	327
	Shunt-fed and Transformer Coupled Linear A ₁ Power Amplifiers	332
	Maximum Undistorted Power Output in a Triode Amplifier	335
	Theoretical Plate Circuit Efficiency of Triode Power Amplifier	339
	A ₁ Power Amplifiers Using Power Pentodes and Beam Power Tubes	340
	Class A ₁ Pushpull Amplifier	343
	Zero Signal Operation of Push-pull Amplifier	344
	Small Signal Operation of Push-pull Amplifier	344
	Large Signal Operation of Push-pull Amplifier	345
	A.C. Equivalent Circuit and Power Output of Push-pull Amplifier	346
	Driver Amplifier for Pushpull Amplifiers	349
	Driver Amplifier using Centre-tapped Transformer	349
	Paraphase Amplifiers or Phase Invertors	350
	Singe Tube Paraphase Amplifier	350
	Two-tube Attenuator-amplifier Type Paraphase Amplifier	350
	Two-tube Floating Paraphase Amplifier	351
	Cathode-coupled Paraphase Amplifier	351
	Class AB Pushpull Audio Frequency Power Amplifier	352
	Class B Pushpull Audio Frequency Power Amplifier	353
	• Summary	355
	Review Questions	357
	Multiple Choice Questions	358
10 FEEL	DBACK AMPLIFIERS	359—397
	Introduction	359
	Feedback Techniques	362
	Positive and Negative Feedbacks	363
	The Transfer Ratio or Transfer Gain	364
	Transfer Gain with Feedback	364
	General Characteristics of Negative Feedback Amplifiers	367
	Effect of Negative Feedback on Input and Output Resistances	368
	Input Resistance with Feedback	369
	Output Resistance with Feedback	371
	Method of Analysis of Feedback Amplifiers	373
	Amplifiers using Voltage Series Feedback	374
	Two-stage Voltage Series Feedback	377
	Amplifiers using Current Series Feedback	379
	Amplifier using Current Shunt Feedback	384
	Amplifier using Voltage-shunt Feedback	386
	• Summary	391
	• Review Questions	394
	Numerical Questions	396
	Objective Type Questions	397
11. TUNI	ED AMPLIFIERS	398-423
	Classification of Tuned Amplifiers	398
	Quality Factor or Q Factor	399
	Parallel Resonance	399
	Narrow Band Tuned Amplifier	402
	Broad Band Tuned Amplifier	403
11.3.	Single Tuned Capacitance Coupled Amplifier	403
11.4.	Tapped Single Tuned Capacitance Coupled Amplifiers	406

(xviii)

	Single Tuned Inductively Coupled Amplifier Double Tuned Amplifier Review Questions Numerical Questions Objective Type Questions	410 415 421 422 422
12-A. ST.	ABILITY	424—441
	Introduction	424
	Effect of Negative Feedback on Amplifier Bandwidth	424
	Double Pole Transfer Function with Feedback	427
12.4.	Three Pole Transfer Function with Feedback	432
12.5.	Approximate Analysis of a Multipole Feedback Amplifier	433
	Stability	434
12.7.	Gain Margin and Phase Margin	435
12.8.	Compensation	436
12.9.	Dominant Pole Compensation	438
12.10.	Pole-zero (Log/lead) Compensation	439
12.11.	Compensation by Modification of β -Network	441
12-B. Ose	eillators	442474
12.1.	Introduction	442
12.2.	Classification of Oscillators	443
12.3.	Constituents of an Oscillator	443
12.4.	Sinewave Feedback L-C Oscillators	446
	A General Form of Oscillator Circuit	447
	Tuned Collector Oscillator	448
	Tuned Drain Oscillator	450
	Tuned Base Oscillator	451
	Hartley Oscillator using BJT	451
	FET Hartley Oscillator	453
	BJT Colpitts Oscillator	454
	FET Colpitts Oscillator	456
	Clapp Oscillator using BJT	456
	Sinewave Feedback R.C. Oscillators	457
	Crystal Oscillator	462
12.16.	Negative Resistance Oscillator	465
	• Summary	467
	• Review Questions	470
	Objective Type Questions	472
	EBAND AMPLIFIERS	475—502
	Introduction	475
	Uncompensated Wideband Amplifier	477
	Step Response of Cascaded Identical Uncompensated Stages	481
	Flat-top Response of Cascaded Stages	482
	High Frequency Compensation	484
	High Frequency Shunt Compensated CE Wideband Amplifier Stage	485
	Additional Methods of Rise Time Compensation	497
	Rise Time of Cascaded Compensated Stages	497
13.9.	Low Frequency Compensation • Summary	498 502
14 570		
	ABLE MULTIVIBRATOR	503—535
	Introduction	508
14.2.	Stable States of a Binary	503

(xix)

14.3.	Fixed Bias Transistor Binary	504
14.4.	Self-Biased Transistor Binary	507
14.5.	Commutating Capacitors	509
14.6.	Methods of Improving Resolution	511
14.7.	Non-saturating Binary	512
	Unsymmetrical Triggering of Binary	512
	Unsymmetrical Triggering Through a Unilateral Device	514
	Symmetrical Triggering of Binary Through Diodes	516
	Schmitt Trigger Circuit	520
	Design Consideration in Bistable Multivibrator	523
	MOSFET Bistable Multivibrator	525
	JFET Bistable Multivibrator	526
	Tunnel Diode Bistable Multivibrator	527
	• Summary	532
	Review Questions	534
	Multichoice Questions	535
15 MON	OSTABLE MULTIVIBRATOR	536—572
	Introduction	536
	BJT Monostable Multivibrators	536
	Collector Coupled Monostable Multi	536
	Self-biased BJT Monostable Multi	540
	Single Transistor Monostable Multi	543
	•	545 545
	Emitter-coupled Monostable Multi Triggering of Monostable Multi	549
	Design of Monostable Multivibrator	552
	MOSFET Monostable Multivibrator	554
	JFET Monostable Multivibrator	558
	Tunned Diode Monostable Multivibrator	558
15.11.		569
	Review Questions Numerical Questions	570
	Numerical Questions Multiphoice Questions	572
	Multichoice Questions	012
		573—610
	Introduction	573
	Collector Coupled Saturating Astable Multi	574
	Voltage Controlled Astable Multi	578
	Recovery Time in Astable Multi	578
	Design of a symmetrical Saturating Astable Multi	582
	Emitter Coupled Astable Multi	583
	Comparison of Collector Coupled and Emitter Coupled Astable Multivibrator	
	Junction FET Astable Multivibrator	588
	MOSFET Astable Multivibrator	590
	Negative Resistance Devices Astable Multivibrators	590
	Complementary Transistors Astable Multivibrator	596
16.12.	Synchronization in Astable Multivibrator	597
	Review Questions	608
	Numerical Questions	609
17. VOL	TAGE AND CURRENT SWEEP GENERATORS	611—667
17.1.	Introduction	611
	Terminology	611
17.3.	Fundamental Sweep Circuit	614
17.4.	Methods of Ramp Generation	617
17.5.	Miller Integrator Voltage Sweep Generator	620

17.6.	BJT Miller Integrator Voltage Sweep Generator using Negative Current		
	Feedback		622
17.7.	Boostrap Voltage Sweep Generator		623
17.8.	Boostrap Ramp Generator using Emitter Follower		626
17.9.	JFET Miller Ramp Generator		629
17.10.	Regenerative Self-gating Miller Integrator		635
17.11.	Recovery Time Reduction by Controlling Initial Drain Source Voltage		637
	Complete Regenerative Miller Integrator Sweep Circuit		637
17.13.	Double Boot-strapping		638
17.14.	Current Time Base Generator		639
17.15.	A General Scheme of a Current Time Base Generator		643
17.16.	Current Sweep Circuit		644
17.17.	Linearity Correction in Current Sweep Generator		645
	Linearization Consideration Self-capacitance of Coil		649
	Basic Television Sweep		652
	• Summary		646
	Numerical Questions		665
	•		
18. BASI	C DIGITAL CIRCUITS	668-	-702
18.1.	Introduction		668
18.2.	Digital or Binary Operation		668
18.3.	Logic Systems		670
	The OR Gate		670
18.5.	The AND Gate		673
18.6.	The NOT Gate or INVERTER Gate		675
18.7.	Transistor Switching Times		673
	The INHIBIT (Enable) Operation		679
	Exclusive or Circuit		681
18.10.	De Morgan's Laws		683
	The NAND Diode-Transistor Logic (DTL) Gates		685
	The NOR diode-Transistor Logic (DTL) Gate		686
	Equivalence of Nand and NOR Gates		686
	Integrated Circuit DTL Gates		686
	Integrated Positive DTL NAND Gates with Fan-out		688
	Integrated Positive DTL NAND Gates Increased Fan-out		689
	Wired Logic		691
	High Threshold Logic (HTL) Gate		692
	Transistor Transistor Logic (TTL) Gate		692
	Output Stages in TTL and DTL Circuits		693
	Resistor-Transistor Logic (RLT) and Direct Coupled Transistor Logic (DCTL)	697
	Comparative Study of Different Logic Families		699
	• Review Questions		701
	GULATED POWER SUPPLIES	703-	-716
	Introduction		703
	Classification of Voltage Regulators		704
	Short Period Accuracy of Voltage Regulator		704
	Long Period Accuracy of Voltage Regulator		704
	Simple DC Voltage Stabilizer using Zener Diode		705
	Precision DC Automatic Voltage Regulator		706
	Sampling Unit		707
	Reference Unit		707
	Comparison Unit		708
	DC Amplifier Unit		709
	Control Unit		709
19A.12.	Pre-regulator		710

(xxi)

19A.13.	Complete Series Voltage Regulator	711
19A.14.	Simple Series Voltage Regulator	712
19A.15.	IC Voltage Regulators	712
	Monolithic IC Voltage Regulators	712
	Protection Circuits used in monolithic IC Regulators	713
	Monolithic IC Voltage Regulator using CA 723	714
	• Summary	715
	• Review Questions	716
	Multiple Choice Questions	716
		17—756
	Introduction	717
	The Basic Operational Amplifier	718
	Properties of Ideal Operational Amplifier	719
	Inverting Op. Amp.	719
	Typical IC Op. Amp	722
	The Differential Amplifier	722
	The Emitter Coupled Differential Amplifier	724
	Differential Amplifier with a Constant Current CE Stage in the Emitter Circu	
	Transfer Characteristics of a Differential Amplifier	729
	A Typical IC Operational Amplifier	730
	Offset Error Voltages and Currents	734
	Temperature Drift of Input Offset Voltages and Current	737
	Measurement of OP-AMP Parameters	738
	Frequency Response of Operational Amplifier	741
19B.15.	Compensation	744
	• Summary	752
	• Review Questions	754
	Numerical Questions	755
	Multiple Choice Questions	755
20. ANAI	LOG SYSTEMS USING OF AMP 7	57—8 15
	Basic Operational Amplifier Applications	757
	Differential DC Amplifier	760
	Stable AC Coupled Amplifier	761
	Analog Inverter	762
	Analog Differentiator	764
	Op Amp with General RLC Circuit	765
	Analog Compulation	765
	Delay Equalizer	766
	Active Filters	767
	Butterworth Filter Characteristics	768
	Active LC Resonant Bandpass Filter	773
	Active RC Resonant Bandpass Filter	774
	Thomas Biquad	776
	The Delyiannis Active Filter	780
	IC Tuned Amplifier	783
	IC Diff Amp as Amplitude Modulator	786
	Cascade Video Amplifier	787
	Comparator	788
	Basic Comparators	789
	Comparator as Zero-crossing Detector	791
	Zero crossing Detector as Timing Market Generator using a Sinewave	791
20.22.	Zero Crossing Detector as Phasemeter	792
20.23.	Comparator as Pulse-time Modulator	792

(xxii)

20.24.	Regenerative Comparator (Schmitt Trigger)	792
20.25.	Comparator Characteristics	794
	Limitations of Op Amp as comparators	795
	Voltage Limiters	795
	Clippers	796
	Small Signal Halfwave Rectifier	797
20.30.	Active Average Detector	799
	Active peak Detector	799
20.32.	Clampers	800
20.33.	Sample-and-Hold Circuits	802
20.34.	Logarithmic Amplifiers	803
	Antilog Amplifier	804
20.36.	Logarithmic Multiplier	805
20.37.	Differential Amplifier Multiplier	806
20.38.	Waveform Generators	806
	• Summary	809
	Review Questions	812
	Multiple Choice Questions	814
21. COM	IBINATIONAL LOGIC CIRCUITS	816—842
	Introduction	816
21.2.	Half Adder	817
	Full Adder	818
	Binary Address	819
	Adder-Subtractor	819
	Digital Comparator	820
	Decoders	822
	Demultiplexer	824
	Multiplexers	825
	Read-Only Memory	828
	Digital System Displays	830
	Liquid Crystal Displays	836
	Digital Counting Systems	838
==:=0:	• Review Questions	839
	Multichoice Questions	839
	• References	841
99 SEOI	UENTIAL LOGIC CIRCUITS	843—864
_	Introduction	843
	Synchronous and Asynchronous Logic Circuits	843
	Flip-Flops	845
	Clocked Flip-flops	846
	Clocked RS Flip-Flops	847
	D Flip-Flop	848
	JK Flip-Flop	849
	T Flip-Flop	850
	Master-Slave JK Flip-Flop	851
	Edge Triggered Flip-Flop	852
	Registers	853
	Binary Counters	856
	Up-down Counter	860
	Synchronous Counter	861
	• Review Questions	862
	Multichoice Questions	863
	• References	864
		004