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METHODS OF MATHEMATICAL PHYSICS

Linear Algebra

MULTIPLICATION OF MATRICES

If 4 and B be any two matrices, then their product AB will be defined only when number of
column in 4 is equal to the number of rows in B. If 4 = [a ij ] e and B = [b ik ] e then their product
n

AB =C = [Cik]mxp’ will be matrix of order m x p, where C;;, = Zlal_'ibjk .
Jj=
PROPERTIES OF MATRIX MULTIPLICATION
If 4, B and C are three matrices such that their product is defined, then
(a) AB#BA (Generally not commutative)
(b) (AB)C =4 (BC) (Associative Law)
(c)A (B + C) = AB + AC (Distributive Law)
(d) If 4B = AC it does not mean that B = C (Cancellation /Law is not applicable)
(e) If AB=0. It does not mean that A =0 or B=0

(0 (4B)" =BT 4T

TRANSPOSE OF A MATRIX

The matrix obtained form a given matrix 4 by changing its rows into columns or columns into
rows is called transpose of matrix 4 and is denoted by 4 T From the definition it is obvious that if order
of 4 ismxn,thenorderofAT isnxm .

PROPERTIES OF TRANSPOSE
(2) (AT)T =4
) (4+B) =47 £B7
(¢) (4B) =BT AT
(A (k)" =k(4)"
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T T ,T T T (T
(e) (A1A2A3 ..... An—lAn) = An An_l....A3 A2 Al

i 412 43
The determinant of square matrix 4 is given by | 4A|=|ay; as  axs

dz) dzy aszz

PROPERTIES OF THE DETERMINANT OF A MATRIX
(a) | 4] exists < A4 is a square matrix
(b) |AB|=| 4|| B|
(©) [4"|=4
(d) |kA|=k"| A, if A is a square matrix of order 7.

(e) If A and B are square matrices of same order then | AB|=| BA|
(f) If 4 is a skew symmetric matrix of odd order then | A|=0

(g) IfAzdiag(al,az ..... an)then|A|=a1a2....an.

(h) | A" ={A"|,neN.

(1) If] 4]=0, then matrix is called singular.

A number is defined as the rank of a m x n matrix 4, if 4 has at least one minor of order which is
not equal to zero and there is no minor of order ( 7 + 1) which is not equal to zero. The rank of the matrix
A is denoted by p(A). Form the definition of the rank of a matrix we concluded that

(a) If a matrix 4 does not possesses any minor of order (7 +1) , then p( 4) < r
(b) If at least one minor of order of the matrix is not equal to zero, then p(A) >7.

If every element of a square matrix 4 be replaced by its cofactor in| 4|, then the transpose of the
matrix so obtained is called the Adjoint of matrix 4 and it is denoted by adj 4. Thus if 4 =[a, ; ]be a
square matrix and be the cofactor of a; ; in| 4|, then adj 4 =[F;; ]T.

PROPERTIES OF ADJOINT MATRIX
If 4, B are square matrices of order n and / is corresponding unit matrix, then
(a) A(ade) =41, :(adj A)A
(b) Jadj A= 4"
(c) adj(adj A) =/ 4" 4
. . (n—l)2
(d) | adj( adj A)|=| 4]
(©) adj(AT) = (adj 4)"
(f) adj( AB) =(adj B)(adj A)
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Methods of Mathematical Physics T.3

(2) adj(Am)=(ade)m, meN
(h) adj(kA)=k""'(adj 4),k €R

If A and B are two matrices such that AB =1 = BA, then B is called the inverse of 4 and it is
denoted by A" Thus A™' =B < AB=1=B4
adj A
| 4|

To find inverse matrix of a given matrix 4 we use following formula A=

Thus 47" exists if | A]#0 and matrix 4 is called invertible.

PROPERTIES OF INVERSE MATRIX
Let 4 and B are two invertible matrices of the same order, then

() ()

0)(4B) " =74

@(4) " =(4")  ken
(@ adi(47") = (adj 4)™
a1 5
@47 )=—=4|
| 4|
(H1f 4 =diag(a1,a2, ...... Ay, ), then A~" = diag (al_l,a;,....a,jl)
(g) AB = AC = B =C if | 4|#0,

Consider the following system of equation
apx+apytapzz= bl

anX+any+apz=>b
a31x+a32y+ a33z=b3

The system of equation can be written as Ax = B

app dpp a3 X by
Where A=lay ay ay |\ x={y,B=|b |
a3y dszp dsz z bs

The above system of equation is said to be consistent if the has at least one solution.

a1 41 43 by
The augmented matrix is defined as [ 4:B] =|ay; az ax; : by
ay; axp azy b
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T. 4 Methods of Mathematical Physics

The system of equation as Ax = B is consistent and has solution (unique or infinite) if and only if
the matrix 4 and the augmented matrix [ 4: B] are of the same rank i.e.p [ 4 :B] =p [ 4]. If system is of
n equation, then we have following conclusion:

1. Ifp[ 4: B] = p[ 4] = n.(The number of unknown) then the system of equation has a unique solution.

2.1If p[A:B] = p[A < n then n—r unknown may have arbitrary values. Remaining unknowns is
determined uniquely. There will be infinite solution for the system.

EIGEN VALUES AND EIGEN VECTOR

Let 4 be square matrix of order n and let / be a unit matrix of same order, then ‘A - ‘ is called the
characteristic matrix, where A is a scalar.

The determinant of the square matrix i.e. | 4 —Al| equated to zero gives characteristic equation of
the matrix. The root of characteristic equation (i.e. values of 1) are called eigen values.
PROPERTIES OF EIGEN VALUES

(a) Matrix 4 and AT have same eigen values.
(b) Determinant of 4 is equal to the product of the eigen values of 4.
(c) If A is characteristic root of the matrix 4 then k£ + A is a characteristic root of the matrix 4 + /.

(d) Sum of the eigen values of 4 is equal to the sum of the elements of the principal diagonal
of the matrix.

(e) The matrix A and B ~1 4B have same eigen values.
(f) If 4 is an invertible matrix, then A7'B and BA™! have the same eigen values.

(g) If| 4]=0 and A is the eigen values of 4, then % is the eigen value of 471,

(h) IfA{,A,....A, arethe eigen values of 4, then eigen values of

A Ay A
2. kA are khq,kh,.....kh, when k is any scalar.
3.4™ arek’f,?u";, ..... AT

Every square matrix satisfies its characteristic equation, ,e., if 4 is a square matrix of order n, then
its characteristic equation inA | 4 —AI|=0 is satisfied by L = 4.
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ector Calculus
INTRODUCTION

Vector calculus is a branch of mathematics concerned with differentiation and integration of
vector fields, primarily in 3 dimensional Euclidean space.

Vector calculus plays an important role in differential geometry and in the study of partial
differential equations. It is used extensively in physics and engineering, especially in the description of
electromagnetic fields, gravitational fields and fluid flow.

VECTOR DIFFERENTIATION

Scalar Function : A scalar function f(x, y, z) is a function defined at each point in a certain domain
D in space. - _ B _

Vector Function: A function F(x, y,z) = Fji + F, j + F3k where F,,F, and Fyare functions
of x, y and z, defined at each point P €D is called a vector function.

Position Vector: If a point O is fixed as the origin in space or in plane and P is any point in space then opr
is called the position vector of a point P with respect to origin O and it is denoted by 7.

OP=F=xi+yj+zk and it's magnitude isr:‘?‘:\/xz + 2 422,

NOTE
In parametric form the position vector 7 is 7(#) =x(#)i + (1) + z( t)lg

PARAMETRIC REPRESENTION OF CURVES

The curve 'C' in two dimensional plane can be parameterized by x =x (¢), y =y () where a < ¢ < b.
Then the position vector of a point P on the curve 'C' is written as 7(¢) = x(¢ )i + (). Therefore, the
position vector of a point on a curve defines a vector of a point on a curve defines a vector function, i.e.,
F=xi+yj.

Similarly a three-dimensional curve can be parameterized as 17( t) = x(t)zT + y(t)j + z(t)k where
ast<h.

DIFFERENTIABILITY

o . . . o F(1+80)-F(1)
A Vector function F' (t) is said to be differentiable function at a point 't if Lt 5
3t—0 t

exists and finite.
If ﬁ(t) =r(t)=x(1)i +W(1)j+ z(t)lg is a parametric representation of a curve 'C' then g
t
represents the tangent vector to the curve 'C'.

POINT FUNCTION

If the value of the function depends on the position of the point in space but not on any particular
coordinate system being used then the function is called point function.
TYPES OF POINT FUNCTIONS

(i) Scalar Point Function: If for each point P (x, y, z) of aregion 'R' in space, a unique scalar or a number
o(x, 1, z) or ¢(P) is associated by some function ¢ then the function ¢( x, y, z) is called "scalar point
function".
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T.6 Methods of Mathematical Physics

The set of all points of the region R together with the function values ¢(P) is called a scalar field
over region R.

Ex: Temperature (7) of a heated body in steady state is different at different points so that 7"is a
scalar point function.

(ii) Vector Point Function: If for every point P (x, ¥, z) in a region 'R' of space, a unique vector
f (x, 3 2)o0r f (P) is associated by a function f then the function f (x5 z)o0r f (P) is called "vector
point function" or vector function of position.

The set of all points of the region R together with the function values f (P) is called a vector field
over region R.

Ex: The velocity of a moving fluid at any time is a vector point function.

LEVEL SURFACE

If ¢(x, y, z) is a scalar point function then the set of all points P (x, y, 2) satisfying ¢(x, ,z) =c¢
where 'c' is an arbitrary constant, is called a level surface of ¢ at level c.

NOTE

For different values of ¢ we get different level surfaces and the set of all level surfaces is known as
family of level surfaces.
VECTOR DIFFERENTIAL OPERATOR

The vector differential operator is denoted by the symbol V (read as nabla) and defined as

void ;9,52
ox Oy oz

GRADIENT
GRADIENT OF A SCALARPOINT FUNCTION
If (I)(x, ¥, z) is a scalar point function defined and differentiable at each point in a region of space

then the gradient of ¢ is denoted by grad ¢ (or) V¢ and defined as
op- 06 - 00 -
radp =V =—i+—j+—k.
gradg =Vo = i+ It
THE PHYSICAL INTERPRETATION OF V¢

The gradient of a scalar function ¢(x, y, ), i.e., Vo ata point P (x, y, z) is a vector along the normal
to the level surface ¢( x, , z) = cat P and is in increasing direction.

NOTE
+ V¢ is always a vector function whose components ¢ ., ¢ y»¢ - are functions of x, y, z.

<4 Gradient of constant scalar point function is a zero vector.

Vo

——is a unit vector normal to the level surface ¢(x, y,z) = ¢

Vo)

DIRECTIONAL DERIVATIVE (D.D)

If ¢(x, A z) is a differentiable scalar function then the rate of changed of ¢ at a point P in the
direction of a given vector a is called directional derivative of ¢.
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Methods of Mathematical Physics T.7

It is given by (V(I))p A
a
~D.D :(v¢)p.z
NOTE

+ The directional derivative of a scalar function ¢ (x, ¥, z) atapoint P (x, y, z) in the direction of a
unit vector e is (V¢ ).e.

+ D.D of ¢ in the direction of x-axis is % _ (Vo).i
Ox
. oy .. 0 -
<+ D.D of ¢ in the direction of y-axis is — = (Vd) ).]
oy
. Ny .. 0d -
+ D.D of ¢ in the direction of z-axis is . = (Vd) ).k
z

<4 If Pis any point of the surface ¢ = c then the greatest rate of change of ¢ occurs in the direction
of normal to the surface ¢(x, y, z) = cat P.

<4 The greatest rate of increase (or) maximum value of directional derivative of (I)(x, ¥, z) ata
point P is ‘Vd)‘ at P.

ANGLE BETWEEN TWO SURFACES

If¢ 1 (x, 3, 2) = ¢ and ¢, (%, 3, 2) = ¢, are two surfaces and 0 is the angle between the two surfaces

at their point of intersection P then
Vo) (V
0 :COS_I M .
Vo, [Vé,
NOTE
+ If (I)(x, v, z) =c is level surface and P(x, y, z) is any point on the surface such that
(Vo) =ai+bj+ckthen
p
(i) the equation of tangent plane to the surface is a(x - xl) + b( V- yl) + c( z— zl) =0

. . . . X—X - z—z
(i1) the equation of normal line to the surface is A L
a b c
1

+ Ifr:xf+yj+zl€& r:‘F‘:w/xz +y2 + 22 thenV[f(r)]:?f (r)
r

+ IfF () is a vector with constant magnitude then F a;TF =0.
t

4+ IfF ( t) is a vector with constant direction then F x i{—F =0.
t
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T.8 Methods of Mathematical Physics

Ex: Find a unit normal vector to the given surface x? y+2xz =4 at the point (2, -2, 3).
Sol: Let o(x, y.z)=x’y+2xz—4and P=(2,-2,3)
Then Vé :(2ygz+22)f+x2j+2xl;
:>(V(|))p =2i+4j+4k =a

.. The unit vector normal to the given surface is

z —21+4]+4k 7(—l+2j+2k)

‘a‘ V4 +16+16

Ex: Find the directional derivative of f* = x 2 y2 +2zatP(1,2,3)in the direction of the line PQ where

0=(5,0,4).
Sol: Given f=x?-3y>+2zP=(1,2,3)and 0= (5, 0, 4)

= PO=4i —2j+k andVf =2xi -2y j+4zk = (Vf), =24 +12k
.. The directional derivative of fat P along @ is

DD= (Vf) 8+8+12 28

‘PQ‘ V16 +4+1 \/>

Ex: In what direction from the point (- 1, 1, 2) is the directional derivative of ¢ = xy2 z> a maximum?

What is the magnitude of this maximum.
Sol: Given ¢ =xy%z> and P=(-1, 1, 2)
The directional derivative of ¢(x » z is maximum in the direction of normal to ¢ .
=V =(y )z +(2xyz )]+(3xy )k
\% =8i —16; —12k
= ( (|))p i j

. Maximum value of directional derivative is

V| =64 +256 +144 =464 .

Ex:Ifr=xi+yj+zkandr= 7| then find V(cos r).

Sol: Given r=xi+yj+zk :r:‘;‘:m

Now V(f(r)):rflfr)
V(cosr) =r(‘si‘”j.

DIVERGENCE OF A VECTOR FUNCTION
If a vector point function F' (%, 32)=Fi+Fj+F sk is defined and differentiable at each point

in some region of space then the divergence of F is denoted by div F or V.F and defined as
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Methods of Mathematical Physics
_— -~ OF, oF, OF

divF =V.F ==L+ 2,23
ox Oy Oz

PHYSICAL INTERPRETATION
Let F. (x, ¥, z) be the velocity of a fluid at a point P (x, y, z). Consider a small rectangular box

within the fluid. Then divF measures the rate per unit volume at which the fluid flows out at any given
time, i.e., divergence measures the outward flow (or) expansion of the fluid from their point at any time.

HARMONIC FUNCTION
If (I)(x, ¥, z) is a scalar point function such that Vzd) =0 then the function ¢ is called harmonic

function and equation V 24) =01is called Laplace's equation where
o 0% 97
=——+ —— 4+ ——is Laplacian operator.

Vz
ox? 9 oz

o (V.F)=(F.V)

o« (V.F)=v%
. 1ff=xf+y}+zl€&r=\7‘:mthenvz[f(r)]:f"(r)jéf'(r)'

SOLENOIDAL VECTOR
A vector point function F is said to be solenoidal vector if V.F =0.

If a vector point function F(x, y, z) = Fyi + F, j + F3k is defined and differentiable at each point

in some region of space then curl of F is denoted by curl F or V x F and defined as
cur]f:V)(f = %_a& ;’+ aﬂ_ai 7'+ aﬂ_éﬂ];
oy oz oz  Ox Ox Oy

PHYSICAL INTERPRETATION
If @ is an angular velocity of a rigid body rotating about a fixed axis and J/ is the velocity of any
point P (x, y, z) on the body then © = %curl V.

NOTE
+ (fo);t(fo)

4 curl F is a vector function
P
o 0

4+ curll F=VxF =
ox Oy

F P
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T. 10 Methods of Mathematical Physics

+ If ;7=xf+y]+zl€&r=‘z7‘=\/x2 +y? 422 thean(?f(r))=6andVx(?)=6.
IRROTATIONAL VECTOR

A vector point function F is said to be an a irrotational vector if curl F =0

SCALAR POTENTIAL FUNCTION
If for a given an irrotational vector F there exists a scalar point function ¢(x, ¥, z) is called scalar

potential function of F .

If 4 and B are differentiable vector functions and f and g are differentiable scalar functions of
position (x, y, z) then

L V(f+g)=Vf+Vg

2. V(fg)=rf(Ve)+g(Vf)

3. V.(4+B)=(V.4)+(V.B)

4. Vx(4+B)=(Vx4)+(VxB)

5. v.(fZ) =(Vf).4 +f(v.A7)

6. VX(fZ)=(Vf)xZ+f(VxZ)

7. V.(AxB)=B.(VxA)-A.(V <)

8. Vx (V¢) =0 (or) curl (grad $)=0 i.e., grad ¢ is always an irrotational vector.
9

. V.(V X X) =0 (or) div (curl A ) =0, i.e., curl4 is always a solenoidal vector.
(or) curl (curld) = V(V. Z) -vi4
Ex: If F =xy?i +2x2 yzj —3yz°k then find divF at (1, -1, 1).
Sol: Given F =xp?i +2x% yzj —3yz°k
OF,  OFs  OF,

2 2
—= +2x°z—6yz
ox 0Oy oz 4 4

divF =V.F =

SAt(1, -1, 1), divF =9
Ex: If F =xy?i +2x% yzj —3yz°k then find curlF at (1, 01, 1)
Sol: Given F =xp?i +2x%yz -3y2%k

i J k
= = |0 0 0 < - -
curl F =V xF = x o p =1(—322 —2x2y)—](0—0)—k(4xyz—2xy)
xy2 2x2yz —3yz2

SAt(1, -1, 1), curlF =—i =2k
Khanna Publishers
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Methods of Mathematical Physics T. 11

Ex: Show that vector F = (x2 - yz)zT + ( 32 —xz)j' + (zz —xy)lg is irrotational and find it's scalar

potential.

‘Q)N-\

J
Sol: curlF = °
ox oy
2—yz y2—xz z° —x
. F is irrotational.
Let F = V¢ where ¢ is scalar potential.

:F12+F2j+F3k_,£+]a¢ RN F1,6¢ Fz,6¢ _F,
ax 8y OZ 8)(; 8)/ 82

Consider dp = % dx +6¢ dy+@dz=Fldx + Fhydy+ Frdz
Ox oy oz
= do :(x - yz)dx-l—(y2 — Xz a’y+(z2 —xy)dz

= d =x>dx + yzdy—d(xyz)

3 3 3

¢:—+y?+?—xyz+c

is a scalar potential function.
Ex: If7 =xi+yj+zk then ﬁnde(log r)

Sol: Given F=xi+yj+zk and r=lf|= 24y 122
2 —1 2(1)_ 1
vz(f(r)):f“(r)J’;fl(r) Vz(logr)=r2+r(rj:r2

Ex: IfF =xi+ yj+zk then findV x (7 logr)
Sol: \% x((l)g) :(V(I) x Z) +(I)(V X Z)
where ¢ =logrand 4 =7

Vx(logrr) (Vlogr)xr+logr(er)—% ;7+6:%(;7x?)=6

VECTOR INTEGRATION

LINE INTEGRAL
In general, any integral which is to be evaluated along a curve is called a line integral.
Let7 =xi + yj+ zk be the position vector of any point P (x, y, z) on a curve C joining the points
P, and P,. We assume that C is composed of a finite number of curves for each of which r has a
continuous derivative. Let A(x » z) Ayi + Ay j + Ayk be a differentiable vector function. Then the
L)
integral of tangential component of 4 along C from P, to P, is JA dr = I Aydx + Ay dy + Az dz.
B B
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T. 12 Methods of Mathematical Physics

CIRCULATION
If Cis a simple closed curve then the line integral of 4 along a closed curve C is denoted by i; A.dr.
c

In aerodynamics and fluid mechanics §Z .dr is called the circulation of 4 around C where A

c
represents the fluid velocity.

WORK DONE BY FORCE

If 4 is a force acting on a particle which moves from a point P, to a point P, along a curve C then
P,
the line integral fZ .dr gives the total work done by force 4 .
B
NOTE
+ Ifd=Aji+Ayj+ Ak anddr =dxi +dyj+dzk where 7 =xi + yj+ zk then
J. A.dr = J.(Aldx + Aydy + Ay dz) which is a line integral in Cartesian form.
C C

+ The value of the line integral of a vector point function depends (upon) on the path joining 4
and B (unless the vector function is an irrotational).

+ If 4 is a conservative field or an irrotational vector (i.e.,V x A4 =0)in a region R of space then

Py
(1) the line integral j A.dr is independent of path C joining Pyand P, inR and
4l
Py Py
IA dr = JVd) dr = Idd) O(P,) —d( P ) where ¢(x, y, z) is a scalar potential function.
B B |

(i1) :*;Z .dr =0 around any closed curve C in a region R.

SURFACE INTEGRAL

Suppose S is a piece wise smooth surface and F' (x, ¥, z) is a differentiable vector function over S.

Let P be any point on S and let # be the unit vector at P in the direction of outward drawn normal to the
surface S at P then j j (17 . ﬁ)dS is an example of surface integral.
S

METHOD OF EVALUATION

IGOTHICOE

+ IfR, is the projection of 'S' on yz- plane then J. J. (F n)dS IJ(F )
Ry

dydz

‘n.i‘

Khanna Publishers
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Methods of Mathematical Physics T. 13

e If R; is the projection of 'S" on xz - plane then jj(f ﬁ)dS = II(I*: ﬁ) dxa%
5 25 n.j

If S'is a closed surface enclosing a volume region V' then I J. I AdV and I I J. ¢ dV are examples of
v v

volume integrals.

Ex: Find J. F.dr where F =x? y?i + yjand C is the curve y? = 4x in the XY- plane from (0, 0) to (4, 4)

C
Sol: Iﬁ.ﬁz x2y2dx+ydy
C C
Given y2 =4x
=2ydy=4dx
= ydy=2dx

o a7
[ F.dr =[x 4xax +2dx={4x +2x} —264
4
c 0 0
Ex: Find the work done in moving a particle in the force field F =3x2i + (2xz-y)j+ zk along the

straight 6 line joining the points (0, 0, 0) and (2, 1, 3).
Sol: Equation of straight line is

x—0=y—0=z—0=t
2-0 1-0 3-0
=>x=2t,y=tz=3t
= dx =2dt,dy=dt,dz =3dt
Work done = If .dr
C

= I3x2dx +(2xz = y)dy + zdz
C

Ct— — O —

[3(2t)2(2dt) +(2(20)(3¢) - 1) de + (3t)3dt}

[361,‘2 +8t]dt ~16

Ex: Evaluate J.I?. Ndswhere F =18zi —12j +3yk and 'S' is the part of the surface of the plane
S
2x + 3y + 6z =12 located in the first octant.
Sol: Let the equation of given surface be
O =2x+3y+6z-12
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T. 14 Methods of Mathematical Physics

Then normal to the surface is Vo =2i +3; +6k= N = % = —2l +3; +6k

.‘.f.ﬁ=g[6z—6+3y]

Let '7' be projection of 'S' onto XY - plane.
Then jF Nds—HF Ny ” (62-6+3 )dXdy [ [(62—6+3y)dxdy

VK| = 9

From the equation of plane, we have
12-2x

6z=12-2x-3y = II(6 2x )dxdy = J. I(6 2x)dx dy

o (27 2x) ‘ ~
j(é )~ 2 gj(;(18—9x+x )dx =24
Ex:IfF = (2x2 - 32) i —2xy j — 4x k then evaluate .[ V.FdV where Vis the closed region bonded by x=0,

y=0,z=0,and 2x +2y +z=4.

Sol: V.F =4x -2x—-0=2x
jv.FdV=j2de
4 V
2 2—x 4-2x-2y 22-x
I j IZx dzdydxzj I2x(4—2x—2y)dydx
x=0 y=0 z=0 00

:T{4(2x x )y 4x—:|2 xdx
:4@[(%—xz)(2—x)§(2—x)2}dx =2J§(x3 — 4y +4x)dx=8
GREEN'STHEOREM

If R is a closed region of the xy- plane bounded by a simple closed curve C and if M (x, y), N(x,y),

N aa— are continuous function of x and y in R then {)M dx+ Ndy= I f (aﬂ _om dx dy.

ox ox Oy

If ¥ is the volume of the region bounded by a closed surface S and A (x, ¥, z) is a differentiable
vector function over S then ﬁ; (Z . ﬁ)dS = j _[ I (V. A )d V, where n is outward drawn unit normal to the
s

surface S in positive direction.
Khanna Publishers
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Methods of Mathematical Physics T. 15

If S is an open, two-sided surface bounded by a simple closed curve C and Z(x, ¥, z) is a
differentiable vector function then § A.dr = j I{(V x A ) ﬁ}dS , where C is transversed in the positive
c s

direction and 7 is outward drawn unit normal to the surface S in positive direction.
Ex: Find J. (ny —x? )dx - (x2 + y2 )dy where 'C' is the closed curve of the region bounded by y = x?
c

andy2 =X.

Sol: HereM:ny—xz,N =—(x? +y2)
M _, N, ON oM
oy ox ox Oy

.. By Green's theorem

yp y=vx (1,1)

> X
(0,0) vy
Y= Using vertical stri
y=x'to y=+/x
x=0tox=1
§de+Ndy—“.{aN—aM}d d
b 2 ox Oy
14/x 1 =
§de+ Ndyzj I—4xdydx=f—4x[ ]xzx dx
C 0,2 0

1
5/2 4
S DR A R I ) B
(5/2) 4 5 4] s
0
Ex: Evaluate J.(x+z)dydz+(y+ z)dzdx +(x + y)dxdy where 'S' is the surface of the sphere
s
x2 ¥ y2 +z° =4,

Sol:Since 'S' is the surface of the sphere x? + y2 +z% =4, itis a closed surface. So it can be reduced to
volume integral using Gauss Divergence theorem.
Here div F =1+1+0=2
o[ Fydydz + Fyddy + Fydxdy = [ divF dV = [2dV =2
S 14 14
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T. 16 Methods of Mathematical Physics

where V is the volume of the sphere =2 x 4 = 8 (2) 3 _Gdn
3 3 3
Ex: Evaluate I F.dr where F =277 +3x%j - (2x + z)k and 'C' is the boundary of the triangle whose

C
vertices are (0, 0, 0) and (2, 2, 0)
Sol:Since z - coordinate of each vertex of the triangle is zero, the triangle lies in xy -plane. As 'C' is a
closed curve in xy- plane, the line integral can be transformed to a surface integral using Stokes theorem.

i Jj k
ccmF=| 2 92 =2j+(6x—4y)k
ox Oy 0z

2 y2 3x2 —2x—z
Here N =k
By Stokes theorem, we have

y
A C(2,2)

S

0l00) ~ AZO)

X

ﬁf.d?zj.(curll*:.ﬁ)ds=_|.(6x—4y)ds =Tf(6x—4y)dydx=332
C K 00

N
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Differential Equations

An equation involving one or more derivatives is called differential standard form for a first order

differential equation in the unknown function y(x) is ? =f(x, ).
X

The order of a differential equation is the order of the highest order derivative occurring in it.

The degree of a differential equation is the degree of the highest order derivative occurring in
the differential equation, after the equation has been made free of radical signs or fractional powers
of the derivatives.

A differential equation is called linear if the dependent variable and its derivative occurring in it
are of the first degree and are not multiplied together.

DIFFERENTIAL EQUATION OF FIRST ORDER AND FIRST DEGREE

1. Variable Separable From: The equation of this type can be put in the form
S (o)dx +g(y)dy =0
The solution is obtained as J f(x)dx + J g(ydy=c

2. Linear differential Equation: The linear differential equation is of the form b +Py=0Q

Where P and Q are the function of only the solution is obtained as
V. eIde = I 0. eJdedx +c

Where eI P is called integrating factor.

3. Bernoulli Equation: This is of the form ? +Py=0Qy" (1)
X
Where P and Q are function of only dividing this equation by »" we get
y" b, p "= . 2)
dx

. _n v _n dy

Now on puttin v=p! " _(1—n)y &

putting = (1-n)y 0

Putting in equation (1) we get, ? + P(1-n)v =0Q(1-n) which is a linear equation.
x

Q: fl(xs y)
dx fz(x, y)

homogeneous differential equation, /] (x, y) if andf, (x, y) are homogenous function of the same degree.

Let  fi(xy)=x"fi(y/x); fo(x)=x"1f2(¥/x)

4. Homogeneous Equation: A differential equation of the form is called a

Khanna Publishers

17



T. 18 Methods of Mathematical Physics

Q:x”fl(y/x)

Thus =f(y/x)y Q8
dx x"fr(y1x) (2/x)
Put y=vwxor Q:\erﬂ
dx dx
From (1) we get v+@=f(v) ......... 2)
dx
dv dx

Separating the variables, the equation (2) become —— = —
f (v) -v X
Integrating this, we get the required solution.
5. Reducible to Homogeneous Form: The equation of this type is
dy ax+by+c
dx  Ax+By+C

CASE I. When %ig.Putx=X +hand y=Y +k
dy dY

dx  dX
dy  aX +bY +(ah+ bk +c)

Thus given equation becomes —=——————~ .. 2
¢ a dX AX +BY +(A4h+ Bk +C) @
Now Choose / and k such that ~ 41+ bk +¢=0
Ah+ Bk +C =0
Thus the equation (2) becomes ar = aX 4oy
dX AX +BY
Which is homogeneous equation and can be solved by puttingy = xX
CASE I When & = 2, In this case let & = b = 1
A B A B k
Thus A =ak,B = bk
Equation (1) can be written as & = _@tbyte 3)
dx  b(ax+by)+C
. dy dv
Substitutingax + by=v we geta + b— = —
dx dx
or d_1fdv
dx b\ dx
Thus the equation (3) becomes Ifav_ al=2 re
b\ dx kv+C
dv (b+ak)v+(be+aC)
dx kv+C

Which can be solved by variable separation method.
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Methods of Mathematical Physics T. 19

6. Exact Differential Equation: A first order and first degree equation of the form
M(x, y)dx+N(x, y)dsz ........... (D)
Is called exact differential equation if it can be obtained by direct differentiation of some
function of x and y.

The equation (1) is exact if oM _0oN
oy 0Ox
Solution of exact differential equation is J. Mdx + J. Ndy=C
7. Change of Variable: Let the equation ? ........... (1)
X
Substituting ax + by+c=v we geta + @ = ﬂ
dx dx

Equation (1) reduced to Z(Zv — a) =f(v) or dx
x

dv _
bf (v) +a
Integrating we find the required solution.

LINEAR DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

The general form of a linear differential equation of n " order with constant coefficients is

n n—1 n—2
d yPId y+P2d y+ ...... +Pny:X
dx"  dx™! dx"?
or D"y+P D"\ y+P,D" 2yt 4P, y=X (1)
Where P, P; ....... P, are function of xand y, D = di and X is either a constant or a function of x.

X
SOLUTION OF THE DIFFERENTIAL EQUATION

If the given differential equation is
dl’l y d}’l*l y dn—2

dx" dx"! dx"? !
or (D" +P D"+ P, D" 24 +P,,)y=0
or f(D)y=0

Wheref (D) =0 is called auxiliary equation.
WORKING RULE FOR SOLUTION

1. Write auxiliary equation A.E. asf (D) =0.

2. Solve the A.E. let the roots of A.E. be D =my,m,,mj5...... m

CASE I: When my,my,mj...... m,
y=Ce"" +Cye"? +....+C,e"" x where C|,C,,.....C

CASE II: When m;, m,,ms....m, arereal and say m; =m, and others are distinct. Then solution

are real and distinct then solution of the given equation is

, are arbitrary constant.

nx

of the given equation is y=(Cy +Cpx)e"" + C3e™3 +..4C, "
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T. 20 Methods of Mathematical Physics

CASE III: When my,my,m3,my.....m
then solution of the given equation is y = (Cl +Chx +C3x )

,, are all real and m) =m, = m3 and others are different,

"Mt 4 Cye +. L +C e

CASE IV: When m; =a +if and m, =a —if (complex roots) and m5, my.....m, are real and
different.y = e (C} cos px + C; sinfx) + C3e"3* +Cye™ ... C,e"nx

CASE V: When m; =my =a +i3 and my =my =o +i (complex repeated roots) where
msy....... m,, are real and different,
y= e‘”[(Cl +C,x)cosPx +(C3 +Cyx)sin Bx] +Cse" +. 4C "

SOLUTION OF THE EQUATION
The general solution of the differential equation
f(D)sz (D)
Consist of two parts. The solution of equation on (1) corresponding to the LHS is called the

complementary Function (C.F.) and the one corresponding to the RHS called the particular Integral (P.I).
The complete solution is y=C.F +P.I

PARTICULAR INTEGRAL

Particular Integral is defined as P./ = !
/(D)
CASE I: When X=e®bp o1 ath i r(0) %0
f(a)
If £ (o) =0then P.I=x> "1 ™l i £7(0) %0
S (Ot)
CASE II: When X=x"PlI= =l f(D

Expand [ f (D)] B by binomial theorem in ascending powers of D.
CASE III: When X =sin (ax + b)

P.]:f(ll)z)sin(aanb):f(_laz)sin(ax+b) iff(_a2)¢0

£ f(~a®)=0then PI=— 1 b
I (a) Othen P.1 de(DZ)Sln(aer)

Similarly we can find the P.I. of x =cos ax

ax 1 o ax 1
CASE IV: When X =™V (x) P.I = D) e"V(x)=e WV(X)
CASE V: When X :xV(x)
)= { f’(D)} VRS SRR AL(2)/4C)
0 (D> /(P) | (D) /@) o’
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Methods of Mathematical Physics T. 21

CASE VI: Where x is any function of x other than the function given in previous cases
Let f(D)z(D—ml)(D—mz) ...... (D—mn

! X
/(D)

Resolve denominator into partial fraction and use x=e"™ ‘[ e "™ xdx

Then P.I=

Q.
o

2
Consider the differential equation _;/ +P—= id + Oy=R . (1
dx
Assume thaty; and y, are a complementary functlon of equation (1) , then particular solution to
this equation is y=—y; I ——= —dx+ ), J- _
VY2 = V) MYy =V

The linear differential equation
n gn n—1 n-2
x"d y+P1xn—l d n-2 d dy
dx" dx"” dx"? dx
is called Homogeneous Linear Differential Equation or Cauchy’s Differential Equation.
P,P,,P;.....P, 1, P, are constants and X is a function of x or constant. This equation can be reduced to a
linear differential equation with constant coefficients by putting or and using following results:

dy dy D where D—d
dx dz dz

X d
P D(D —l)y
x3d3y
dx?
x"d"y
dx"

Substituting these in equation (1) we get a linear differential equation with constant coefficient,
which can be solved by method, discussed earlier.

The following type of equation are called Euler Equation x4 V'+ by +cy=0

=D(D-1)(D-2)y

=D(D-1)(D=2)...(D~-n+1)y

The auxiliary equation is aD(D ~1)+5bD +C =0
This equations is quadratic so we will have following three case:
CASE I: If roots and distinct, then solution is y =C;x™ +C,x™?

CASEII: Ifroots are equal and real, than solution isy = C;x™! + C,x™2 Inx =x" (Cy + C, Inx)
CASE III: If root are complex then solution is y=x* [Cl cos(Blnx) +C, sin(BInx)]
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Complex Analysis

An order of real numbers Z = (xl, n ) which are subjected to following operations.
+ xelR and ye-IR (Imaginary) I, R,(Z)=xand 1, (Z)=y

+ Zl =Z2:>X1 =X, M1 =W

<+ Zl +Zz =(x1 +JC2,y1 +y2)

Let z; =x| +iy), 2, =xp +1ipy
% Zl iZ2 =(x1 ix2)+i(y1 iyz)
+ Z1Zy =(x1x0 = yy) (10 +x201)

+ 4 _ x1x§+J’132’2 iy x2yz1 —lez’z
2 Xy t» Xy

z=(x,y)

+ |z|=\/x2 + y2

+ z4+z=2r & Z—;:2iy:x:%(z+; &yzzli(z—_)

+ zz=x? +y2 =(|z|)2

ZliZz =Zli22

v 212,=2, 2,

+ (QJ _a
Z, 2
+ Triangle Inequality: (|zl +2z; |) c (|Z1|) + (|22 |)
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Methods of Mathematical Physics T. 23

x =rcos0, y = rsin@, z = re'®

+ (|Z|)=r=\/x2 + 7
+ Argumentofz, 0= tan_l(y/ x)
<+ Demoivre's Theorem

Ifz=re® = 72" = (cos@ + isine)n =cosnO +isinnd,nez
This theorem is used to find the roots of complex numbers.

4+ n"™roots of z

Let z=re = 7" =Re™
where R=z"" &(I)=(e+2knjand(k=O,ir1,ir2,....,n)
n
Y
z(xy)
r Z = X+iy

1+ ;
<+ Cube roots of unity = [I,I_T\/gl]

+ Fourth roots of unity 41 = (£1,%)

A function f ( z), which is single valued and possess a unique derivative w.r.t. z at all points of a

region R is said to be analytic function. i.e. f( z) is said to be Analytic in a Domain 'D"if f( z) is well
defined and differentiable at all points of D.

VE.CAUCHY-RIEMANN EQUATION (CONDITIONS FOR DIFFERENTIABILITY)
f(z) = u(x, y) +1 v(x, y)

f(z) is analytic if u and v satisfy C-R equation Ou_ OV g -V
ox 0Oy oy ox
+ C-R Equation in polar form.
ou_1lov
or roo
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T. 24 Methods of Mathematical Physics

4 Harmonic function:
If f(z) = u(x, y) +iv(x, y) is analytic. Thus V2u=0 and V2v=0 .

i.e. u and v are called harmonic function x, which satisfy Laplacian equation.
u( x, y)and v (x, y) are called conjugate function f( z).
when u( x, y) is given,

V=I%dx+'[%dy+c

when v(x, y) is given,

u= 6—vdx—ja—vdy+c
oy ox

<+ Singular point: A point at which a function f ( z) is not analytic is called singular point.

Eq: f(z2) = !

zZ—a

has a singular point at z=a

+ Laurent's Expansion f(z) = ian(z— a)" + ibn(z— a)”"
n=0 n=1

+ Types of Singularities
(i) If principal part of f( z) contains infinite no. of terms at z = a.
z =aq is called essential singular point.
Ex: f(z)= e'?, z=01s essential singular point.
(i1) If principal part of f ( z) contains finite number of terms at z = a.

z = a is called pole of order 7.
2
f(2)= +, z =1 is pole of order 2.
(2-1)"(2+2)
(ifi) If principal part of f(z) has no principal terms of (z—a), z=a is called removable
singular point.
sing

Eg. f(2) = —

VIIL RESIDUETHEOREM
£(2) = éan(z —a)" gbn(z —a)™

+ If f(z)hasapole of order nat z=a
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Methods of Mathematical Physics T. 25

Res(r.0) = [ =) (2]
+ If f(2) has essential singularity at z =
Re s( £, a) = coefficient b, in the Laurent's expansion.
+ Residue of /(z) at z = 0 is negative coefficient of Lin f( z)‘ 220~
z

IX CAUCHY INTEGRAL THEOREM

<4 Cauchy integral theorem 1, if no poles are inside the contour,

[f(z)dz=0
c
<+ Cauchy integral theorem 2, if there is a pole inside the contour,
(2,
f(a) 2mi I

z—a
+ Derivative of analytic function

n! f(z)
fr = 1dz

CONSEQUENCES OF CAUCHY'S THEOREM
Let f ( z) be analytic function in a simply connected region R.

V4
+ Ifaandzare any two points in R, then J. f ( z)dz is independent of the path is R joining a and z.

a

+ If a and z are any two points in R and g(z) =I f(z) dz then g(z) is analytic in R and

«(2)-1(2)

+ Ifaand b are any two points in R and F'(z) = f( z) then,

a

lef(z)dz =F(b)-F(a)

4+ Letf ( z) be analytic in a region bounded by two simple closed curves C and C; where C| lies
inside C and on the curves, then

if(z) dz = jf(z) dz
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T. 26 Methods of Mathematical Physics

The evaluation of definite integral is often achieved by using two residue theorem together with a
suitable function f( z) and a suitable path or contour C.

j f (x)dx, where f (x) is a rational function.

—00

Consider §> f ( z)dz along a contour C consisting of the line along the x - axis from —R to R and the
c

semi-circle | above the x-axis having this line as a diameter as shown in figure. Then, let R — oo.

y

R R > X

21
J. f(sin®,cos), where f(sin6,cos0) is a rational function of sin 6 and cos 6.

[

_ - -1
Let z = ¢ thensin®="_" ,cos9=Z+Z anddz—ze’edeord9—£
(20) ) iz
The given integral is equivalent to {) f ( z)dz where C is the unit circle with centre at the origin as
c

shown in the figure.

.[ f(x)cos mx dx or j f(x)sinmx dx , where f(x) is a rational function.

—00 —00

Here, we consider {) f ( z) €™ dz where C is the same contour as that in type (i).

4

Let f (x) be analytic inside and on a simple closed curve C. Let a and b are two points inside C.

f(a+h) =f(a)+hf'(a)+gf”(a)+ .....

1) =10y -y = 2 o

26



Methods of Mathematical Physics

NOTE :
<4 The region of convergence of the series is (|z - a|)< R.
+ For (|z - a|) = R, the series may or may not converge.
+ For (|z - a|) > R, the series diverge.

where R is the distance from a to the nearest singularity of the function f ( z).

Let C; and C, be concentric circles of radii R, and R, respectively as shown in the figure.
Let (@ + b) be any point in R, then

A

Ci
> X
f(a+h)y=ag +aih+ayh’+.... caztaz2,
h h2
where a, =% 4 (Z)n+1dz; n=0123...
H(z-a)
1 _

a, :2_751' i(z—a)n lf(z)dz;rz=0,1,2,3....

T. 27
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You have seen from Maclaurin's and Taylor's series that an infinitely differentiable function can be
expressed in the form of an infinite series in x. Fourier series on the other hand, enables us to represent a
Periodic Function as an infinite trigonometrical series in sine and cosine terms. We can use Fourier series

to represent a function containing discontinuities unlike Maclaurin's and Taylo's series.

A function f(¢) is periodic if f () = f(t +nT),n=0, £1, £2.....
T is called the period. For sine and cosine the period 7 =2m so that
sin ¢ =sin( ¢ +2nn) and cos ¢ = cos( ¢ +2mn)

ANALYTICAL DESCRIPTION OF A PERIODIC FUNCTION

Many periodic functions are non-sinusoidal
Ex: 1. f(#)=3 0O<t<4
f()=0 4<t<6
f()=f(t+6)1i.e. the period is 6

2.f(t)=§t 0<t<8
f()=f({+8)
Sketch the following periodic functions
1. f(1)=4 0<t<5

f(@)=0 5<t<8
f@&)=f(t+8)
2. f(t)=3t—-1t> 0<t<3

J@O=f(+3)

Any periodic function f(x) = f (x + Znn) can be written in Fourier series as

f(x) =%a0 + 2(% cos nx + b, sin nx)
e

1 . .
=Ea0 +a; coSX + dy COS2x+.....4by sinx + by sin2x+......

(where ay,a,,b,,n=123...... are Fourier coefficients) or as

f(x)=%a0 +opsin(x +ay ) +epsin(2x +oy )

b,
where  ¢; =+Ja? +b? and a; = arctan(—’}

ai;
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Methods of Mathematical Physics T. 29

¢sin(x +oy) is the first harmonic or fundamental ¢, sin(2x +a.; ) is the second harmonic
¢, sin(nx +a , ) isthe n" harmonic.

For the Fourier series to accurately represent f (x) it should be such that if we put x =x; in the
series the answer should be approximately equal to the value of f (xl ) i.e. the value should converge to
/f(x1) as more and more terms of the series are evaluated. For this to happen f(x) must satisfy the
following:

DIRICHLET CONDITIONS
(a) f (x) must be defined and single-valued.

(b) f(x) must be continuous or have a finite number of discontinuities within a periodic interval.
(c) f(x)and f'(x) must be piecewise continuous in the periodic interval.

If these conditions are met the series converges fairly quickly to f'(x;)if x = x|, and approximation
of the function f (x)

FOURIER COEFFICIENTS
The Fourier coefficients above are given by

a, =%J._nn f(x)dx
a, = % J._nn f(x)cos nxdx
b, = ! J._n f(x)sin nxdx
i
ODD AND EVEN FUNCTIONS
(a) Even Functions: A function f(x) is said to be even if f(—x) = f(x) . The graph of an even
function is, therefore, symmetrical about the y-axis. e.g. f(x) = x2f (x)=cosx
(b) Odd Functions: A function f(x) is said to be odd if f(—x)=—f(x); the graph of an odd
function is thus asymmetrical about the origin. e.g. f(x) = 3 f (x)=sinx
PRODUCTS OF ODD AND EVEN FUNCTIONS
(even) x (even) = even
(odd) x (odd) = even
(neither) x (odd) = neither

(neither) x (even) = neither
Theorem 1: If £(x) is defined over the internal 1< x< mand f(x) is even, then the Fourier series

for £(x) contains cosine terms only. Here a is included.
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T. 30 Methods of Mathematical Physics

f(x)zO — < X< —

i1
x)=0 =<x<mn
(m)=0 7
f(x)=f(x+2n)
The waveform is symmetrical about the y-axis, therefore, it is even.

= f(x) =%a0 +> " a,cosnx

1 ¢m 2 em 2 r 2 z
(@) ag =;J._nf(x)dx=;j0 f(x)dxz;J.OZ 4dx=;[4x]g =4
8{sinnx}72I 8 . nm
=—sin—
0 nm 2

2

T
(b)a, :%J._nn f(x)cos nxdx = %J.: f(x)cos nxdx = ;J.Oz4cos nxdx = -

n

0 for n even
. NT
But sin—={1for n=15,9...
-1 for n=3, 7, 11.....

Theorem 2: If f° (x) is an odd function defined over the interval —n< x < 7, then the Fourier series
for £(x) contains sine terms only. Here ay = a,, =0.
f(x)=-6 —n<x<0

Ex: f(x)=6 0<x<mn
f(x)=f(x+2n)
This is an odd function so f (x) contains only the sine terms
ie. f(x)= D b, sinnx
and b, = % j_"n () sin nxdx

f(x)sinnx is even since it is a product of two odd functions.

2 (m : 2 . 12[—cosmx|" 12
:bn=nfof(x)smnxdx=nj06s1nnxdx=n[ ; L =E(1—cosnn)

f(x):2;{sinx+;sin3x+;sin5x+ ...... }

Iff (x) is neither even nor odd we must obtain expressions for a,, a, and b, in full
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Methods of Mathematical Physics
Ex Determine the Fourier series of the function shown.
2x
x)=—0<x<m
(=2
f(x)=2 m<x<2n
f(x) =f(x +2TE)

This is neither odd nor even,

(%) =%a0 + il{an cos nx + b, sin nx}
e

@) aq :%J‘Oznf(x)dx :}t{jg%xdx i Jjn2dx}

T
1] x? am| 1
=—J|—| +]2x =—{n+4n-2n} =3
b8 {n} [ ]’T n{ }
0
:>a0=3

() a, =%J‘02nf(x)cosnxdx

2
:I{J.n[zxjcosnxdanJ‘ TEZCosnxdx}
n|0\ & n

2 | 1[xsinnx " 1 7, 21
=ZJ)_ ——j s1nnxdx+J. cos nxdx
T|n n nn ¥0 T

0

2{ 1 . 1 [cosnx]t [sinnxrn}
= =4 —(msin nx) +— +
| 7N | n | no.

211 . 1 1,. .
- n{nsm nmx + Tm—z(cos nx —1) + ;(sm27mx —sin nx)}

_2 {1(005 X — 1) + lsin 2n7cx}
T { n

—4

n’n?

1 2n .
(c) b, _%jo f(x)sin nxdx
2
=1{jn(2xjsinnxdx+.|. n2sinnxdx}
n|0\ & n

2 | 1[xcosnx " 1 =n 2n .
== [ } ——I cosnxdx+J sin nxdx
n|lnl n |, w0 T

a, =0 (neven); a, =

(n odd)

T. 31
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T. 32 Methods of Mathematical Physics

. T 27
211 1 |sinnx —COoS nx
==J—(-mcos nmx) + — +
| mn | no g n x

:z{ lcosnrr.x+(0 0)——(cos2nnx cosmr.x)}
n|l n
=z{ l os2nnx}=—icos2nnx
n|l n nn
2
Butcos2an=1= b, =——
nn

f()c)=§—i COSX+1COS3X+LCOSSX+ ....... 2 sinx+1sin2x+lsin3x+lsin4x .......
2 2 9 25 2 3 4

Sometimes a function of period 27 is defined over the range 0 to m instead of the normal
—n ot T, or 0 to 2m In this case one can choose to obtain a half range cosine series by assuming that the
function is part of an even function or a sine series by assuming that the function is part of an odd function.

f(x)=2x O<x<m
f(x) =f(x +27'c)

To obtain a half-range cosine series we assume an even function

2 AL 2r.2qr
a _;tJ.O f(x)dx—;J‘O 2xdx—;[x ]0 =27
. T
a, =%jn2xcosnxdx=ﬂ{[x81nnx} —lfnsinnxdx}
nJ0 T n |, n0

Simplifying, aq =0 for n evenand a, = _—82 for n odd. In this by =0and so
nn

Ex:

Obtain a half-range sine series for f(x).

f(t)=f(t+T),frequency f = l and angular frequency o = 2nf

> 0= 2;} nd T = 2n .The anglex = ot and the Fourier series is

)
f(t)= 1 540 + Z;O:l {a, cos not + b, sin not}

——aO +Z \1a, cos Tt+bnsin27;m}
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27
where  ay =% IOT f(t)dt=c—1: [ (1)t

2 (T e
a, :?J‘o f(t)cosnootdt:;jow f(t)cos nodt

27
b, =% [ OT £(¢)sin nordr =°_T‘z [, £(1)sin nour

Ex: Determine the Fourier series for a periodic function defined by
f(t)=2(1+1) —1<t<0
f(r)=0 0<t<1
f(t)=r(1+2) 0<t<1

()

SUMOF A FOURIER SERIES AT A POINT OF FINITE DISCONTINUITY

Atx =x; the series converges to the value f (xl ) as the number of terms included increases to infinity.

- % {sin ot + %sin 20t + %sin 3wt + isin 40)1,‘}

But if there is a "jump" at x; f(x; —0) = y; (approaching x; from below) f(x; +0) = y, (approaching
x; from above).

If we sustitute x = x; in the Fourier series for f (x), it can be shown that the series converges to the

1 .1
value E{f(xl =0)+1(x +0)} ie. E(yl + ¥, ), the average of y, and y,.

THE FOURIER INTEGRAL
While Fourier series is for periodic functions Fourier integral is for non-periodic function. If a
non-periodic f(x) (i) satisfies the Dirichlet conditions in every finite interval (—a,a) and (ii) is
absolutely integrable in (—oo, oo), ie. I ” | f(x)|dx converges, then f (x) can be represented by a
—o0

Fourier's integral as follows:

f(x)= j(;” {A(k ) cos kx + B(k)sin kx}dx (1)
where  A(k)= j_°°w 1 (x)cos kudx (2
B(k)=[" f(x)sin krdx -03)
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f(x+0)+f(x-0)
2

If x is a point of discontinuity, then f (x) must be replaced by [ J as in the

case of Fourier series. This can, in other words, be expressed by the following theorem.

Theorem 1: If f (x) is piecewise continuous in every finite interval and has a right-hand derivative

and a left-hand derivative at every point and if fo | f (x)| dx exists, then f (x) can be represented by a

Fourier integral. At a point where f (x) is discontinuous the value of the Fourier integral equals the

average of the left- and right-hand limits of f(x) at that point.

Ex: Find the Fourier integral representation of the function in below
1 if |x<1
f(x)=1
0 if |x>1
Solution: From (2) and (3) we have

sinke||  2sink

A(k) = i [ £(x)cos kudr = % [Los e =2 I
B(k) = % ['sin kxdv =0
and (1) gives the answer
7(x) =% [ 7"05"’]‘{ SLLIN (4

The average of the left- right-hand limits of f(x) at x =1is equal to (1+0)/2, that is, 1/2.
Furthermore, from (4) and Theorem 1 we obtain

i
—if 0<x<1
5 if

wcoskxsink w T

IO k 2f() 4f
0 if x>1

sin kx e

This integral is called Dirichlet’s discontinuous factor. If x = 0, then L:O f dx = >
. . . .o . u sin k
This integral is the limit of the so-called sine integral Si (u) = Io . dx as u — o

In the case of a Fourier series the graphs of the partial sums are approximation curves of the
periodic function represented by the series. Similarly, in the case of the Fourier integral, approximations

are obtained by replacing co by numbers a. Hence the integral I: @dx approximates the

integral in (4) and therefore f (x)
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Laplace Transform

LT is used in solving ordinary differential equations (ode). It has the following advantages:

<4 Solution of the ode is obtained by algebraic processes.

<+ The initial conditions are involved from the early stages so that the determination
of the particular solution is considerably shortened.

4+ The method enables us to deal with situations where the function is
discontinuous.

The LT of a function f'(¢)is denoted by L{f ()} or F(s)and is defined by the integral
j(;” F(t)e ™ dt
ie. L{f(£)} or F(s)= j(;” f()e dt

where s is a positive constant such that f(¢)e™ converges as ¢ — oo

Ex: 1. To find the LT of a constant function f(¢) =«

L{a}=j§°ae—“d¢:a{e_”} ==2[e ] =-%[0-1]=4

N N N
0

= Liagy=2
N

e
e.g. fora=1, L{l} 1
N
2.If f(t)=e”
L{eat}_‘l'oo eate—szdtj‘oo e*(sfa)td[_ e—(s—a)t B _ 1 [0_1] _ 1
o 0 B —(s—a) . s—a s—a
= L{e‘”}zﬁ (2
Similarly L{e '} = ﬁ .(3)

3.If f(¢)=sinat

iat _ —iat
L{sinat} = I(:O sin(at)e” "' dt = L:O [ee}est dt

1 (
2i

J'(:O e—(s—ia)tdt _ L:O e—(s+ ia)tdfj: 1( 1 . 1 j

2i\ s—ia s+ia
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:1 1 1 :l a-ista+is _  a
20a+is a-is 2(a+is)(a—is) 2 4+ q?
= Lisinat)=—2 (4
s* +a?
e.g. L{sin2¢t} = 2 Similarly (Show that):
s* +4
4.1 f({)=cosat = Licosat}=——" (5)
s* +a’
e.g. L{cos 4t} = a
5% +16
!
5.0 /()=t" = Lit"}= n’i'l ..(6)
s
3 3! 6
e.gL{t’}= =—.
JEESI

6. If £ (r) =sinh at
. . . eat_e—at .
. _ . -, _ —S

Li{sinh at} = jo sinh(at)e ' dt = jo — dt

_1(
2

0 0

J'OO ef(sfa)tdt B J'OO ef(er a)tdtJ

= L{sinh at} = (7
s> —a’
e.g. L{sinh2¢} = Similarly (show that)
57 -4
7.1f £ (1) = cosh at =%(e”t + e“”) = L{coshar} =— (8)
s°—a
s 4s

e.g. L{4cosh3¢t} =4 =
s2-32 2 -9

EXISTENCE THEOREM FOR LAPLACE TRANSFORMS

Let f(¢) be a function that is piecewise continuous on every finite interval in the range ¢ > 0 and
satisfies| f'(¢)| < Me ™™ for all ¢ > 0and for some constants k and M. Then the LT of f(¢) exists for all

s > k. A function f(¢) is said to be piecewise continuous in an interval (a, b) if

(1) theinterval can be divided into a finite number of subintervals in each of which f'(#) is continuous.
(i1) the limits of f'(7), in other words a piecewise continuous function is one that has a finite
number of finite discontinuities.
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Given a LT, F(s) one can find the function f'(¢) by inverse transform
f@= L {F (s)} where L 'indicates inverse transform.

_ 1 2t
c.g. L 1 _— =e
¢ {s—z}
L_l{ § }=cos5t

5% +25
! _3s+l | ! b +L (by partial fractions)
2 —5-6 s+2 s-3

= ol )

(Note: L, L 'are linear operators. Prove it)

—e 2 +2e

1. The numerator must be of lower degree than the denominator. If it is not then we first divide out
2. Factorize the denominator into its prime factors. These determine the shapes of the partial fractions.

3t

3. A linear factor (s+a) gives a partial fraction where 4 is a constant to be determined.

s+a
2 . B
4. A repeated factor (s + a) give t—
st+a (s+a)
5. Similarly (s + a)3 give 4 ., B S+ ¢ ;
sta (s+a) (s+a)
6. Quadratic factor (s2 + ps+ q) gives As+B
ST+ ps+q

As+B Cs+D
+

2 2
ST +pstq (s2 +ps+q)

2
7. repeated quadratic factor (s2 + ps+ q) give

s2 —15s+41 3 2 1
= +

Ex: 1. 5= - 5
(s+2)(s-3) s+2 s-3 (s-3)

45 —55+6

(s+ 1)(s2 + 4)

2. 17!
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45> —55+6 A Bs+C 3  s5-6 3 s 6
but = + = + = + _
(s+1)(s2+4) s+l 244 s+l 214 s+l @4 44
2_
S Bt L :L_l{ 3,58 6 }
(s+1)(s2+4) s+l g2 44 2 +4

= f(t)=3e"" +cos2t —3sin2t

PROPERIIES OF LAPLACE TRANSFORM

Linearity: L{af (¢)+ bg(t)} =al{f (1)} + bL{g(t)} (Prove!)

1. THE FIRST SHIFT THEOREM (OR S-SHIFTING)
It states that if L{f(t)} = F(s) then
= LY f(t)}=F(s+a) (9)
ie. L{e”™ f(t)}is the same as L{f ()} with s replaced by (s + a)

Ex: 1.IfL{sin2¢} =2 then L{e™>" sin2¢} = 2 -2
s> +4 (s+3)2+4 5% +65+13

2. IfL{t?} — 2 then Lit? ey 2
3 3
s (s-4)
2. THEOREM 2: MULTIPLYING BY T (OR DERIVATIVE OF LT)
IfL{f (1)} = F(s) then = L{tf (¢)} =—diF(s) ..(10)
S

e.g if Lisin2r} = — > :>L{tsin2t}:—d( 2 J: 4s
52 +4 ds\ s +4 (Sz+4)2

3. THEOREM 3: DIVIDING BY T

IfL{f (¢)} = F (s) then L{fgt)} = L‘” F(s)ds (1)

If limit of U] as t — 0 exists, we use L' Hospital's rule to find out if it does
t

e.g. L{ sin af }; here lim{sln at} = g (undefined).
t

t—0 t

By L'Hospital's rule, we differentiate top and bottom separately and substitute ¢ = 0 in the result to
ascertain the limit of the new function.

. _|sinat . acos at
lim =lim =a,
t—0 t t—0 1

i.e. the limit exists. The theorem can, therefore, be applied.
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. o0
. sin at ©
Since L a :J a ds =| arctan s I arctan i arctan a
t s 2442 al)l, 2 a s

4. TRANSFORM OF DERIVATIVE

Let SO _ sy ana CLO o
dt dt?
Then Lif'(t) = j(;” e f()dt
Integrating by parts, L{f"(£)} = [e‘“ f(t)]: - j:’ f(z){—se‘” }dt
ie. L) =—f0) + sL{f (1)}
= L{f'(t)} =sF(s) - f(0) (12)
Similarly L")y ==1"(0) +sL{f ()} ==1"(0) + [~/ (0) + SL{f (1)}]
= L{f"(1)} =s"F (s) = £ (0) = /" (0) -.(13)
Similarly = L{f" () =5 F(s)— s> £(0) = s£"(0) — £"(0) ..(14)
ALTERNATIVE NOTATION
Let x=f(0), f0)=x0,f'(0)=x1, f"(0)=xp,......, f M (0)=x, and

x =Lix}=L{f ()} =F(s)
we now have
Lix}=x
L{x}=sx —xq
Lk} =5°X — SXo — X1
L{x'} = $°X — s2x0 —SX| — Xy
SOLUTION OF DIFFERENTIAL EQUATIONS BY LAPLACE TRANSFORM

PROCEDURE

(a) Rewrite the equation in terms of LT.

(b) Insert the given initial conditions.

(c) Rearrange the equation algebraically to give the transform of the solution.
(d) Determine the inverse transform to obtain the particular solution

SOLUTION OF FIRST ORDER DIFFERENTIAL EQUATIONS
Ex: Solve the equation? —2x =4, given thatatr=0, x = 1.
t

We go through the four stages as follows:
() Lix} =%, L{#}= st —xo, L4} =
s
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T. 40
. - _ 4
Then the equation becomes (s —x( ) —2x% =—
s
(b) Insert the initial condition thatatz =0, x =1, i.e., xq =1 = sx —1-2x = 4
s
(c) Now we rearrange this to give an expression for x : i.e. x = S(S hl z)
o—
(d) Finally, we take inverse transform to obtain x:
std AL B 4= A(s—2)+Bs
s(s=2) s s-2
(1) Put (s—2)=0, i.e.,, s=2=6=2B or B=3
(i) Puts=0 = s=-24 or A=-2
X = s+4 = 3 —z =x=3e? -2
s(s=2) s-2
Solve the following equations:
1. & +2x =10e"", given that at r=0, x =6
dt
2. ? —dx =2¢" + e4t, given that at r=0, x=6
t
2
Ex: Solve the equation Q -3 @ +2x =2e3’, given that at7=0, x=5 and @ =7
dt d dt
Lix}=x

(a) L{x} = sx —x

Lk} =s°X — X — X

The equation becomes (s°x — sxg —x1) =3 (sx —xg) +2x = 82—3
(b) Insert the initial conditions. In this case xq =5 and x| =7

(szf—5s—7)—3(sf—5)+2f:i

s=3
2
(c) Rearrange to obtain x as x = 55 —235+26
(s=1)(s=2)(s-3)
557 —235+26 4 B C

(s=1)(s-2)(s-3) =s—1+s—2+s—3

= 557 ~235+26=A(s-2)(s=3) +B(s—-1)(5-3) +C(s-1)(s-2)
= A=4, B=0,C=1

(d) Now for partial fractions

= x=4de' +e!
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2
Solve ax_ 4x =24cos2t, given that at =0, x = 3 and @

dr? dt
SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

Ex:_Solve the pair of simultaneous equations
t

y-x=e
i+y=e’
giventhatatr=0,x=0and y=0
_ - 1 - -1
a)(sy— -Xx=—; X —Xxg )+ y=—o
@) (sy-0) - ( 0)+t¥ 1
(b) Insert the initial conditions x, =0 and y, =0
sj/—)?z—l ; s3?+)7=—1
s—1 s+1
(c) Eliminating = y we have
_ 1 _ 72— Ky
Sy —X=——; Sy+85X =—o0
-1 s+1

2 251 11 1 1 S 1
+

(s 1)(s+1)(s +1) 5.S—l_E'SJrlJrsz +1 52 +1

U

1 _ . .
(d)xziet ——¢ " +cost+sint=sint+cost—cosht

Eliminating x in (b) we have

s? +25—1 1111 K 1
+

(s 1)(s+1)(s +l) 25 1 2S+1 s2+1 s2 +1

1 I _ . .
= yzget +§e ! —cost+sint=sint—cost+cosh ¢

So the results are:
x =sint+cost—cosh ¢
y=sint—cost +cosh ¢

AR DIKA DELTA FUNCTION (THE IMPULSE FONCTION)

It represents an extremely large force acting for a minutely small interval of time. Consider a single

rectangular pulse of width b and height % ocurring at ¢ = a. If we reduce the width of the pulse to % and
keep the area of the pulse constant (1 unit) the height of the pulse will be %.If we continue reducing the

width of the pulse while maintaining an area of unity, then as b — 0, the height% — oo and we have the

Dirac delta function. It is denoted by 5( ¢ — ).

Graphically it is represented by a rectangular pulse of zero width and infinite height.
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If the Dirac delta function is at the origin, a = 0 and so it is denoted by &(¢)

INTEGRATION INVOLVING THE IMPULSE FUNCTION

From the definition of §( ¢ — a).

(i) p<t<a, 8(t—a)=0
JqS(t —a)dt =1 for { (ii) t=a area of pulse=1
p
(iit)y a< t< q,8(t—a) =0
Now consider J-q f()5(t —a)dt since f(t)d(t — a) is zero for all values of ¢ within the interval
p
[p, q] except at the point 7 = a, f{f) may be regarded as a constant f(a) so that
q q
|/ @08 —aydt=f(@)] 3t~ a)dt = ()
3

Ex: EwmmmL(}2+4)5@-a)m.Haea=zfxnzt2+4:>fm)=fa>=22+4:8

Evaluate

L [75.5(~3)dr

0>
S ot

2. J'z e .5(t—4)dt
LAPLACE TRANSFORM OF§(t —a)

Recall that qu(t).é‘)(t —a)dt=f(a), p<a<gq

p

= Ifp=0and g =oo then _[gof(t).S(t —a)dt = f(a)

Hence, if f(t) =, this becomes jgo e d(t-a)dt=L{ (t—a)y=e“

Similarly L{f (¢).8(t —a)} = L:O e f().8(t—a)dt=f(a)e™
DIFFERENTIAL EQUATIONS INVOLVING THE IMPULSE FUNCTION
Ex: Solve the equation X + 4x +13x =25(¢) where, at =0, x=2 and x =0

(a) Expressing in LT, we have (sz)? — 85X — xl) +4(sx —x( ) +13x =2x1

25+10

(b) Inserting the initial conditions and simplifying we have x = ——
s? +4s+13

(c) Rearranging the denominator by completing the square, this can be written as
2(s+2) N 6
(s+2° 49 (5+2)” +9

)?:

(d) The inverse LT is x =2¢ 2 cos 3t +2¢ %! sin3¢ =2¢ % (cos3t +sin3¢)
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Special Functions
THE GAMMA AND BETA FUNCTIONS

THE GAMMA FUNCTION I
The gamma function I'(x) is defined by the integral

I'(x) =Tﬂ‘1e"dt (1)
0

and is convergent for x > 0. It follows from equation (1) that

I'(x) =jtxe"dt
0

—t ® e8]
Integrating by parts [(x+1)= {t"[elﬂ + xf e ldr
0 0

F(x—i—l) :xr(x) -(2)
This is a fundamental recurrence relation for gamma functions. It can also be written as
F(x) = (x - 1)F(x - 1).
A number of other results can be derived from this as follows:
If x = n, a positive integer, i.e. ifn > 1, then
I(n+ 1) =nl(n).
=n(n—1)[(n-1)since [(n)=(n-1)[(n-1)
=n(n—1)(n-2)T(n-2)sincel(n—1)=(n-2)I(n-2)

n(n=1)(n-2)0(n=3)....... r @

_nIT()
But r(1)=j;°t°e—fdt=[—e—f]: 1. 3)
= F(n + 1) =n!
Ex: F( 7) =6!=1720, F(S) =T71=5040, F(9) =40320
T 1
We can also use the recurrence relation in reverse F(x + 1) = xF(x) = F(x) = M
X

Ex: Ifx = % it can be shown thatl“(;] =n

Using the recurrence relation I'(x +1) = xI'(x) we can obtain the following:
f2)- 2 ()= of 3 _n
2) 2 \2) 2 2 2

HEOE G

Khanna Publishers

43



T. 44 Methods of Mathematical Physics

NEGATIVE VALUES OF X

r 1
Since F(x) = LJr),then asx >0, [(x) >0 =T(0)=x
x

The same result occurs for all negative integral values of x

Ex: At x=-1, F( 1) ()

(-1
At x=-2, F(—2)= (2)=ooetc.

2

! F@ r(_;) 4
Also at x=_7, F(—ljzlz—Z\/E and at xz—%, F(—3j==\/E
2

Ex: 1. Evaluate.[gox7e_xdx
I'(x)= L:O e dt
Let () =L:Oxv_le_xdx:> v=_8
ie., [ x7e ax =1(8) =71=5040
2. Evaluatejgox3 e M dx

Since [(v) = L:O x""Le ™ dx we use the substitution y=4x = dy = 4dx

1 o 3 _ 1 3
=/=— e Vdy=—T(v) where v=4 = [ =—
44.[0 e =5 T(v) 128

1
3. EvaluatejO x2e” dx

Use y:x2 therefore dy =2xdx.Limits x =0, y=0x =0, y=w©
I L
x=y2=>x2=y4
1 1

1

4,y 4,y -
(o yTe (o yte _loo 4 - _100\)_1_)}
[_Io 2x dy_.[o 1 dy—zj.oy ¢ dy—z_[oy e tdy

2y2
where, V:E:>I:1F 3
4 2 4
From tables, F(O.75) =12254 = 1 =0163

THE BETA FUNCTION, [
The beta function B(m, n) is defined by B(m, n) = J.(lxm_l (1- x)ni1 dx
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It can be shown that the beta function and the gamma function are related
~ L(m)T(n) ~ (m=1)Y(n-1)!

® () T(m+n) (m+n-1)!

Ex: 1. Evaluate [ =f;x5(l—x)4dx

Comparing this with (', n) = J-;xm_l (l -Xx) "

then m—1=5=m=6and n-1=4 = n=>5

5141

1=8(65)=" = o

1
2.Evaluate [ = j0x4 1-x2dx
. N I n—1
Comparing this with  B(m,n) = on (1-x)
we see that we have x in the root, instead of a single x. Therefore, put
1 1

2=y :>x=y5 anddxz%y Edy

The limits remain unchanged.
3
1

1
_ 2 Sl 2, 2
I—on (l—y)z dy j (1-y)2dy
m—1=§:>m:é and n—1:l :>n:§
2 2 2
)
Therefore, 1 ——B é 312182/ \2)
2°2) 2 (5 3
In=+=
2 2
EINS R
4 A2 o
2 3! 32
3
x~dx
3. Evaluate [ =
'[\/3 X

Bessel's functions are solutions of the Bessel's differential equation

_2+x_+( ) (1

dx

where v is a real constant.
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By the Frobenius method we assume a series solution of the form

00
y:xc(ao +tax +a,x +azx 4 +a,xr+....) or y=x°Y ax"

r=0
1 2 N
ie.  y=agx‘+ax +ax e da,x o y=) a,xt (2
r=0
where c,ag,ap,a,,...... ,a, are constants.ais the first non-zero coefficient.
c is called the indicial constant.
d - -
—yzaocxc ! +a;(c+1)x” +a2(c+2)xc+1+ ..... +a,(c+r)xt’ Ly ..(3)
d2

d—zy = aoc(c—l)xc_2 + alc(c+1)xc_1 +ay(eH)(eR)x +ta,(c+r-1)(c+ r)xc”_2 +...(4)
X

Substituting eqs.(2),(3) and (4) into (1) and equating coefficients of equal powers of x, we have
c=xv and a; =0.

The recurrence relation is

a, = 9r-2 for r=2
v? —(c+r)
It follows that ay=a3=as=ay =.....=0
so that when ¢ = +v
—a,
S VRN
2°(v+1)
a
ay 0

:24 x2)(v+1)(v+2)
—da

a

Y x3)(v+1)(v+2)(v+3)

. (—1)5610
2r><§!(v+1)(v+2) ...... (v+;j

for r even. The resulting solution is

x? x* x°

+ - +....
27 (v+1) 2% 2 (v+D)(v+2) 2% x3)(v+1)(v+2)(v+3)
This is valid provided v is not a negative integer. Similarly, when ¢ = .v

2 x4 x6

1+22(v—1) I x2|(v-1)(v-2) Y x3(v-1)(v-2)(v-3) o

This is valid provided v is not a positive integer.
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The complete solution is
y=Ay +By,
with the two arbitrary constants 4 and B.

SOLUTIONS OF BESSSEL’S FUNCTIONS

Leta, = ;then the solution y; gives for ¢ = v =n (where n is a positive integer) Bessel's
2V F( v+ 1)

functions of the first kind of order n denoted by .J,, (x) where

o (x):(;)n{F(nL 1) _22(1!)xr2(n +2) +24(2!)xr4(n +3) o }
( )Z (-1

k:o22k(k!)l"(n +k + 1)

)n i (_1>kx2k
Similarly for ¢ =.v =.n (a negative integer)

N | =

N | =

=02 (kY)D(n+k)!

4

J_p (%) {;)_n{p(ll_ n) 22(1!)xr2(2 —n) ’ 24(2!));(3 -n) _
:( )—ni (-1) 52

k=o22k(k!)F(k —n+1)

=(—1)n()2cj" < (_1)kx2k

=02 (k)(n+k)!

N | =

=(-1)"J, (0

= The two solutions J, (x) and J_, (x) dependent on each other. Further more the series for

e 1 1 (xY 1 x\?
Jn(x){z) {,—(H)'(zj *(2!)(%2);(2) . }

From this we obtain two commonly used functions

Jl(x)=;{1—(1!)1(2!)(;)2 +(2!)1(3!)(;j4+ ....... }

Remark: Note that J, (x) and J; (x) are similar to cos x and sin x respectively.
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f[t,lj
The generating function for J, (x) is e>* '/ = ZO_OOO J, ()"
RECURRENCE FORMULA

J,, (x) can also be obtained from the recurrence formula — J,, | (x) = 2n [/, () = T, (0)]
X

For (0 <x < 1) J, (x) are orthogonal.

LEGENDRE'S POLYNOMIALS

These are solutions of the Legendre's differential equation

d’y dy
(1_x2)d)7_2xa+k(k +1)y=0

where £ is a real constant. Solving it by the Frobenius method as before we obtain ¢ =0 and ¢ = 1
and the corresponding solutions are

e A M) 1)

(D(k-2) L (k(k-3)(k2) (k)

(b)c=0:y=a1{ 3 s T }

where a( and a; are the usual arbitrary constants. When £ is an integer n, one of the solution series

terminates after a finite number of terms. The resulting polynomial in x denoted by P, (x) is called
Legendre polynomial with @, and a;being chosen so that the polynomial has unit value when x = 1.
(-1 <x < 1) orthogonality
e.g. Py(x)=ag{l-0+0-...} =a,.
We choose @y =1 so that Py (x) =1
P(x)=aix-0+0-...}=ax
ay is then chosen to make P, (x) =1 whenx=1=a; =1= P (x)=x

3
Py (x) =a0{1 —%xz +0 +O+...} =a, {1—3x2}

_ _ _-! 12
fPy(x)=1 when x=1 thenag =— :>P2(x)—2(3x 1)

Using the same procedure obtain:

Py (x) =%(5x3 —3x)
P, (x)=é(35x4 ~30x2 +3)

Ps (x) =é(63x5 —70x3 + 15x) etc.
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Legendre polynomials can also be expressed by Rodrigue's formula given by

n
Pyry=—— 2 (x*-1)"
2" n! dx"

(Use this formula to obtain P, (x) P (x), P2 (x), P3(x), etc)

P,(x)t"
V1=2xt + 12 Z

To show this, start from the binomial expansion of

The generating function i ———

where v =2xt — t2

I-v
multiply the powers of 2xt — t? out, collect all the terms involving ¢" and verify that the sum of these
terms is P, (x)¢".

The recurrence formula for Legendre polynomials is
2n+1
n+1()— P()—— ~1(x)

This means that if we know P,_; (x) and P, (x) we can calculate P, ; (x).

e.g. given that P (x)=1 and P, (x) =x we can calculate P, (x) using the recurrence formula by
taklngP l—Po,P Pl andP+1—P2:>n L
Substituting these in the formula,

P (0= 2 P ()= = Py () = (3¢ -1)

Similarly to find P; (x) we setP,_; =P, P, =P, and P, | = P; where n= 2. Substituting these
in the formula we have

Ps(x)= .
=§x><%(3x2 —1)—%)(
=%(5x3 —3x)

(Using the recurrence formula obtain P, (x) and Ps(x))

2x2+1

xPy (x) - ﬁﬂ )

They are solutions of the Hermite differential equation
2
d a7 Zxd +2vy=0 (D)
dx? dx
where v is a parameter. Using the Frobenius method the solution is

_ «© ct+r
y—zr 0@rx ", where ay #0

zr 0 a,(c+r)x" and
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d? @ .
_dxzy = Zr:O a,(c+r)crr-1)x" 2
Substituting these in eq.(1) and equating coefficients of like terms we have

agc=1)=0=c=0, or c=landc=0

n=agyl—-—

2! 41 Qr+1)!

The complete solution of eq.(1) is then given by y= Ay, + By, i.e.where 4 and B are arbitrary

constants. When v = n, an integer, the series terminates after a few terms. The resulting polynomials

H, (x) are called Hermite polynomials. The first 5 of them are:

Hy(x)=1
Hi(x)=2x
H,(x)=4x> -1

Hy(x)=8x> —12x
Hy(x)=16x* —48x? +12
Hs(x)=32x> —160x> +120x

They can also be given by a corresponding Rodrigue fs formula

)

d
dx”

H,(x)= o (—1)"

The generating function is given by
2 &H, (x
e2tx = Z n ( ) "
o !
This can be proved using the formula for the coefficients of a Maclaurin series and noting that

1 1 1 2
tx—El‘z :Exz _E(X_t)

Hermite polynomials satisfy the recursion formula
H, (x)=2xH, (x) =2nH,_; (x)
(Given that H; =1 and H; =2x use this formula to obtain H,,H5,H, and Hs).

They are solutions of the Laguerre differential equation

2
&Y +(1—x)ﬂ +vy=0
dx? dx
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Using the Frobenius method again we have
y=>",a 0@x"", where ap #0

dy _\'®© c+r—1 dzy _ c+r=2
a—zrzoa,(c+r)x and dx—z—zr 04r (c+r)(c+r l)x
Substituting these in eq.(*1) and equating coefficients of like terms we have =0 = ¢=0and
c+r—v r—v
A1 = ) a, = ) a
(c+r+1) (r+1)
v(v-1 1) v(v-1)..... v—r+1
Y =a l—vx+ux2— ...... +( ) ( ) ( )xr+ ...... .(2)

(21)° (?

In case v = n (a positive integer) and a( =n! the solution eq.(2) is said tobe the Laguerre
polynomial of degree n and is denoted by L,(x)ie.

-1 n
L,(x)=(~1)"{x - il (n‘ ) +(-1)"n! (3)

Then the solution of Laguerre equation for v to be a positive integer is y = AL, (x)
From eq.(*3) it is easy to show that

Ly(x)=1

Li(x)=1-x

Lz(x):x2 —4x +2

Ly (x)=—x> +9x% —18x +6
Ly(x)=x* —16x> +72x% —96x + 48

They can also be given by the Rodrigue's formula
n

L,(x)=¢" ;in(x"e_x)

Their generating function is

- 0
L,
e (1 f 2 : (x ) "
They satisfy the recursion formula

Ly =(2n+1=x)L, (x) = n*L,  (x)

They are orthogonal for 0< x< o
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Probability

Two or more events are said to be Mutually Exclusive if the occurrence of one prevents the

occurrence of the others. In other words they cannot occur together.

Two or more events are said to be Independent if happening of one does not affect other events.

These events have the following differences.

(a) Independent events are always taken from different experiments, while mutually exclusive
events are from only one experiment.

(b) Independent events can happen together but in mutually exclusive events one event may
happen at one time.

(c) Independent events are represented by the word “and” but mutually exclusive events are
represented by the word “or”.

Let there are exhaustive, mutually exclusive and equally likely cases for an event 4 and m of those
are favorable to it, then probability of happening of the event 4 is defined by the ratio m/n which is

denoted by P( A).
Thus P( n="_ No.of favourable cases to 4

n  No.of exhaustive cases to 4

It is obvious that 0 < m < n. If an event 4 is certain to happen, then m = n . Thus, if 4 is impossible
to happen then m =0 and so P(A) =0. If 4 denotes negative of, i.,e., event that 4 doesn’t happen, then

for above cases we shall have

P(Z):";’” :1—%:1—P(A)

If an event A happens in number of cases out of total number of cases then
P(A) _ m/n _m
P(Z) (n—m)/n n—m

P(A) _(n=m)n

P(4)  m/n om

Odds in favour of A4

Odds in against of 4
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Given two events A4 and B, the compound event “4 or B or both” is denoted as and the compound
event “4 and B” is denoted as the probability P(4 N B) is called the joint probability. If 4 and B are
not necessarily mutually exclusive, then
P(A U B) :P(A) +P(B) —P(A 8 B)

P(A N B) = P(A) +P(B) —P(A v B)

Equivalently

If A and B are mutually exclusive events then P(A "B ) =0. i,e., the probability of happening of
any one of several mutually exclusive events is equal to the sum of their probabilities.

Let P(A / B) denote the probability of 4 occurring given that B occurred and P(A / B) denote
the probability of B given A4, these probabilities are defined, respectively as

P(A/B)ZP(;(—;)B)
and P(B/A)=m

P(4)
A special case of Bayes rules results by putting these two definitions then
P(A/B)P(B
(o1 4)- "0 D)
P(4)
The event is called Statistically independent if the probability of occurrence of one event is not

affected by the occurrence of the other event. For statistically independent event

P(A4/B)=P(A),

P(B / A) = P(B)

and P(4nB)=P(4)P(B)

Let an experiment is repeated n times and probability of happening of any event called success is p
and not happening the event called failure is ¢ = p —1then by binomial theorem.

(p+q)n =q" +" Cyq"  pt...AnC.q" " p 4 A p"
Now probability of

(a) Occurrence of the event exactly r times =" C,q¢" " p"

(b) Occurrence of the event at the most r times = ¢" +" Cyq¢" " p+....+"C.q" " p
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Numerical Analysis
INTRODUCTION

Numerical methods are extremely powerful problem solving tools. They are capable of handling
large systems of equations, non linearities, and complicated geometries which are often impossible to
solve analytically.

NUMERICAL SOLUTIONS OF ALGEBRAIC EQUATIONS

BISECTION METHOD
Consider the equation fx)=0 (1)
Using trail and error methods, we have to find two numbers a and b such that /' (a) and £ (b) are of
opposite signs.
By intermediate value theorem, a root of the equation lies in the interval (a, b).
As a first approximation to the root take

a+b
X = 5

For second approximation, compute f(x; )

T . +b
Case 1: If f(x; )< 0 then a root of the equation lies in (x;, ) . In this case, choose x, = nro

Case 2: If f (x1 ) =0, then x; is a root of the equation and the problem is solved

Case 3: If f((x; ) > Othen the root lies in (@, x; ). Choose x, = arn

similarly, we compute x3,xy4.......

We have to continue this process till we get the required accuracy, i.e., the absolute difference
between two consecutive values is less than a pre assigned number €.
Ex: Find a real root of the equation f(x) =x> —x—-1=0

Sol: Since /(1) and f(2) are of opposite signs, a root of the equation lies in the interval (1, 2)

We take x| = % =15
15

then X )=—>0

1e)=4

o . . 1+15
Hence, the root lies in the interval (1, 1.5) and we obtain x, = =125
Now, f(xz)zf(125)=—9<0
64

.. The root lies in the interval (1.25, 1.5) take x5 = 125415 _ 1375

The procedure is repeated and the successive approximations are x; =13125,x, =134375,
x5 =1328125 etc.

<+ Bisection method is a simplest iterative method and convergence to the root is guaranteed.
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<4 The Bisection method is considered as slow and steady. Rate of convergence is only one bit
per iteration.

<+ The Bisection method cannot be applied to find the complex roots of an equation.

NEWTON - RAPHSON METHOD

Consider the equation f(x)=0 (1)
Let x,, be the initial approximation to the root.
Let X1 =Xp +h (2)
Substituting in (1), we have
f (xo + h) =0
Expanding by Taylor's series, and neglecting W2, h3,ete
We have, f(xo)+hf(x9)=0
pe ()
/(%)
Substituting in (2), we have
/(x0)
X1 =Xg — 1
S (x0)
Which is first approximation to the root similarly,
S (x1)
Xo =X =7
S ()
f(x2)
X3 =Xy — 1
S (x2)
and so on
X
The iteration formula is Xpp1 =X, — fl(n)
S ()

+ Geometrically, the method consists in replacing the part of the curve between the point
(xo . f (xO )) and the x - axis by means of a tangent to the curve at the point. The point where
this tangent intersect X - axis is taken as first approximation to the root.

+ The method is sensitive to the initial guess x . If x, is not sufficiently close to the root, then
convergence to the root is not guaranteed

4 Newton - Raphson method has quadratic convergence.

i.e. order of convergence = 2
i.e. the error at each iteration is proportional to the square of the error at previous iteration

4+ Newton-Raphson method converges more rapidly than the other methods

+ Since two function evaluations are required for each iteration, Newton Raphson method
required more computing time.
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<4 The method can be used for solving algebraic and transcendental equations and it can also be
used when the roots are complex.

4 Newton - Raphson method is useful in cases of large values of f ! (x), i.e., when the graph of
the function y = f'(x) while crossing x - axis is nearly vertical.
4 Newton - Raphson method is generally used to improve the result obtained by other methods

Ex: Using the Newton - Raphson method find a real root of the equation x3 —2x=5=0

Sol: Let f(x) =x> -2x-5=0
f](x) =3x2 -2
£(0)==5<0
£(1)=-6<0
£(2)=-1<0
£(3)=16>0

Root lies in the interval (2, 3) . f(2) is nearer to zero than f'(3)

Let us choose xq =2
x
X1 =Xo — f( 0) =21
10

s (XO)

X
Xy =x| — fl( 1) 9199615 onases
f ( Xl) 1123
Ex: Newton - Raphson iteration formula to evaluate a real root of the equation x> —a=0is o
Sol: Let f(x)=x>-a=0
fl(x) =3x>

The Newton - Raphson iteration formula is
3
) (-9 1( ]
=x,————% =>x,=-|2x, +—
1 2 3
(%) 3x;,
SECANT METHOD (MODIFIED VERSION OF REGULA FALSI ORINTERPOLATION METHOD)

+ Newton Raphson method is very powerful, but the evaluation of derivative involved may some
times be difficult or computationally expensive.

Xn+1 =Xp —

<+ This suggests the idea of replacing 1’ ! (xn ) by the difference quotient.
PN CH RN C)

Xn —Xp-1

in the N-R iteration formula Xpp1 =%, = f (x ){ *n-l }

TG f(xn 1)
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4+

+

+ o+

<+
<+

Instead of choosing two values of x such that the function has opposite signs at these values, we
choose two values nearest the root for each iteration

This method is applicable only if one is sure that there is a root in the vicinity ofx; the starting value.

In this method, we approximate the graph of the function y = f'(x) in the neighborhood of the
root by a straight line (secant) passing through the points (x; —1, f; —1)and (x;, f;)

The order of convergence is 1.62. Converges faster than false position method.
No guarantee of convergence if not near root. The method fails if /(x; ) = f(x,_1)

It may be considered the most economical method giving reasonably rapid convergence at a
low cost.

The amount of computational effort is one function evaluation

On the average secant method is superior to Newton - Raphson method

Ex: Find first and second approximations to a real root of the equations x 3 _2x-5=0 by secant method
between 2 and 3

Sol: Let f(x)=x*-2x-5=0
a=2and b =3
f(a)=-1
f(b)=16

First approximation

af (h)=bf(a) _2016)-3(-1)

R IORTO R

f(xl ) = f(2.058) =-038<0

The two nearest values to the root are 2.058 and 2.
For second approximation, take @ =2 and » = 2.058

(b))~ bf(a) _2(-038) -205(-
C®) (@) (F038)-(-)

1
) = 2.09 (approx)

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS
SINGLE AND MULTI - STEP METHODS

4+

+

A one step method is a method that, in each step uses only values obtained in a single step, viz.
in the preceding step.

Some of the one - step methods are: Euler's method, Heun's method, Runge's method, Runge -
Kutta method and Taylor series method.

A multi - step method is a method that in each step uses values from more than one of the
preceding steps. The reason for using the additional information is to increase the accuracy.

Some of the multi - step methods are: Milne's method, Simpson's method, Adams - Bash forth -
Moulton methods.
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EULER'S METHOD
Consider dy/dx = f (x, y) with initial condition y(xo ) = ). We want to find out the value of yatx=1.

Divide (xg,/) into 'n' equal parts of width '4'. Let x;,x,,.....x,_1,(x, =) be the intermediate
points. Now in (xg,x; ) we have

=X +hf(xoaJ’0)
Y2 =0 +hf(x1,y1)

Yn =Vn1t hf(xnfln ynfl)
<+ The method is stable if ‘1 + h(af /8y)‘<1 then the errors will be damp down with successive
iterations. Otherwise, the errors increase in successive iterations and the procedure will be unstable.
4 Tt is based on the linear term in the Taylor's expansion of f{x, y).
< Inpractice, the error build up in using the method is substantial and the method is rarely used.
< This method is also called Runge - Kutta first order method.
Ex: Given y1 = —y with initial condition y(O) =1.Find y (0.04) by using Euler's method with 2= 0.01.
Sol: Here, x =0, yy =1L f(x,¥) =—y
=Y+ h.f(xo, yo) =1+ (001)(-1)=099
Vo =y + h.f(xl, yl) =099 + (001).(—099) =09801

3 = vy +h.f(x3, ¥, ) =09801+ (001).(~09801) =09701
4 = vy +hf(x3, y3 ) =09701 + (001).(09701) =09606

The exact solutionis y=e *

#(004) = e %% ~09608

NOTE
By direct integration the solution is ¥(0.04) = 0.9606
=09608 — 09606

=00002

.. Error due to Euler's method

HEUN'S METHOD (MODIFIED EULERMETHOD OF RUNGE-KUTTA SECOND ORDERMETHOD)

Consider dy/dx = f (x, y) with the initial condition y(xo) = ), Initially y; is computed by Euler's
formula.

yll’ =yy+hf ( X, J’O) [where p indicates predictor]
Then modified value of y; is given by
ye=yo +(h! 2)[_f(x0, Yo)+ f(xl, i )] [where indicates corrector]

Similarly, we can find y,, y3,..... y,
This method is also called modified Euler method/ second order Runge - Kutta method.
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Ex: Given that ? =x?+ ywith initial condition y(0) = 1. Find y (0.05) and y(0, 1) using Runge - Kutta

X
second order method with /2 = 0.05.
Sol: Here x0 =0,y =1 f(x, ) =x?+y
By Euler's formula yf’7 =y + hf(xo , Yo ) =1+(005).(0+1)=105

The modified value of y is Y= +2{f(x0,y0)+f Xy, Y )} 1.0513

~.(005)=10513
To Compute »(0.1) x; =005, y; =10513

By Euler's formula  y4 =y = h.f(x1, ) =10513 + (0.05){(0.05)2 +1.05} ~1.1040

. . h
Th fi lue of ¢ = — P )L=1.10
e modified value of y, is Yy =n+ 2{.f(x1ay1)+f X255 )} 55

RUNGE'S METHOD (R-K THIRD ORDER METHOD)
To solve (dy/dx) = x + y with y(x( ) = ¥y
Calculate successively key =hf(x9,0)
k2 =hf(x0 +h/2, Yo +k1 /2)
k! =hf(X0 +h,y0 +k1)
ky =hf(xo+h o +k")
Finally, compute k =1/ 6( k; + 4k, + k3 ) and the solution is y; = yo +k.

RUNGE - KUTTA METHOD (R-K FOURTH ORDER METHOD)

To solve (dy/dx) = f (x, y) with the condition y(xo ) = yy. Let 'h' denotes the interval between
equidistant values of x.

If the initial values are (xo , o ) then the first increment in y is computed from the formula given by
ky=hf(x0, %)
ko :hf(xo +h!2, vy +k /2)
by =hf(xg+h!/2,yy+ky/2)

k4 th(xo +h,y0 +k3)
Ay:1/6(k1 +2k2 +2k3 +k4)

yi =Yy +Ay
Ex: Given that ? =1+ y2 where y(0)=0 find y(0.2) using Runge - Kutta fourth order method with #=0.2.
X
Sol: Wetakexo :O,yo =0 klzh,f(xo,yo)ZOZ

h ky
ko =hf| xy+—, +— |=0.202
2 f( 0+5> o 2j

k3 :hf(XO +§, yO +kzzj:0.20204
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kg =hf(xg+h yo+ks)=020816
=X +é(k1 +2k2 +2k3 +k4)=02027

PROPERTIES

1. R - K methods do not require prior computations of the higher derivatives of y(x) as the taylor
method does.

2. The R - K formulae involve the computation of f{x, y) at various positions and this function
occurs in the given equation.

3. To evaluate y,,;, we need information only at y,. Information at y,_;, y,_, etc not directly
required. Thus R - K methods are one step methods.

4. These methods agree with Taylor's series solution upto the terms of 4", where 't' differs from
method to method and is known as the order of R - K method.

TAYLOR'S SERIES METHOD
Consider (dy/ dx) = f(x, ¥), M(xo ) = ¥, If the solution gurve y(x) is expanded in a Taylor series
(x xO) (x xO) 111 0
2! 3!

<+ In equation (1), if we take only the first two terms then it corresponds to the Euler method of
extrapolation. Thus the errors due to the truncation of the series would be of the order of /2.

around x = xo. We obtain y(x) = yy +(x —xg )y(l)

4+ An improvement of the Euler method would thus be to include the 42 term in the above
expansion. Then the truncation error in the above formula would of the order of /3.

<+ This method is not applicable in general, because the partial derivatives fx, fj are not always
easy to obtain and considerable computation effort is involved.

<+ Iff(x, ) is given in a tabular form then this method is not applicable.

4+ R - K methods are equivalent to Taylor series method but will use only the values of /' (x, ) at
specified values of x and y and will not require the derivative to be evaluated.

+ R - K methods agree with Taylor's series solution upto the term in 4", where r differs from
method to method and is called the order of that method.

Ex: Find by Taylor's series method, the values of y at x =0.1 from dy / dx = x2 y—1, »(0) =1.(Consider

the Taylor's series expansion upto n? terms). (with 2 =0.1)

Sol: Here w0y =1, y! =x%y-1, ' (0)=-1
. Differentiating successively and substituting, we get
P=2xy+x?y! y'(0)=0

y111:2y+4xy1+x2y y111(0)=2

Putting these values in the Taylor's series

(x x) (x xO) 111

93 =0+ (v )+ 4

. (001)’ (0.01)
Choosing x = 0.1 and xy =0; y(01) =—1+(01) + 5 0+ . 2 =0.9003.
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TOPICWISE SOLVED PROBLEMS

VECTORS, LAPLACE TRANSFORM

Ex. 1.

Sol :

Ex.2.

Sol :

Ex.3.

Sol :

Find V.FandV x F where the vector field F = (yz,xz,xy) (Ans: VFE=0 VxF =(0,0,0))
= N “ A 2 6 A 8 ~ 6 ~ ~ ~
F=yzi+xzj+xyk; VF=|i—+j—+k— .(yzz+xZ]+xyk):O+O+0+0:0
ox "oy Oz
Pk
- - |0 0 0 N n A A R
VxF=|— — —|=ilx—x|-j|ly—y|+k|z—2z|=0i+0j=0k
el el At a el A Eakd J
yz xz Xy
t ] 53
Find the value of the following integral Idtljdtz J dt, (t,—1,) 8t +t,~t—1,) (Ans: t4/12)
0 0 0

t 4

Idtlfdtzjdt3 (=1, 80+, —t—1,) = [dt, [ e, [ (¢, =1, 8(t, = (t 1, —1,))
0 0 0 0

0 0

b
From the properties of dirac delta function I f(x)(x—m)dx = f(m) if a<m<b.

t 4 t

Given integral Idtlfdtzf(t3 b )2 8ty —(1+1,—1))) = _([dtl,([dtz}[d%f(% )dt;3(t; —m)
0 0 0

- j'dq]'dtz.(tﬂz ~t—1,)" = j‘dtl](t—tl)zdtz =j'alt1]'(t2 — 24t +£)dlt,
0 0 0 0 0

0

y i ’ Al I A A
= [ =2ty + 70| diy = [, =20 + )ty = === T4 =T
0 0 0 2 3 4, 2 3 4

6r' —8¢* +3r* 1

12 12

f()y=t"=1 fort>1
What is the Laplace transform of

_o for 0<r<1 (Ans: 2¢° (s+1)/5°)

© ©

L[f(]= Tf(t)e_”dt = .I[Odt + ]O(t2 ~1)e"dt = j(tz ~1)edt = the_‘”dt —j edr;

1 1

T e’ 2 2 T, e[ e’
J'tze A =S4 . ,je"dt:— -0+,
1

s s s =5, s
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Ex.2

Ex.4.

Sol :

Ex.S5.

Sol :

Ex.6.

Sol :

Ex.7.

Methods of Mathematical Physics

2¢ 2 L |1 U] st | sT(4s) 27 (s+])
L[f(t)] = > +s_2 =2e L—3+S—2} =2e { el 2e R =
If F =7, Sisthesurface of a hemisphere including the circular plane base radius ‘a’, centered at the

origin, ; represents the unit vector in the radial direction at any point and 7 represents the unit

outward normal at each point of the closed surface S. Find the value of .[17" nds (Ans: 2 7ma*)

K

.[I*:.ﬁds = I(Vﬁ)dr;V.A

v

0 0
cal = —(4,h,h —(A,hh —( 41k
spherical h1h2h3 _aql( 172 3)+ aq2( 2" 3)+ aq}( 3" 3)

3
= 21. e[aﬁ(rzxrzsine)}:%zh
r*sin@| or

rmm 4 a
= ‘([J;}[Mrzdrsin 0d0d =4% (—cos@); xn=2na*

0

o0 < st d
If f(s)= .[F(t)e’”dt then, find the value of J.IF(Z)e_'S dt (Ans: *C‘l—]; )
0 0

Jir e ar = (-1 L2 - T,

Find the unit tangent vectors to any point on the curve x =¢* —¢t,y =4t -3,z = 2¢> —8tatt = 2?
Ans: SF 423
(Ans: 5SS J)

Tangent to the curve is

df_;_ d 2 > s 2 A 2 o] r At A
E_E[( — )i +(4-3) j+ (20 -81) | —(2[—1)l+4]+(4l—8)k‘t:2—3l+4];
. 3i+4] 3. 4.
Unit tangent = ==i+—]
25 50

Find an equation of the tangent plane to the surface x*+2xy* -3z’ =6 at the point p(1, 2, 1)
(Ans: 10x+8y—-9z=17)
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Methods of Mathematical Physics Ex.3

Sol :

Ex.8.

Sol :

Ex.9.

Sol :

Vo =1[2x+2)" |+ j[4xy]+ k[-927 | V4| = (2+2x4)i +8]+-9k =10 +8] 9%k

This is the normal to the surface at p equation of the plane with normal. N = ai +b; + ck has the form.
ax+by+cz=k;ie,10x+8y—9z=k; 10+16-9 =k; k= 17; substitute (1, 2, 1) . equation of tangent
plane 10x+8y -9z =17.

) 1 Fo-F
Find Vo if ¢ =In |7 |and ¢ =~ (Ans: —,—)
r r r

11’1‘}7‘=11’1 'x2+y2+22; :ln(x2+y2+22)1/2

V¢=f@+}@+l€@'@= ! Xl(x2+y2+zz)7”2><2x :izx

ox oy 0z ox (x2+y2+zz)”2 2 r

>

=xz°+y];'+zl€;v¢=
oy r- 0oz r r r

r
2

. 2 2 \/g ’ \/g ’ .
Find the angle between the surfaces ¢, =x" +y" —z and ¢, = x—? + y—? — z at the point
(V6 Vo 1
= E>E’E (Ans: 60°)

Angle between the surfaces equal to angle between their normal.

Vo, =i2x+ 2y —k;

V(I)l —&i.ki}_A:l__f_L_kAJV(bJ: l+l+l
P12 12 J6 6 6
1 ). 1 -
V(|)2:2 x—% i+2 y——6 ] -k

I O PO O U P (e PN (T PO s PSS B
o] A e R T O (S e

/l 1
3|V¢2| = g"rg‘f‘l

Angle between the normals

Khanna Publishers
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Ex.4 Methods of Mathematical Physics

I 1 1

———+1 ——+1
cosf = Vo Ve, _ 6 6 _ 3
Tvelve] 1 i1 1,1
e \/++1\/++1 41
6 6 6 6 6 6
2/3
—=lcos6=1/2:>9:005’1(1/2)=6O°
4/3 2

Ex.10. Aunitvector ;4 on the xy planeis at an angle of 120° with respect to ;. The angle between the vector,

. A 0. a
u=ai+bn and V=an+bi willbe 60" if (Ans: b:E)
- y
n /
\120°
> X
Sol:  Theanglebetween u and v, i.e., ii-V =|u| v|cos60°
a’iA+b*hi+ab+ba=lu||v|cos60°
Ex.11. Find the inverse Laplace transform of ¢ —1 4 ¢ is (Ans: t—1+¢™)
» 1 1 1 s+l-s(s+D)+s> s+l-s5"—s5+5° 1
Sol : L[t_ler j|=_2__+ = p = 2 =
s° s s+l s (s+1) s“(s+1) s7(s+1)
:azcos1200+2ab+b2cos120"=|”!V|

( 2 2\ 1
__fa+b +2ab:—(a2+b2+2c1b0051200)
2 2

:>—(a2+b2)+4ab=a2+b2—ab 32(a2+bz)=5ab =b=al2

I, for 2n<x<2n+1

0. for m+1<x<2m+2 where (n=0,1,2,.....) is shown below. Its

Ex.12. The graph of the function f(x)= {

- 1
: (7 P —
Laplace transform f'(s) is? (Ans: s(1+e’5))

69 T
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Methods of Mathematical Physics Ex.5

T

1 o . - . .
Sol: L[ f(»]= TI S (®)dt where f(¢) is a periodic function of period 7. Here T=2, f(f)=1

o 1 e’”1 B 1 e’ -1
LI/ ()= { dt+IOdf} [l_ezs}_so—(l_ebj[ - j
[ J (0 B
(1-e™) s(l+e)(1-e) _s<1+e"")
S 1 t2
.13. d _ H— —
Ex.13. Find L {3(3*2—1-1)} (Ans 2+cost 1)

Sol: L' [F6)]= /(0 then I {f (S)} Jroaz|
o s

1 : fe s
+J:smt; L[ s o }:?[I['!smtdt

© e ~

t tt t t 2 2

. . t
_[ cost Ij 1- cost)dt:jt—smtﬁ) :_[(t—s1nt)dt:—+cost| :—+cost—1
0 00 0 0 2 2

2sinat

1 (Ans;z—iz{ » —tcos(at)})

Ex.14. Find the inverse Laplace transform of L' A )2
s*+a

_ 1 _ 1 1 . 1 .
Sol: L m :L[(Suaz)(sz+a2)];f(t)=;s1n(at),g(t)=;smat;

t t
L ;2 = lsin(at) *lsin(at) = fl sin(au)lsin a(t—u)du = LzJ-sin(au) sina(t—u)du .
(Sz +a2) a a X4 a a s N
1 t
u)du = cos(au —at+ au)—cos(at)du
)t =—— j ( )~ cos(at)
1 1 (sinQRau—at) }
= cos(2au —at)—cos(at)|du =——<————=—ucos(at
= ![( ( )—cos(an]du =—— { > (ang
1 i i 1 [2si
_ L {sm(at) N sin(att) s (at)} _ L { sin(at) ~cos (at)}
2a 2a 2 2a 2a
' 1 et/2
. L_ .
Ex.15. Find { o _J (Ans: NG )
Khanna Publishers
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Ex.6

Sol :

Ex. 16.

Sol :

Ex. 17.

Sol :

Ex. 18.

Sol :

Methods of Mathematical Physics

Jo] L 1 1 1 el /2
P - 1/2 :TL 2 | T L R
s—1 (2(s-1/2)) 2 (s-1/2)" ] 2 |[V1/2s

1

| Sl -12 (/2
L[t"]— n! \/n+1L1{ 1 } e’t e

BT V2s -1 - V27 - 2mt
te'sint 1
FindLI ; dt (Ans: ;cot (s-1))
0
. _ T 1 | esine| T o w
L[Smt]:s%rl’L[etsmt}(s—1)2+1’L[ ! }!H(s—l)2 ds=tan (s

©e'sint

T _1 —1
=——tan (s—1)=cot  (s—1): L
S tan (5= =cot”! (s 1); {j t

dt} Lo (s=1)
s

—s

2r e’ e
If f(t)=|t—1|+|t+1| where ¢ >0 then. Find L[ f(1)] is? (Ans: T[e “1]+2) —+= 1y

N N

|t—1|:{_(t_l) t<1. |t+1|={_(t+l) t<-1

t-1t>1 > t+1 t>-1

—(t-D+t+10<2<1

Laplace is defined in the interval 0 tooo f(f) =
t—1+t+1 I<t<o

LIf0]= Tf (te™'dt = j[(r +1)—(t-1)Je™dr + TZte""’dt = [2¢™ar +T2te’“dt;

-5

—st —st |4 —s —s st |! —s —s s
2 NP AN Ty PO | 27 2 =_—2[es—lJ+2|:e—+e—:|
—S

2 2: 2
s s* s s |0 s s s s s

Find an equation for the tangent plane to the surface x’*yz—4xyz> =-6 at point p(1,2,1)
(Ans: 4x+3y+14z=24)

b=x"yz—4xyz> +6;Vd = f[nyz—4yzzJ+]'[xzz—4x22}+l€[x2y—8xy]
V4|, =1 [4—8]+ j[1-4]+k[2—16]=—4i =3j 14k . 4 +3]+14k isnormal to the surface at .
An equation of'the plane with normal. N = ai +bj + ck has the form

ax+by+cz=kie 4x+3y+14z=k put (xyz)=(1,2,1)=k =24
Equation of tangent plane is 4x + 3y + 14z =24
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Methods of Mathematical Physics Ex.7

Ex.19. Find the total work done in moving a particle in the force field given by F = zi +zj + xk along the
T

helix ¢ given by x =cost,y =sint,z=¢ fromt=0to ¢t = /2. (Ans: 5—1)

- N A ~ . . s = g
Sol:  F =zi+zj +xk; for helix x = cost, y =sint, z = ¢ from t=0 to E;WIIF-dV

= I(zf+zj‘ +xl€).(dxf+ dy]’+dzl€) = j(zdx+zdy+xdz) = T(—t sinz -+ cost +cost ) dt

0

/2 /2 n/2

= j (cost(t+1)—tsint)dt = I (t+1)costdt — j tsin tdt
0 0 0

/2

I (t+1)costdr= (t+1)sint|g/2 +cost|;/2 :(g+lj—0+0—l;§+l—1:g

0

/2

. /2 . n/2 . T
Its1ntdt:—tcost|0 -1-51nt|0 =0+1; Work done :5_1
0

Ex.20. Evaluate _[ IF Ads where F = 4xzi — yzj + yzlg and ‘s’ is the surface of the cube bounded by x = 0,

x=2;y=0,y=2,z=0,z=2. (Ans: 24)
B S o ¢£ ".i "ﬁ c 24 Pl = _ _ N
Sol : J‘.([F.ndS—?[(V.F)d‘c,V.F—{l ax+]ay+kaz}.[4xm y j+ka:| 4z=-2y+y=(4z-y);
L 22 , 22 2 2,2 2
[(V-F)dr=[[[ 4z yydxdydz = [ [ 4xz—xy[, dydz = [ [ (8z—2y) dyetz =j8yz—% dz;
v 00 00 0 0
Loy 1622 [ :
[(V.F)dt=[(16z-4)dz = -4 =8z"—4z| =32-8=24
v 0 0
Ex.21. Let F=—2 i + Y . Calculate Vx FF =9 (Ans: zero)

x2+y2) <x2+y2)

i j k
.. . . (X7 ) - x(2 1y ) -y(2
Sol : VxF = i ﬁ ﬁzl[o_o]_][0]+k (X y) xz( X) (X y) yz( y)
Oox ay Oz (x2+y2) (x2+y2)
—y X 0
x2+y2 x2+y2
2 2 2 2
P S S U FPN
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Ex.8 Methods of Mathematical Physics

Ex.22. In the above problem Find @13 dr (Ans: 277)

= -y )z X A A A —ydx + xdy

. Fdr = I+ Jdxi+dyj |=P—F=.

Sol: CJS Cfszv“yzj [x2+y2jj}[ d (}S(x2+y2) ’
x=pcosd;y =psind;p> = x> + y*;dx = —psin ¢dd + cos ddp; dy = p cospdd + sin dpdp

—ydx+xdy _—psin¢[—sindpdd+cosddp]+pcosh[pcosddd+sin ddp]
(xz +y2) - pz

B p’ sin® dd o — psin hpcos hdp.dd+ p* cos” hdd + psin ¢ cos pdddp — do:
= - =d;
p

<§F.d§=<§d¢=2n

FOURIER SERIES, FOURIER TRANSFORM, PROBABILITY
DISTRIBUTIONS

2
Ex.23. Whatis the Fourier transform of exp(—|x|) is (Ans: =)

Sol:  Fourier transform ofa function f(x) is

©

F[f(x)] = Tf(x)eiikxdx = J‘e*\x\e—ﬂadx

—o0

0 0 0 )
= .[ e ™ dy+ je”‘ e ™ dy = j e =0 gy +J‘efx(”'k)dx =
0 0

-0

1 1 2
=+ =
1—ik 1+ik 1+k°

—o0

Ex.24. Two cards are selected from a well shuffled usual pack of 52 cards. What is the probability that the

selected cards are a king and a queen. (Ans: 0.01207)

41 4
e
3 3 4x4

4 4

¢ x G 52! 51x52 __ 16

. = = = = =0.01207
Sol:  P=p 50121 2 51x26

Ex.25. You are given two pairs of shoes (is a total of four shoes) such that one pair is brown and the other
black. You pick out two shoes randomly. What is the probability that you have picked a matching pair

of same colour? (Ans: 1/2)
Sol: p=1/2
Ex.26. Which of the following is a valid probability distribution (x and y are random variables).
(Ans: IT and III)

—xy

e’ —o<x<0,—0< y<wo

1
LI
_1
(I T (1 +x? )
Khanna Publishers

—0<Xx <0

68



Methods of Mathematical Physics Ex.9

Sol :

Ex. 27.

Sol :

Ex. 28.

Sol :

Ex. 29.

Sol :

(I 4sin* (x) cos®(my) 0<x <1, 0< y<1

V) exp{—[a(x2 +y2)—2bny} —0< X <00, —00< Y <0

A valid probability distribution satisfies the condition.

J =t

1% 1 " _
(b) J 1+x )dx :;J;(l+x2)dx ~Lian- xL0 :%[tanloo—tanl(—oo)]:%[g—%t}:l

1 1 1
(c) j4sin2(nx) cos’(my)dxdy = 4jsin2 nxdxj cos’(my)dy
0 0

0
1 . 1 . 1
1—cos2mx 1—cos2my sin 2mx sin 2my
=4 dx dy =| x - =1
I[[ 2 j '[( j v |: 2r :lo |:y 2n :|0

)
Find the Fourier sine siries transform of the function f(¢)=e™ is (Ans: o td )

F[f®]= Tf(t) sin otdt = Te"” sin(wt)dt. = ‘Tsin(mt)e'”'dt;

©
—at

1 =sin(wt) ¢

© —at ©

e ® u
—jcos(oat)w dt =+I—cos(oat)e 'dt
0o 0 —a 04

—at

® e T we
=—| cos ot - j— sin(?) x
a -a |, 9

—at

1 2 2 2 2
:+2|:__(D_2[:| I = +2_®_[ [(14‘(0_]—4'_9 I/ a+to 2231: ©
ala a a a a’ a’ a’+o’

In a series of five cricket matches, one of the captains calls “Heads” every time when the toss is taken.

The probability that he will win 3 times and lose 2 times? (Ans: 5/16)
V(1Y st 115
:nC x nfx; :5’ :3’ :3 :SC 2 = _ > 2
PEO="CopiaTin =30 =3 p(x=3) 3(2) (2) 21312° 2 16
An unbiased dice is thrown three times successively. Find the probability that the number of dots on
the uppermost surface add up to 16 is (Ans: 1/36)
Sample space = 6* =216, favourable events (5, 5, 6), (5,6,5), (6,5,5), (4,6,6), (6,4,6), (6,6,4);
_ 6 _1
P 216 36
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Methods of Mathematical Physics

Ex.10

Ex.30. Find the Fourier series representing

f(x)
b 47 —2ITC 0 2ITE 4Tf ”x

c+2L

Sol : f(x):x;9<x<2n;f(x):a—2°+2an cos(%}rbn sin(%); a, -1 I S (x)dx
n=l1 T c

1 c+2L nnxj 1 c+2L p—
a =— x)cos| — |dx; =_ in| — .
"= [ re (L b=~ j f(x)sm( - jdx,

c

2n 2P 2
aozlj.xdx:l{x—} :lx47T =2m;
T T 2],

2n 21
a :ljxcos[@jdx :ljxcos(nx)dx;
T

Ty T 0
1°F xsin(nx)|2“ cos nx|2ﬂ 1
a, :—jxcos(nx)dx: +— =—2[1—1]=0 a =0:
Ty n |0 n |0 n " ’
177 xcosnx|2n sinnx|2n 1 2n -2
b, = —j xsin(nx)dx = — +— b ===
T n |0 n |0 T n n

0

z -2 . in2 i
f(x)= z —sin(nx); f()c)zfc—Z{smxstm2 x+s1n33x+m}
n=1
x+m forO<x<m
Ex.31. Find the Fourier series of the finction defined as f (x) =
—x—-nfor—-nt<x<0

(Ans: f(x) :E_i[%-}- CO3S23X +mj|+4‘:51r11x N
T

2

+ 0<x< »
Sol: Jf(»)= {x m for Osxsm f(x)= a—2°+2an cos(?]+bﬁ sin(?j :
n=1

—X—T7 —-nt<x<0’

c+2L 1

! F(x)dx;= ;j F(x)dx = %{f (—x —m)dx + ! (x+ n)dx}

1
a, =—
T
1| ¢ f 1 x° ’ x? ’
=— —I (x+n)dx+j(x+n)dx =—|—-| —+mx| +| —+mx
T 0 T 2 o\ 2 0
Khanna Publishers
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(Ans: f(x)= n—2[sinx+%sin2x+%sin3x+...} )

and f(x+2x)= f(x)

)
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Methods of Mathematical Physics Ex.11

2 c+2L

I\ , © | = [mr.xj
|-+ |=—=ma =— x)cos| — |dx .
{ 5 e

B

a,= l{ I —(x+m)cos(nx)dx + JE(x + 1) cos(nx)dx}
T 0

-

I —(x + 1) cos(nx)dx = _[0 +i2[1 -1y’ ]} _ —_21+ (—12)" :
n n n

-

ji(x+n)cos(nx)dx = GRS a :l{__lJrﬂ}Ll{g_L}

2 2 2
n o " mln n | n n

2 o -4 ...
a, :T[(_l)" —1]; sa,=0if nis even;a, =——if nis odd;
n'm n'm

16+2L N
b =— in| — |dx;
= j f(x)sm( 7 J x

c

b = l{ [ =+ m)sin(uo)d + j (x+7) sin(nx)dx} G VL
T

5
-n 0 n n

Iln 2n(-1)" = 1 12 )
b, :_{__ +;} [2—275(—1) ]Zz[l—(—l) ]= Lif s odd;=0if n is even;
n

T n n n

S(x) Za—20+ian cos(%}ribn sin(%)

n=l1 n=1

T —4[cosx cos3x } [sinx sin3x }
=—+— + +...|+4 T+—:...

2 m| P 3’ 3
n 4| cosx cos3x sinx sin3x
X)=———|——+——+...|+4 + +...
/9 2 ﬂ[ I 3 } [ }
Ex.32. Find the Fourier sine series for the function f(x)=e* for 0 <x <m; where a is a constant?
2| 1+e™ . 2(1—¢€"") .
Ans: " =— nx+——==-sin2x+...
( TE|:612+12 a’+2° })

Sol:  Fourier sine series contains only sine terms

" = ;b" sin (%} ib, = %J; S(x)sin (%) sL=m b, = %je‘“ sin(nx)dx;

0

e

ax

I= {Sin(”x) ]ECOS(HX) nxe” dx} = {—ﬁji cos(nx)e""dx}
0 ay

a a
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Methods of Mathematical Physics

Ex.12
_n {__ = } _ —_"{&_l# J‘sin(nx)e“dx} .

an a a a ay ’
_ n _amn 2 2 n _an

[=nEDen TR PO { o el GV
a a a a a’ a’

](a2+n ) [1 ( l)n an:' [1 ( l)n an:|
a’ a’ ’ (a’ +n?)

2 " 1 . 2(1-e") .
b= 7’12 [1_( 1) M} f(x)_ e osinx+ (2 ez)s1n2x+....
(a +n )n (a +1) (a +2)
Ex.33. Determine the first four terms of the Fourier series for the triangular wave form in the following figure

A _ﬁ[sinmt_sin3o)t+sin5(1)t_sin7o)tJr }
y (Ans: Y e 2 32 52 72 )
d’]‘ ------
d
N T T 2n ot
e
Sol:  The function is odd. Hence the Fourier series contains only sine terms.
_d 2d
=—(wt
y=flot);= w2 2) . (1)

2dwt —4d for 3n <ot<L2m.;
T 2

y:ﬁwtfor 0<ot<mn/2= _det+2dfor n/2<owt<3n/2 =
T T

nxw (a)t)

b, :lzf F(at)sin 2 g(wr) = 2j £ (w)sin n(wt)d(wt);
T 0 0

m/2 37/2 2z
/ :l{ [ 24 sinn(nd(n+ | ( 2dot +2d]sinn(wt)d(wt)}+ [ (ﬁwz—w]sinn(wz)d(a}z) .
1o 7 /2 T 3r2\ T ’
w2 .
1= 1 +I +I3, [ :E I (a)t)snlnwtd(a)t)_ d[icosn(”/2)+51nn(f/2)i|’
n n

V4 . V4

LA z cosn| — smn| —

_ a)tcosn(a)t)|2+51nn(a)t)|2. Ve (2) (2)
— s = + :

n 0 n’ |0 2 n n
3z
s 3 _ 3
I _1 J‘[ 2d(wt) +2d}smn(a)t)d(a)t) [ 2d(a)t)+2d} cosn(wt)|>  2d sinn(wr)|>
T r r n = oz W s
B 2
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Methods of Mathematical Physics

Ex. 34.

Sol :

Ex. 35.

Sol :

Ex. 36.

_ 3nx . (3nrm nr . [ nx
1 COSs T 2d sin T COS 7 2d Sin 7
s Iy =—|—(-3d+2d) -= = +(—d +2d) +— 5
T n T n n /4 n 5
2z . 2z
2 2d cos n(wt 2d sin n(wt
I, _1 %(wt)—4d}sin n(ot)d(ot) . —[—(wf)—“d } (@) + E )I ;
7 3z L s ’ i " 377[ i " %[
2

3nx . nr
| cos(2nz)  2d sin(2nr) COS[ 2 J 2d Sm( 2 )
I, = 1| —(4d - 4a) § ZESCERT) | (34— aa)

-1 nr 2 . (nm 1 3nx 2 . (3nrx 1 nr
—€0S| — |+——sin| — |+—c0s| —— |- ——sin| —— |+—cos| —
d| n 2 nr 2 n 2 nr 2 n 2
"o 2 . (nmr) 1 3nr 2 . (3nrx
+——sin| — [=—cos| —— | ———sin| ——
L n'rw 2 ) n 2 n'r 2

The Fourier expansion for y = f(wt); Sf(ot) = 21 32 52

A bag contains many balls, each with a number painted on it. There are exactly n balls which have the
number z. [one ball with 1, 2 balls with 2 and so on N balls with N on them]. An experiment consists
of choosing a ball at random and noting the number on it and returning it to the box. Find the

probability of getting the number 36? (Ans: 272 )

n +n

4d . [n;z’j . [mr) 8d . (l/lﬂ'j
— | sSin| — |+smn| — || =——SIn
n'rw 2 2 d 2
8d [sm(a)l) _sin3(@n)  sinS(er) }

36x2 72

p= n(n+1) Cnt+n
The probability of hitting a target is 2/5. A person fires at the target 10 times. What is the probability
that he hits the target 6 times. (Ans: 0.11)

6 4 | 76 24
D= 2/5ig=1-2/5=3/5 p = C"[gj (3) 10! 2° 3 1088640

| =———=———"=0.11
5)\5 614!5° 5% 15625%625

In a box there are 10 alphabet cards with the letters 3A’s 4Ms, 3Ns. One draws 3 cards one after another
and places three cards on the table? find the probability that the word MAN appears?  (Ans: 1/20)
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Ex.14

Sol :

Ex. 37.

Sol :

Ex. 38.

Sol :

Ex. 39.

Sol :

Ex. 40.

Sol :

Ex. 41.

Sol :

Ex. 42.

Methods of Mathematical Physics

AN = 23336 1
10 9 8 10x9x8 20

Compute the probability of obtaining at least two “Six” in rolling a fair die 4 times. (Ans: 0.132)
p(A)=1/6,g=1-1/6=5/6

“e(g] (5o (I E) =

| 1
! { 4! 52+i5+1}:L[6x25+20+1]:0.132

T6 21217 T 6
If the probability of producing a defective screw is p = 0.01, what is the probability that a lot of 100
screws will contain more than 2 defectives? (Ans: 8.03%)
. o ey
Poisson distribution 4#=np=100x0.01=1; p(X =x) = ———;
x!

P(A) = p(x=0)+ p(x=1)+ p(x =2) =(l+1+%jel =0.9197 = 91.97%; p(A4) = 8.03%

If the probability that on any working day a garage will get 10 — 20, 21 — 30, 31 — 40, over 40 cars to
service is 0.20, 0.35, 0.25, 0.12 respectively, what is the probability that on a given working day the
garage gets at least 21 cars to service? (Ans: 0.72)

Since there are mutually exclusive event. p =0.354+0.25+0.12=0.72

In tossing a fair die, what is probability of getting an odd number or a number less than 4? (Ans: 4/6)

A be the event of getting odd number. B be the event of getting number less than 4.

p(AUB)=p(A)+ p(B)—p(ANB);1 2 3456;p(4)=3/6;p(B)=3/6;p(ANB)=2/6;
_3,3. 2.4

=676 6 6

Five coins are tossed simultaneously. Find the probability of the event A: At least one head turns up.

Assume that the coins are fair? (Ans: 31/32)

Sample space contains 2° = 32 outcomes. Since the coins are fair, we may assign same probability 1/32
to each outcome. The event 4°(Noheads up) =1/32; p(4)=1- p(4°)=1-1/32=31/32

A sinusoidal voltage E sin at, where ¢ is time, is passed through a half wave rectifier that dips the
negative position of the wave. Find the Fourier series of the resulting periodic function.

E FE . 2E| 1 1
(Ans: f(t)=—+—smwt——[—cos2wt+—cos4wt+ ..... })
0) T 2 7 |13 3.5
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Methods of Mathematical Physics Ex.15

0 if -L<t<0

. t) =
Sol: /() {Esina)tif O<t<L

IHZL o B %
ay=— [ fodt="=[sinardr _ EZcos(@l)
L % T o |
I VI i —leLf(t)cos gy
Vs " L L
nle
_— j E sin(wt) cos nrie dt .
Ty ’
2 E (+n)ot cos(l-mat |
w1%. ' _ E| —cos(l+n)ot _ cos(1—n)w .
75:[[sm(n+1)a)t+sm(1—n)a)t]dt Zn{ 1+ n)o (-n)o 1} ;

if n =1 the integral on the right is zero. Ifn=2, 3, .. we have;

_ wE| —cos(l+n)wt  cos(l—n)wt e
"2z (1+n)w (1-nw

0

_oE| —cos(l+n)z  cos(1-nm)x N 1 N 1
27| (+ne (l1-ne (+me (-no

E | —cos(l+n)r+1 —cos(l-n)z+1 E|-1+1 -1+1
:E + ;Ifnisodd. 4, — =

(1+7n) (1—n) R
if nis even
. ZE{L+L}:£ 200-m+2(1+n) | E[2-2n+2+42n| 2FE
" 2x|l+n 1-n 2 (n+D)(1-n) 2| (m+1)(n-1) (n+D)(n-DHz

(= %0+ Zan cos(nwt) +b, sin(nwt); b, = g;b" =0 for n=2,3,...
n=1

E E . 2E( 1 1
s f(t) =—+—sin a)t——(—cos2wt +—cos(4wt) +j
T 2 7 \1.3 35

Ex.43. Two drunkards start out together at the origin, each having equal probability of making a step
simultaneously to the left or right along the x-axis. Find the probability that they meet after # steps is

1w
(Ans° 4n n!Z )

Sol: N, stepsright; N, steps left N =N, +N,;N,-N,=0;N, =N, =n;p=1/2;q=1/2;

n n n n ' ' ‘
pov (LY [LY o (LYY 22 L 2w 1 1w
2)\2 2)\2 nln!2"2" > 27" 4" n!

Khanna Publishers

75



Ex.16 Methods of Mathematical Physics

COMPLEX ANALYSIS

2 2

. . . . X y
Ex.44. If a,f,x,y e Randsin(a +if) = x + iy then .Find +— =7 Ans: 1
Pxsy ( A Y cosh’ B sinh’ g ( )

Sol: sin(a+if)=sinacos(iff)+cosasin(if);x +iy = sina cosh f+icosasinh

2 2 i a2 2 2 . 2
X y sin"acosh” f cos” asinh”

—+—— . — =sin*a+cos’a =1
cosh” # sinh” S cosh” S sinh” g

Ex.45. If 7 isthe complex conjugate of z, then find the value of the integral IEdz from z=0toz=4+2jalong

the curve c given by 7 =2 4+j¢ 1s (Ans: 10_% )

Sol:  z=1+itidz=2edt +idt = (2t +i)dt;7dz = (¢ —it) (2t +1)dt.

2 a2 a2 2 N3 A2 .
IEdZ:j(2t3+it2—2it2+t)dt:j(2t3—it2+t)dt:2L gty _2x2 iy 2 o 8,
0 41, 3, 2, 4 3 2 3
= :10—&
3
Ex.46. Find the value of the integral qse SIZHZ;Z_Z around the unit circle in complex plane is (Ans: i)
z Via

Sol : Cfﬁ=%f“”(a);i<ﬁ esinz _ 2z [ez cosz+sinzez] =i

n+l (2—0)2 _1!27[ =
dz
Ex.47. Find the value of C_F ( )n where 7 is a positive integer and z = a lies inside the simple closed
z—a
curve c. (Ans: 27 for n=1 and 0 for all other value of n)
dz . 1 dz
. ifn= =27iy R;R=L - =1 =27i;
Sol: ifn=1 Sﬁ(z—a) miy, Lim (2 a)(z_a) C"S(z—a) i
‘ d2 e 1 d
ifn=2 @m = 27Z'ZZR = O,R = FI;LI?E(I) =0
19i
Ex.48. Evaluate J‘(x2 —iy)(dx+idy) along y=x>; x=)" (Ans: =

c

Sol: I [(x'-iy)(dx+idy) along y="3dy = 2xdx;

& — —

= j(xz —ix” ) (dx + i2xdx) = (1- i)j[(xz +2ix)dx
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Methods of Mathematical Physics Ex.17

:(l—i);[xz(l+2ix)dx:(l—i){x—;+213:4} =£+£ ...... )]

o t——
—_—— o

(v i) (2ydy +idy) = [(¥* —iv) @y +idy

I: (x2 —iy)(dx+idy) =
0 6 5 .3 20 . . .
) . 2y° iy 2y oy -1 i 2i 1 =5 7i
|2y’ +p* =20 +y)dy ==t =t = — (2
Jl.(y 4 4 y)y 6 5 3 2, 3 5 3 2 6 15 @
From (1) and (2) we have

. . 5 0 5 7i (15+42)i 57 ). (19).
2 iy dx+idy) =2+ -2y T — - =
[ (=) (ax +idy) 66 6 15 6x15 [6x15jl (30)1

Ex.49. Branch points of multiple valued functions are non isolated singular points. Find the branch points of
the function f(z)=1In(z"+z-2) (Ans: z=1,z=-2)

Sol:  Branchpointsareatz’+z-2=0 = (z—1)(z+2)=0;z=1,-2

Ex.50. Ifthe potential function is log + [x* + yz , find the complex potential function.

[Ans: @ = log z + ¢ (wherecisacomplex constant) |

Sol:  Let u be the potential function, v be the flux function @ be the complex potential function.

; 1 0 1 2
a):”HV;”:log\/x2+y2;u:510g(x2+y2);6_z:5(x2 +xy2) ) xziyz;

ou 1 2y  y ou ov

5 2x*+y? _x2+y2’5__a

., Ou .Ov X [ =y (1 s
O =—+i—=|—5— |+i| 53— |2 o =|— |=> o=logz+c ‘c’is complex constant.
Ox Ox \x 4y X +y z

Ex.51. Find the values of constants a, b, ¢ and d such that the function

f(2)=x" +axy + by’ +i(Cx2 +dxy + yz) is analytic. (Ans:a=2,b=-1,c=-1,d=2)

Sol:  f(z)=x*+axy+by’ +i(cx2 +dxy+y2); u=x>+axy+by’;v=cx’ +dxy+y’

a—u:2x+ay,a—u:ax+2by;ﬂ:dx+2y,@:2cx+dy;a_u:@;a_u:__av
Ox o oy Ox oy oy oy ox
2x+ay=dx+2y————(),ax+2by =-2cx—dy———(2)

From (1) 2 —dyx+ (a—2)y=0,
from (2) (a +2c)x + (2b+d)y=0;2-d=0,d=2;a-2=0,a=2a+2c=0;c=-1;2b+d=0; b=—1
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Ex.18

Ex. 52.

Sol :

Ex. 53.

Sol :

Ex. 54.

Sol :

Ex. 55.

Sol :

Ex. 56.

Methods of Mathematical Physics

Locate and name the singularity for the function f(z)=sec(l/z) in the finite z plane. Determine
whether they are isolated singularity or not?

[Ans: z = _2 is a pole of order one and z =0 essential singularity (not isolated)]
7(2n+1)
1 1 7T 2
f(Z)—SeC ;3 f(2)= ; poles are at cos| — |=0;—=(2n+1)= = z=—"—: Also f(z)
(lj z z 2 7(2n+1)
cos| —
z
is not defined at z = 0, it is also a singularity. z=——— is a pole of order one. These poles are
7(2n+1)

. 2 2 . . ..
located on thereal axisat z=+—, + 3—, These are isolated singularities. At z=0 we cannot define
V4

any +ve integer ‘n” such that Lim(z—0)" f(x) = 4 #0.
. z=01is an essential singularity which is not isolated.

A particle movesalong a curve z=¢ " (2 sint+icos t) . Determine the magnitude of velocity at = 0?

(Ans: \/5)
z=e"(2sint+icost); velocity = dz/dt; v=e"[2cost—isint]+[2sint+icost]e” x—1 at t = 0

=2-ia4+1=+5.
4z° +z+5 ’ ¥ ? )
If f(§)= I—dz where c is the elhpse 5 + 3 =1. Find the value of /(3.5)? (Ans: zero)

f3.5)= dez = 3.5is the singular point. .. £(3.5)=0

1

Find the value of the integral J.e;dz where c: |z] = 1 and z is a complex variable is: (Ans: 271)
! 1 (1)1
er =1 +;+ [;j 5+ ~~~~~~~~~ principle part contains infinite number of terms essential singularity.

1
Residue = 1. J.ezdz =27

. . e . . .
Find the value of the integral J‘?dZ, where c is the circle |z+3i|=1, traversed the counter
z+3i

clockwise is: (Ans: 27ie’)
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Methods of Mathematical Physics Ex.19

Sol :

Ex. 57.

Sol :

Ex. 58.

Sol :

Ex. 59.
Sol :

Ex. 60.

Sol :

Ex. 61.

Sol :

2rif(-3i)=2xie ™ = 2rie’
z—3i

j%dz = 2m'f(a);j

3
z

Find the residue at infinity f(z) =— " (Ans: -1)
22—
z2 1Y 1 1 1 11 . S
f(2) :—1 =z|l-—| =z 1+—2+—4+—6+.... =Zz+—+—5+.. Residueat infinityis-1
5 z z z z z z
z (1 = j
: 2 2
Evaluate the integral using Cauchy integral theorem @%dz (Ans: 477)
z—1)(z-
sin 7z +cos 7z sin 7z +cos 7z

f(Z) . (Z—l) (2_2) ~ . 1 B .
C.F(Z_a)=27rlf(a) 1=Cj3 2 dz+C§ D dz = 27i 1+_1 — i

What is the real part of principal value of 4*~'is [Ans: 256 cos (In 4)]

Let z=4"";x+iy=4""
In(x +iy) =In(4*") = In(x+iy)=(4-i)ln4;

(4—i)In4 , 4In4 _-iln4 —iln4,

. . 4 i . 4
x+iy=e ; x+iy=e e =™ xe™ x+iy=4"xe"";

x+iy =4*[cos(In4)—isin(In4)] = x =256cos(In4)

Find the value of the contour integral .[77 xd0)|, for a circle ‘c of radius 7 with center at origin is.
(Ans: 27r)
z=rei0;£:d9;f7xd§=j£:£ %=£.><27ri:27rr
iz / iz iYz i
Evaluate C_‘Sidz Sfor |z+1+i|:2 [Ans: i(3+4i)]
: (zz+22+5) 2
—2+J4— ++/- 2+4i - | —2—4i
2407 =5=0:z= 2+ 24 20=2_2 16 _ 22_41= 2;419 2241 142012

(2 +2z+45)=[z=(-1+2D)] [z=(-1-2D)]; |z+1+i || —1+2i+1+i = 3i]

is outside the contour. |z+1+i |5 —1—-2i+1+i|=—i| is within the contour. —1 — 2i is inside the

contour
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Ex.20 Methods of Mathematical Physics

? 1-2z
z—(=1+2i)

mdz = 271'1']((0), a= —1—2i;

2wl -2(-1-20)] _ 27zi[l+2+4i] 2x(3+4)
—1-2i+1-2i —4i —4i

CONTOUR INTEGRATION TAYLOR’S & LAURENT’S SERIES VECTOR

T
~ZG+4i
2( i)

CALCULUS

Ex. 62. Find Taylor’s expansion of f(z)= ﬁ about the point z = -i
z+1

i3 (-1)" (n+)(z+i)"
(Ans: 2[“; (1-iY jl)

1
Sol: JO="—5 putr=z+5 f(2)= : ? = 2= 2
(z+1) (t—i+1)  (1=i+r) (1_,-)2[1+t}

—1

1 t 1 1 t i ¢
_(1_,-)2[“(1—1')} _1—21'—1{”(1—1')} ’f(z)_E{H(l—i)}

u 34 PV Y VGRSV
_2[_(1_i)+(1_l_)2—(1_l_)3+ ..... ],f(z)—2{1+z o }

i

:11 = (=1)" (n+1)(z+i)"
/() 2[+; T

7z-2
Ex. 63. Find the Laurent’s expansion of ()= (z+1)z(z-2) in theregion 1 <z+1<3.

-2 1 1 2| z+l (z+1)
+ -+ -+ 1+ 4+
z+1 (z+1D)™ (z+]) 3 3 3

(Ans:

1) = Tz—2 o  Tu-n-2 _ Tu-9 ) )
Sol : = (Z+1)z(z_2) s Putu =z Lregion s /(2) S —Dw—3)  u(u-Dw-3) partial fractions

7u-9 A B C
w1y —3) _;+u—1+u—3’ Tu-9=A(u—1)(u—3)+ Bu(u—3)+ Cu(u—1)

putu=1;7-9=B(-2)=> B=1; put u=3;21-9=Cx6;12=6C;C = 2;
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Methods of Mathematical Physics Ex.21

Ex. 64.

Sol :

Ex. 65.

Sol :

Ex. 66.

Sol :

putu=0 =-9=-4(-3)=-9=34;4=-3;

-3 1 2 -3 1 2
f@)=—+——+——;1<u<3;— <1—<1=—+ 1T~ ”
u u—-1 u-3 u 3 u u(l-—) 3(1_5)

u

( 2, 1 1 1 J —2{ z+1 £z+1j2 (z+1j3 }
f(2)= -+ -+ Tt +—| 1+ + + +...
2+l zeDl 4Dy (z+]) 3 3 3 3

Consider a right-handed orthonormal system of co-ordinates (12, v, c?)) Ifthe infinitesimal displacement

P, .1, .1, . . .
in these co-ordinates is — duti +—dvv + Zd ®. Then find the gradient of a scalar field T in these co-
g

ordinates is: (Ans: f(a—Tjﬁ + g(aTj + h( GTJ )
Ou ov Ow

For any system of co-ordinates ¢,, g,, ¢, with length elements & dq,q + h,dq,q + hydq,q

W9 oo 0w
h 0q, h, 0q, h Oq,

In given system of co-ordinates

V=

1 1 oT oT orT .
; —h,=— VI =4 —+v +oh—;VT = —u —V+ h—a)
f g ok i & ov ow f g@v ow

B
I

|

=
I

Find the value of V-(#"7), 7 being the unit vector where in ‘d” dimensions, is  (Ans: (n+d)r"™")
For 3-D space V- (r"F) =(n+3)r" or V-(r"F)=(n+3)r"" for 3-D space for ‘d’ dimensional space
V-(r"f)=(n+d)r'".

n+l

—()c2 +y2 +22)

If =(x2 + ) +Zz)” (xf+y}+21€) andif F =-VV then. Vis equal to? (Ans: 20n+1)

2 2 2\n+l _ 2 2 2yn
—(x*+y* +2%) — l@_V+ 6V+A8_V;5_V: (n+D(x"+y +27) <2
2(n+1) ox oy oz Ox 2(n+1)

Let V =
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Ex.22 Methods of Mathematical Physics

ov 2 2 2\ oV 2 2 2yn ov 2 2 2\".
—=—X(x"+y +z7) = ——=x(x"+y +z T EY\X Y )
ox ( 4 ) Ox (= 7 y ( )

_66_1/ = z(x2 +y*+2° )n =-VI= (x2 +y +2° )n [xf + )+ ZkA:| given function.

Z
2dz
Ex. 67. Find the value of the integral J‘ﬁ where ¢ is a closed contour defined by the equation
2lz| -5 =0 traversed in the anticlockwise direction? (Ans: —-167i)
Sol : J‘Z—dzdz =27i ) Residues
z-=5z+6

22 =5246=0=(z-2)(z—3) = 0= z = 2,3 are the poles. Z=2 lies inside the contour.

. _ 23 8 C(—E 8y = —16ni
Residue :lﬂ(z—z)mz_—lz—g A !22 -5z+6

Ex.68. What is the directional derivative of xyz* + xzat(1,1,1) in the direction of normal to the surface

3xy* +y =zat(0,1,1)?

(Ans: %)
Sol: Vg =i(yz +z)+}(xzz)+l€(2xyz+x)‘(l,m) =2i+j+3k.

To find the normal to the surface

3 +y—z=0; Vg, :f(3y2)+j'(6xy+1)+lé(—l)‘(m =3i+ -k

The directional derivative in the direction of normal to the surface is

3i +] k _
V. Ve, (21+]+3k)( ) 6+1-3_ 4
[V, | Jo+1+1 i A
j cos20d6 27d*
Ex. 69. Evaluate J 1—2acosf +a (Ans: — )

Sol : cost9=l(z+l);cosZé?=l(z2 +L2);
2 z 2 z

o 1—2acosf+a’ 2a

01-""(z+—)+a’ iz
5 ¢ )

T cos20d  f 1/2(zz+l/zz) (gj
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Ex.23
2t +1
I (22 +1/2%)dz _I - .
2 z[1-a(z+1/z)+a" ] ¢ 2[1- a@ﬂzz] T2 P gt —a v d’s
z
-1 (z* +1)dz -1 (z* +1)dz 1 (' +1)
:_-I 3 2.3 2 :_-J- 2 2 2 :_-I 2 dz
2i z —a’z +az 2i° zlaz" —z—az+a] 2i° z'[z(1-az)+a(az-1)
f(z) has a second order pole at z= 0 and simple polesatz=a; 1 —az=0; 1 =
circle.
At z=0;

az; z= 1/a outside the unit

roliin d{ 2 (z4+1) }
11=-0 dz| 22 (1—az)(z—a)

_ (1-az)(z—a)4z’ - (z* +D[(1-az)+(z—a) — a] 1(—a)x0-[1+a’] —(1+a°)
[(1-az)(z-a)’ - e T2
Atz=a;

lim (z—a)z" +1) - a'+1
z>a 22 (1-az)(z — a)

T a-a)
ZR_ _(1+a2)+ a*+1

1 , at+1
2 o = l-a s 2
a a(l-a*) a (1-a*)

_ (I-a*)(-1-a*)+a* +1 _ 1=
s (1-a*) -

1 a2+a2+a4+a4+1}
2

a

(1-a*)
2a* 24d
a’(1-a*) Z 1-a°

1({ 24° 27a’
Substitutein(1)1=;( 4 )2711 =
1 a

Ex.70. Evaluate I sec)z dz C:lz—1]=1 [Ans: 27isec(l)(1+tan(1)) ]
t(1-z

Sol: f(2)= (leec) = poleoforder ‘2’ atz=1; R —lle—(l— z)
—Z

, zsecz

(-7

1! =1 dz
R=zsecztanz+secz =sec(l)tan(l)+sec(l) =sec(l)[1+ tan(1)]
J~ zsecz

s dz = 2risec(l)[1+ tan(1)]
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Ex.24 Methods of Mathematical Physics

2z

e
Ex.71. Find the Laurent series about z = 1 for the function f(z) = ( 1)3 .
s
2 2 2 2 2
(Ans: f(z) = e - 2e - 2e +4e 2e
-1y (z-1° (z-1) 3 3
e2z 2(t+1) e2te
Sol: f(2)= —aboutz=1Iput t=z-Lz=t+1; f(z) = =
(z-1) (1+1) t

2 2¢ 2 3 4
:6—3[1+2t+( ) +(2t) +(2t) +..... }
t 2! 3! 4!

= ¢ {1+2(z—1)+4(z_1) +8(Z_1)3+2 (z-1) +}

(z-1) 2 6 234
2 2 2 2
- . 2 ~+ 2 +4i+ge2(z—l)+....
(z—l) (z—l) (Z—l) 3 3
t th
Ex.72. Find the residue of f(z) = Watz =0?
z

. 4
cos zcosh z : :
Sol : f(Z)Zﬁ_; 3 3 s
Z sinzsinhz { - ++...1{z++ Fo }
3! 5! 31 5!
Z2 Z4 Z2 Z4 26 Z4 26
I+—4——— +—+
1 2141 21 2120 2140 41 214!
2_3[ 4 6 6 4 6 8 6:|
2 z z z z z z z
i S + + =
3151 51 31 3131 3151 5!
1+2z* L 4
1 12 4 1 1-z°/6
z 1+z4[1—1+1j z 1+z4[1—1}
| 120 36 120 60 36
_ 1 1-z*/6 1 1-z*/6
z° _24><z4 221 1-2/90
L 60x36
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Give the region of convergence

——+=—(z—1)+....series converges for all values of 7 = | )

(Ans: -7/45)
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Methods of Mathematical Physics
| z* z* - 1 z* z*
I-—||1-— =—||1-—||1+=
6 90 z 6 90

1. ¢ ¢ 2 111 1] 2
S | PR | ——2 -
2179 6 6x90| 2 2|90 6| 6x90

le,_

(6-90) 84 -7
6x90  6x90 45

Coefficient of V2 is

1-2z
Ex.73. Evaluate -[z(z—l)(z—Z) where |z|=3/2

1-2z
Sol : f(@)= z(z—l)(z _2) ;z=0and z=1 are poles inside the contour.

I=27i) R= 2ﬂix%:3m’
LINEAR ALGEBRA, MATRICES

7 0 0

Ex.74. Considerthematrix |4 1 0 |.If A,A,,4, arethe eigen values of this matrix, then find the value of

6 2 -7
(h+ 2+ 4) +(& + 245 +4)
Sol: (A +4+A4)=land Ak =—49=> 4 =T 4, =—T: 4y =1
(h+ 2 +4) +(A+4+247); 1449+49+1=100

1 2
Ex.75. Find the eigen values of the matrix {—8 1 J ?

Sol: Trace=12 = A + A4, =12and| A|=27= A A, =27 which gives A, =3and A, =9

2 4
Ex.76. Find the eigen vectors v, and v, of the matrix L 2} ? [Ans: v, = (2,-1)" v, =(2,1)"]

Ex.25

(Ans: 371)

(Ans: 100)

(Ans: 3and 9)
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Ex. 77.

Sol :

Ex. 78.

Sol :

Methods of Mathematical Physics

‘:o;(2—4)2—4:0:>(2—/1)2 =4=2-A=22=1=0,4

X 0 2
= ;2x+4y=0;x+2y=0x=-2y; X =
v) 0 -1

x X 2
):4( );2x+4y:4x;2x:4y;x:2y;X:L}
y

y
01 00
. . . 0010
Consider the following 4x4 matrix S. S =
0 0 01
1 000
4 4
S, then find the value of Z(ﬂi )
i=1
0010 1 000
@ _[00 0 1) G [0 100
{100 of 10010
01 00 00 0 1
4
— > A'=Trace(S*)
i=1
Find the eigen values of the antisymmetric matrix.
0 -n, n,
A=|n, 0 -n
-n, n 0

where 7, n, and n, are the components of a unit vector?

0 -n, n, 0-4 -n,
A=\ n, 0 -n |;|AFn(=nny)+n,(mny);| n, 0-4 -n |=0
-n, n 0 -n, n 0-4

2, 2 _
—/1[/1 +n J+ n, [—/1}13 - nln2]+ n, [n1n3 - nz/l] =0
3 2 2 2 . 3 2 2 2 .
V= A-nmA-nnn, +nnn, —nA=0,-4"—A(n, +n, +n;)=0;
Since n,, n, and n, are the components of a unit vector, n} +n; +n; =1;

—/13—/1=O;13+A=O:>/1(12+1):O;A=O,ﬂ=ii

Khanna Publishers

if A, wherei=1,2, 3, 4 are the eigen values of

(Ans: 4)

(Ans: 0, i,-i)
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Ex.27

Methods of Mathematical Physics

Find the trace of the real 4x4 matrix U

Ex.79.

~
R| <
<
wn
o
(o]
g
“
=
<
1
74 S S (e
]
I
~
t
<
2
=
=
X
[}

=r/4,

Put x

Sol :

S o o Ty

S o Ty O
=,

S Ty © O

4X000

/4

SoXxX=

4coshx=4 cosh%

x4
—+—+.....
41

2!

2

X

Traceof €' = 4{“
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Ex.28 Methods of Mathematical Physics

. A Bj. . .
Ex.80. Matrix M = [C 0} is an orthogonal matrix. Find the value of |B|? (Ans: 1)

A B .
Sol : M _{C 0} For orthogonal matrix MM™ =1I;

ABAC_I.A2+BZ acl 10
c ollB o| | 4c crl o 1>

C’=1;C=*land AC=0= A=0and A> +B*> =1= B> =1hence| B =1
NUMERICAL ANALYSIS, SPECIAL FUNCTIONS
Ex. 81. Find the root of x* —x — 1 = 0 after two approximations by using bisection methodis  (Ans: 1.375)
Sol: f(D)=1-1-1=-ve; f(-)=—1+1-1=-ve; f(2)=8—-2—-1=5+ve root lies in between 1 and 2.

a+b
X =

=15 f(x)=(1.5)" =1.5-1=0.875 +ve; Root lies between 1 and 1.5 = 1.25 = x;

f(x,)=(1.25)' =1.25-1=—0.26 —ve ; roots lies between 1.5 and 1.25 = x, =1.375
Ex. 82. Given a> 0, thereciprocal value of a is 1/a by Newton Rephson method for f'(x) = 0. What is the Newton

Raphson Algorithm is (Ans: x,, =2x, —ax])
_ 1/x —

Sol : 1¢uuf@)=l—a;fuo=—%;nﬂ=x¢—345—¥);aﬂzxfhﬁ[l_“}nﬂ=zn—aﬁ

X x X -1/x; X,
Ex.83. In the above problem for a = 7 and starting x, = 0.2, then find the first two approximations are

(Ans: 0.12, 0.1392)
Sol: x, =x, —@:2% —axy;x, =2x02-7x(0.2)*>=0.12
S (xp)

x, =2%0.12-7x(0.12)* =0.24-7(0.0144) = 0.24-0.1008 = 0.1392.

Ex.84. The recurrence relation to solve x = e™* using Newton Raphson method is
(I+x)e™
(Ans: %, =———
I+e™™

S (ne)

Sol: [f(X)=x—-e"f'(x)=1+e"x,, =x

n+l = 'n f’(.xn) —n 1+ e—,\f”
_x,(l+e)—x, +e _ X xer—x, e e (x,+1
B (+e™) (1+e™) l+e™

/2

Ex.85. If f(0)=1L f(x/6)=1.6487; f(x/3) =2.3632; f(x/2)=2.7182, J f(x)dx is. Use Trapezoidal rule.
0

(Ans: 3.072)
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Methods of Mathematical Physics Ex.29

Sol : X 0 /6 /3 /2
) f(x) 1 1.6487 2.3632 2.7182
Here we have three sub intervals.
/2
[ f(x)dx= %[yo 3, +2(0 F et 3, ] = 2%6[1+2.7182+2(1.6487+2.3632)]
0
= %[3.7182 +2(4.0119)] = %[3.7182 +8.0238] =3.072.
d . . .
Ex. 86. d_i = f(x) y(0) = 0. Find the solution at x = % is (Ans: %[f(xo) +4f(h12)+ f(I)] )

Sol: k= hf(x,):ky = hf[(x,+1/2)(y, +k /2)];

ky = hf (h12);k, = hf (h); y =%[k1 +2k, + 2k, +k,]

h
y =g[f(xo)+4f(h/2)+f(h)]
Ex.87. The Backward differenceis defined as Vy, =y —y _, and shifting operator E isdefineas Ey, =y, ,,.

Find the relation between V and E ? (Ans: V" = (1+E’1 )”)
Sol : VI =n-ye Vy, =y _Eil(yl); Vy = |:1_E_]:|y1;v =1-E7,V" :<1_E_l )n
Ex.88. Find arelation between A and V and E (Ans: AV :(E”2 —E’”Z)z)

2

Sol: AV=(E-1)(1-E")=E-EE" -1+E" =E-2+E" =[E"-E""]

-1
Ex.89. Find the value of Atan™ (”—j (Ans: tan™' (21 5 j )
n n

Sol: Atan™ [n_—l] =Atan™ (1 —lj ;Atan” (1 —lj ;Atan” (n_—lj =tan”' [1 —L} —tan”' [1 —1} .
n n n n n+1 n/’

L L
tan”' A—tan™' B=tan™ (%j;Atan’] (n_—lj — tan”! n+1 n
+

1 1 n+l—-n

it ) y

— tan” n_n+l o | Mt
an [ 1= (n=1) L n0i=D)
n+l n n(n+1)
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Ex.30

Methods of Mathematical Physics

1
_ 1)
=tan™' UL - 1 a1
n(n+1)+n(n-1) = tan™ m =tan”! 2_712
n(n+1)
. . . 1
Ex.90. Find arelation between average operator and central difference operator (Ans: o’ =Z(52 +4))
1 1 _
Sol : MY, :E[J’Huz +yr71/2] :—{El/z[y,]+E 1/Z[yr]}
2
w1y :l[El/z_i_Efl/z:'y 'y=l|:El/2+E71/2j|
) ]
1 2 1 2
*=—|E+E | 2:—[ E'"? —E'? +4] ........ 1);
w=5l w =2 ) M
5)/, =Y =Voiy = El/z(yr)_Efl/z(yr) — |:E1/2 —E'”]yr 5=E'/2 _E-1/2
. 2 1 2
. Equation (1) become ; # :Z[é‘ +4]
o0 tn 72+ N
Ex.91. Given that ZHn (x);:e 2" Wwhat is the value of H,(0) is (Ans: 12)
n=0 .
iH Wz )ﬁ+H( )ﬁ+H( )ﬁ+H( )£+H( )i+
Sol : 2= ; 0x0! lx“ 2x2! 3x3! 4x4! .......
22 243 2\4 4 \
:1—t2+(’) _®) +(’) F oo 1—t2+t—;H4—()‘):l;H4(x):i=3x4=12
2! 3! 4! 217 41 2! 2!
Ex.92. Express cosx in terms of Bessel function (Ans: J,-2J,+2J,—-.....)
=) 1 , 1 s 1
Sol: e =Jo(x)+(1—;)J1(x)+(f +t_2)Jz(x)+(’ _t_3)']3(x)+ ------ put ¢t =cos@+isind
1 . 1 . , 1
17 = cos pf +isin po; ;zcosH—zsmH;t—p=cosp9—lsmp¢9:t +t_”: 2cos pb,
t? _i_z' in np@: Lsising . )
P A NE =J,(x)+2isin 8J,(x) +2cos 20, (x) + 2isin 30, (x) +.....
™" = J (x) =2c0820J,(x) +2c0s 40, (X) +....... +2isin 8J,(x) +2isin360J) +......
equate real and imaginary part;cos(xsiné) = J (x)+J,(x)2cos20+2J,(x)cos46 +....
sin(xsin @) = 2J,(x)sin @ +2J,(x)sin360 = .... put 9:%; cosx =J,(x)=2J,(x)+2J,(x) +....
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Ex.31

Ex.93. The generating function F(x,¢) = i p, (x)¢". For the Legendre polynomial F(x,7) = (1 —2xt+t’ )71/2

Sol :

Ex. 94.

Sol :

Ex. 95.

Sol :

n=0
then find the value of p,(-1)? (Ans: -1)
- ks -1/2 >
(1-2xt42) " = p s (1e2e) 7 =3 p e [+ ] Zm(m
n=0 n=0
(1+t)'1 =l—t+0 -+ D " p (=) =l—t+ = +..(=D)"t" = z—"pn(—l);
P (D= (1) =1
o 2n
Find prn x)p,_ (x)dx (Ans: an’ -1 )
-1

We have the Recurrence formula (2n+1)xp, = (n+1) p,,, +np, ;;n —>n—1

[2(n - 1) + 1:| xpnfl = npn + (n - l)pn72 9(2’1 - l)xp/rl = npn + (n - 1) pan ’

multiplying by p, we get (2n—1)xp,p, , =np, +(n=1)p,, xp p , =——p’ +"__1pn72_pn;

2n—-1 2n-1
Py — [np; +(n=Dp,p, ];
nt’n—-1 2]1 _1 n n-24n )
Integrating both sides with x
1
n 2 2n
X, dx = x)dx + =
_I]p"p”" jp”() Ip” Pa (2n—1j2n+1 4n* —1
! 2n (n + 1)

Flnd I xzpnflpnﬂdx

! (AnS: (2, -1)(2n+1)(2n+3))

1

_[ X’ P, PotX we have (2n + l)xpn = (n + l)pM +np, ;xp,, n—n-1;

-1

[2(n _1) + 1:| xpnfl = npn + (n - l)pn72 5

XDty = [npn +(n —1)p,172] ........ M, xp,,, =——

1
(2n—1)

1 n(n+2)p,p,., +n(n+1)p;

x(2)= x’ =
DO =0 D@D oD 2p,ap

1

n(n + 1) 211(}'1 + 1)

- 1)pn pn72

Integrate both sides szpn—lpnﬂdx =

J _(2n—1)(2n+3)£p”dx “(2n-1)(2n+3)(2n+1)
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Ex.32 Methods of Mathematical Physics

: J(f)c2 +()ch)2 )

Ex.96. Find [xJ; (x)dx (Ans )

Sol : j xJ2 (x)dx = j Jixdx ;

ngz 1 2._J§x2 2
; —[Jodos= ; + [ Jodx

x2 x2
=J§7—j2JOJ57=

2.2
Jyx

2

+J‘)cJ1)cJ0

J‘ 2 _ngz
xJ, (x)dx = 5 +

J.MI%(XJI):[X‘]IXJO]_J‘XJOMI J.lexJO = (x‘;l)z;

2.2 2
J.x](f (x)dx = Jox” | (/)
2 2

Ex.97. Find J!' =7 (Ans: i[«/n_z(x) =2J,(0)+J,.,(M])
Sol: /(0= [/, 00, 0] 0 =[0I, ]

T =5,

T30 =31, =, @] )

:%[JH(X)—ZJW (X)+,.,(0)]
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1.

. The Vectors § +2j +3k , 3k,

. The maximum

OBJECTIVE TYPE QUESTIONS

VECTOR ALGEBRA

The vectors (x, 1,0), (1, x, 1) and (0, 1, x) in R*are
linearly dependent when the scalar x is
@ 0 (b) +1

© +42 d +43

2% +4j—k are
(@) linearly independent

(b) linearly dependent

(c) orthogonal to each other

(d) parallel

value of  the

function f'(x) = xe"‘z is

-1/2

1
@ V2 ®) S

-1/2

I _ 1
© 5 @ ;¢

. A function f(x) = x (x-1) has

(a) aminimumatx=1
(b) amaximumatx=1
(¢) aminimumatx=1/2
(d) zeroatx=-1

. Letf g, hbe vectors

1 1 1
f=lilg=|-ilh=|i
-1 0 2

in three dimensional complex vector space. Then
fis

(a) orthogonal to both g and /4

(b) orthogonal to g but not 4

(c) orthogonal to / but not g

(d) not orthogonal to g and not orthogonal to
h.

. Ify is a differentiable vector function and f is

sufficiently differentiable scalar function
then curl ( fv )

@ 0

(b) (grad f)xv+(f curl V)

11. The

() feurlv
(d) (grad f)><\7

. The value of 4 for which the vectors

(L-2.2), (2.-15) and (3,-5,72)

are linearly dependent.
@ 5 (b) 3/5
(c) 5/7 @) 514

. Let>u, be a series of positive terms. Given

nou +1

that > u, is convergent and alSOn%oo_’;/l

exists, then the limit is

(a) necessarily equal to 1

(b) necessarily greater than 1

(c) may beequal to 1 or less than 1
(d) necessarily less than 1.

. A linear transformation 7, defined as

X

x X +x,

T| ™2 |=| . _,. | transforms a vector for a
2 3

X.

3

three dimensional real space to a two-
dimensional real space. The transformation
matrix T'is

11 0 1 00
(@ (0 1 _1] (b) 01 0
1 11 1 0 0
@111 Dlo o1

VECTOR CALCULUS
10. Consider a vector field F'= (yz,xz,xy) then

@) V.F=0,VxF =(0,0,0)
(b) V.F=1VxF =(0,0,0)

(©) V.F=0,VxF =(y,~2,0)
d) V.F=1VxF =(0,z-x)

value of the integral

(z12,212)
(y €os xdx +sin xdy)
(0.0)

is
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12.

13.

14.

15.

16.

17.

(@ 0 (b) /2

(c) = (d) 2n

Find the values of the constants a, b, ¢ for which
the vector

— A

V=(x+y+az)f+(bx+3y—z)}+(3x+cy+z)k

is irrotational

@ a=1,b=1,c=-1

(b) a=1,b=-1,c=1

(¢) a=3,b=1,c=-1

(d) a=3,b=-1,c=1

Which of the following statement is

INCORRECT?

(a) The vectors Ex(I;xEl ‘[;x(Exa_) and
Ex(ﬁxg ) are coplanar

(b) Ifa,b,candd are coplanar, then
[abe|=[aba]+[ade]+ [ape]

(c) (Exg). {(l;x E)x (Exa_)}z {5.([;><E)}

(d) Ifa_,[;,z represents the sides of a
tetrahedron, then the volume of tetrahedron

is % abe)

The work done when a force

F= (x2 —y? +x)f —(2xy+ y)] moves a particle
from origin to (1, 1) along a parabola y*=x

(@) 2/3 (b) 4/3
(c) 5/3 (d) 773
If for a scalar function ¢ﬁ¢ = riz then ¢ is
equal to
1

(@ — b —=

r r
(© In(r|) ) In(?)

The divergence of vectorsy —j and y = xj
is respectively

(@ 0,0 (b) 0,1
(¢ 1,0 @ 1,1
The value of the line integral

Iﬁ.di where F = xi + yj and c is a shown, is

Khanna Publishers

18.

19.

20.

21.

Methods of Mathematical Physics

A (1,1)
y
C
X~ >
(@ 0 () 1
() 12 (d 2
Consider two vectors

A= (x+y+32)f+(x+3y—z)j‘+(3x—y+z)l€
and B = (¢" sin y)i +(¢* cos y)j which of the
following is correct

(a) 4 isirrotational and B is irrotational

(b) A isirrotational, B is solenoidal

(c) A issolenoidal, B isirrotational

(d) A issolenoidal and B is solenoidal

If Fisa solenoidal vector, then the value of curl
curl curl curl F'is
(a F

© V*F

(b) zero
(d vF

Find the turning points of £'(x) = e ,
where the function become maximum.

(@ x=0 (b) x=+1only

(¢) x=-1lonly (d x==1

Consider the vector V=r/r

(A) Thesurface integral of this vector over the
surface of a cube of side a and centered at the

origin
(@ o0 b) 27
© 2na d 4r

(B) Which one ofthe following is NOT correct?

(a) Value of the line integral of this vector
around any closed curve is zero

(b) This vector can be written as the gradient
of some scalar function

(c) Theline integral ofthis vector from point P
to point Q is independent of the path taken

(d) This vector can represent the magnetic field
of some current distribution
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22. The

of f(x,y)=2x*+2y* + z* at point p(2,1,3) in

directional derivative

the direction of the vector 5 — 7 2% is ?
@ 4/45 (b)—4/+5
© 5/4 d —5/4
23. The curl of a vector field F is 4%. Identify the

appropriate vector field F from the choices
given below.

@) F=2z%+3zp+5)2
(b) F=zp+5y2
© F=3xp+5)2
(d) F=2%+5y%
24. If y = xf + yj’ + Z]é is position vector, then
the value of V(log r) is

7 7
(@ — b —7

r r

- r
© r3 (d) r3

25. If F(z) has a constant magnitude then

dF(t)

=0

d —
(@) EF(ZFO b F().—=

© F(1)x dF (’) _0) F()- ~0

26. If all the surfaces are closed in a region
containing volume ¥ then the following theorem
isapplicable.

(a) Stoke’s theorem
(b) Green’s theorem
(c) Gauss divergence theorem
(d) None the above

27. The curl of a vector 4 = ¢** ({ ]+ 12) at the
point (1,2,3) is

@ e (i-4j+3k) () (F-47+3k)

dF (1)
d

28.

29.

30.

31.

32.

© €° (i+}+l€) ) zero

Consider the following statements and identify

the CORRECT ONE.

I. If Aand B are irrotational, 4 x B is also
irrotational

I. If AandB are irrotational, Ax B is

solenoidal

. If Aand B areirrotational, 4 x B =0

(2) & 1T only (b) Il only
(c) HIonly (d) I &Il only
If § is the sphere of radius R and

Z=x3f+y3}+z3l€,then _!A.ds:

12
(@ 5 & (b) 472
4 4 s
— 7R — R
© ™ @ <
The angle between the surfaces

X*+y’+z =1 andz=x"+y’ -1 at
the point (1, 1,-1)

(a) COSI(EJ (b) cos ( 10 J
J3 63

5 4 1
cos™ (j cos™| —=
© <5 @ 5|
A fluid motion is given by
= (y+z)i+(z+x)j+(x+y)k,
which is irrotational. The velocity potential is

given by
@ xy—yz+zx (b) xy+yz—zx
(© xy+yz+zx (d) yz—xy+zx

If f(r) 7 is a solenoidal, which of the

following represents the correct function for
f(r)? Where c is constant.

c c

@ ~7 (b) ~
r r
c

© ~35 d ~7
r
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0.4

33. A vector field F is said to be conservative ifand
onlyif
(a) F'isa curl of some vector r
(b) F'can be represented as a gradient of scalar

function ¢
(©0 VeF=0
d VxF=F

3

u=e> then—a ‘o
34, If ’ oxdyer is equal to

@ exyz[1+xyz+3x2yzzz]
(b) exyz[1+xyz+x3y3z3]
© exyz[1+3xyz+x2yzzz]
(d) exyz[1+3xyz+x3y3z3]

35. If p = x + yj’ + Z/€ then (r_V)r2 is equal

to
(@) 2r2 (b) 3r?
(c) 4r? d o

36. The four vertices of a regular tetrahedron are
located at 0(0,0,0), 4 (0,1,0), B(0.5v/3,0.5,0)

and C(%,O-i%) The unit vector
perpendicular (outward) to the face ABC is
(@ 0.41x+0.71y+0.292
(b) 0.47x+0.829+0.332
() —0.47x+0.82y+0.332
(d -041x-0.71p-0.292

37. If 4 is the region bounded by the parabolas

y* =4xandx’ =4y ,thenJ..[dedy is equal to
A

48 36
@ ®) <

32
(c) ? (d) None of these

38. The unit vector to the surface x> + y2 —z=1
at the point P(1,1,1)is

Khanna Publishers
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i+j-k 2+ -k
@ ~ 5 ® e
i+2]-k 252k
— d ———
© — @ =
LINEAR ALGEBRA
MATRICES
82
39. The matrix representing the linear operator P
in the basis u, =e™, u, = is
0 o 0 o
(@) at 0 (®) —a*> 0
a> 0 a’> 0
© 1o —& @ o &
. . ) d
40. Thematrix representing the linear operator I
in the basisy, = e™,u, =e ™ is
0 « 0 «a
@) a 0 () -a 0
a 0 a 0
© 0 -« d a -«

41. Which of the following matrix rotates the

X
Vector[yj through 30° about x - axis

3

N3d 1 NEY
2 2 b o
@i 3 ® - 1
2 2 2 2
] RER"
2 2 2 2
© |3 1 @ -1 3
2 2 2 2

42. Which of the following is INCORRECT
regarding characteristic roots/ vectors?
(a) The characteristic roots of a unitary matrix
must be uni modular
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43.

44.

45.

46.

47.

(b) Characteristic vectors corresponding to a
system of distinct characteristic roots of
any square matrix are linearly dependent

(c) Characteristic roots of a Hermitian matrix

arereal
(d) Characteristic vectors of a unitary matrix are
orthogonal o 3
The rank of the matrix| | # 2
2 6 5
@@ 2 (b) 3
(¢ 1 (d) 4
The matrix 4 = (1 is similar to the matrix

4 0
@ {0 -1
0 4
(© 1 0

13
® 12 2
10
@ 1y »

) . a b|  |e f
Given two matrices 4 = A'=
c d g h
whose elements are real numbers other than

zero. If 4. 4'= | wherelis the identity matrix
and D is the determinant of 4 then D is equal to

(@) e/d (b) dre

(¢) bclad (d) none of these
cosa sina ,

If 4, = . , then consider
—Smao CoSa

the following statements:

D A, A=A,

1) Aa.Aﬂ :Amﬁ
n cos"a sin"«a
m (4,) =]
—sin"a cos" a

n cosna sinna
NV (4,) = "
—sinna cosna

which of the above statements are true.

(@) TandII (b) TandIV
(c) TandIII (d) HandIV
3 - o
Let A= 1 , then A" is given by, where

49.

50.

51.

52.

n is any positive integer
1+3n 1-4n 1+2n —4n
@l 14n —14a|® 0 1-2n

10 -1 4
© o 1 @ 1-1 3

. The condition for a Matrix

- p+id

a-—iy

a+iy
p+io

} to be a unitary matrix
(a) a2+ﬂ2:}/2+52

0) o’ + == +67)

© a*+p +y*+0> =1

(d) az +ﬂ2 :2(}/2 +§2)

0
Ifd=
—1+2i

—2-4i -2

4 } (®) L—zi
[ -4 —2-4
(0)6{—2+4i —4}

1[ -4 -2-4i
@ 6[2—41' -4 }

1+2i .
0 }, then (/- A) (I+A)"is

-1-2i
-2

—4
@ {2 —4i

1 0 2
.13 -1 1].
The rank of the matrix is
5 -1 5
(@ 0 ) 1
(c) 2 (d 3
The value of the determinant
1989 1990 1991
1992 1993 1994 is
1995 1996 1997
(@ 0 () 1
() -1 (d) none of these
If product of matrices

4| cos o) cos 6 sin 6
cos @ sin @ sin 2 0 and
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53.

cos’¢  cosgsing
sin” ¢

then @ and ¢ differ by

(a) An odd multiple of 77

= cos sin g is anull matrix,

(b) An even multiple of 7
T

(¢) An odd multiple of )

T

2

If A4 is a square matrix of order 2 and| 4 |= 2
then 4 (adj A) is equal to

(d) An even multiple

S O -
[e)
o O

2 0 0
@ (020 (b)
0O 0 2

(=N

1 0
1

0
0 0

(c) (d) None of these
0 1

EIGEN VALUES AND EIGEN
VECTORS

54.

5S.

56.

Consider the matrix 4 :B ! ]Lhe eigen

values of this matrix are
(@) land-1 (b) 2and-2
() J2and_,2 (d) 1/2and-1/2

Let A, B and C be three matrices Tr(4BC) is
same as

(@ Tr(BAC) (b) Tr(CBA)
(c) Tr(BCA) (d) Tr(ACB)
0O 1 0
The matrix 4 = | 0 0 1 | has three eigen

1 0 0
values A; defined by Av; = A,v; Which of the

following statements are NOT true?
@ A +4,+4;=0
(b) 4,4, and A5 are all real numbers.
(¢) A;A, =+1for some pair of roots.

d A =+Li=123

Khanna Publishers

57.

58.

59.

60.

61.

62.

63.

64.

Methods of Mathematical Physics

The eigen values of the matrix

cos @ —siné
A= . are
sin@ cosé
(a) eii& (b) eizm
(C) eir3i6’ (d) eii&/z
If 4,,4,,..4, are the eigen values of 4, then

the eigen values of 4™ are

@) mA,mi,,.mA, (b) A", A5, AN

YY) o Ll L
© Adysidy (D et
It is given that the eigenvalues of the matrix
3 21
-2 1 2 . .
are integers then the eigenvalues
0
are,
(@ 5,-2,3 (b) 2,2,2
(C) _1929'3 (d) 19293
1 1 1
The eigen values of the matrixi 1 are
1 1
(@ 1,0,0 (b) 1,2,0
(¢ L1L1 (d) 3,0,0

. . 1 2 .
Givena matrix 4 = {2 J, Tr A? is

(@ 10 (b) 9

() 2 (d) zero

For arbitrary matrices £, F, G and H, if EF—FE
=0 then Trace (EFGH) is equal to

(a) Trace (HGFE)

(b) Trace (E) Trace (F) Trace (G) Trace (H)
(c) Trace ( GFEH)

(d) Trace (EGHF)

1 1 0 O
. /11 0 0
The eigen values of the matrix| ; ( , ,
0 0 2 2
(@ 0,0,1,5 (b) 0,0,6,0
(C) 07 03 2:4 (d) O: O: _7: 1
The eigen values of the matrix
cosd —sinf
sinf cos@ )
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(@ %(\/gii) when @ = 45°

(b) %(ﬁ +7) when 6 = 30°

(c) + sincethe matrix is unitary
1
—(1£{) when 8 =30°
@ 5

65. State which of the following statements are

TRUE regarding eigen values and eigen vectors

ofa matrix 4

I) Determinant of 4 is equal to the product of
eigen value of 4

II) IfAisRealitseigen values are must be Real.

Ill) Eigen values of 4°' are multiplicative
reciprocals of 4.

(@ LILII

(c) L1l only

(b) L IIonly
(d) I & Ionly

2 30
66. One of the eigenvalues of the matrix [3 2 OJ
0 0 1

is 5:

The other two eigenvalues are

(@) OandO (b) landl

(¢) land-1 (d) -land-1
0 1 0 0

67. Eigen values of the matrix 0 0 0

0 0 0 -2
0 0 2i O

are

(@ -2-1,12 (b) -1,1,0,2

(¢ 1,023 d -1,1,03

68. A matrix whose determinants is zero is called
(a) singular matrix (b) unit matrix
(¢) null matrix (d) orthogonal matrix

100
69. The eigen values of the matrix {0 ! 1} are
1

0 1
@ 1,1,2 (b) 0,1,2
© 0,2,3 @ 1,2,2

70. If A and B are unitary matrices of the same order,
which of the following combinations is unitary?
(@ A'B (b) 4B
(c) 4B (d A+B

71.

72.

73.

74.

75.

76.

77.

0.7

2 -1 3

The rank of the matrix, 4 = [4 7 i} is 2,
1 4 5

then the value of 4 1is

(a) -13 (b) 13

(c) 3 (d 6

Let A and B be non — singular square matrices

of the same order. Consider the following
statements.

D (4B) =A"B"

) (A4B)' =A4A"'B"'

1) adj(AB) = (adj A)(adj B)

IV) Rank(4B) = Rank (A4) Rank(B)

V) |AB|= A].|B|
(a) LIMandIV (b) IVandV
(¢) TandIl (d) LITandV

The system equations x + y+z=6,x+ 2y + 3z
=10, x+ 2y+ 4 z=12is inconsistent, if 1 is

@@ 3 (b) -3

(¢) 0 (d 2
8§ -6 2

The eigen values of A=| -6 7 —4]are
2 -4 3

(@) 0,3,-15 (b) 0,-3,-15

(¢) 0,3,15 (d) 0,-3,-15

If 4 is a 3 —rowed square matrix, then

|adj(adj(A)| is equal to
@ [A4]°
© A

) | A[
@ |AP

t? t dA
If A :[ oo ],then will be
e’ sint dt

2 sint 2t cost
@) e sint () e’ sint

2t —sint ? sint
© le cost (d) e cost
IfAeR_,detA+0,then

nxn?>

(a) A isnon singular and the rows and columns
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of 4 are linearly independent.
(b) A is non singular and the rows of 4 are
linearly dependent.
(c) A isnon singular and the 4 has one zero
rows.
(d) A issingular
78. The matrix shown transforms the components
of a vector in one coordinate frame S to the
components of the same vector in a second
coordinate frame S'. This matrix represents a
rotation of the reference frame S by

1B
al 2 2 a
A3 '
a,|=|i— = 0 a,
! 2 2
% 0o 0 1%

(a) 30° counterclockwise about the z-axis
(b) 45° clockwise about the z-axis
(c) 60° clockwise about the y-axis
(d) 60° counterclockwise about the x-axis

CAYLEY- HAMILTON THEOREM

79. The characteristic equation |A - Al | =0is

A3 +242-32+4=0. The characteristic
equation for 4! is

@ 2 -242+31-4=0
1 1. 1

P +=22—=2+==0
(®) 2 37 4

3

© A-A-=1-2=0
2
3 1 1
P == 4—A+—=0
@ 4 27 4
3 4 5 6 7
80. The rank of the matrix 45 6 78 is
5 6 7 8 9
10 11 12 13 14
(@ 3 (b) 2
(© 1 ) 4
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1 1 1
81. Therank ofthematrix 4=|1 -1 -1|is
3 1 1

@ O (b)
© 2 d 3
82. The characteristic equation of a square matrix
0 ¢ b
A=|—c 0 a
b —a 0

(@ A +A(a+b+c)=0

b) A+ A(a® +b>-c*)=0

© A+ A@®+b*+c*)=0

d) A’ =A(a’>+b* +c?)
LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

FIRSTORDER
83. The solution of the equation

d*x/dt* +2dx/dt +5x = 0 subject to the
initial condition x = 5,dx / dt = -3 att=0.
@ e (5c0s2t +sin 2¢)

(b) e*(5sin 2z + cos2¢)

(¢) (5sin 2¢ + cos 2¢)

(d) e (5sin 2¢)

84. The solution of the differential equation y
dx= (3x+y"dy

X X
(a) 7+y:c (b) y—2+y:C
© e @ e
Y Y

. . d
85. Introducing a parameter p=y =% the

dx

equations y = y'* + xy'—x can be reduced to

the equation

dp dx
£ _2p4 —=2p+x
@ 4 =W ) g
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dp + dx p+x
i SOy x —=
© =P @

Common Data (Q.86 - 87)
Consider the differential equation

86.

87.

88.

89.

90.

V' +Px)y +q(x)y(x)=0.
If x p(x) and x? g(x) have the Taylor series
expansion x p(x)=4+x +x*+... and x*g(x) =2
+ 3 x + 5 x*+.. then the roots of the indicial
equation are
(@ -1,0 (b) -1,-2
© -1,1 (d -1,2
If p(x) =0 with the Wronskin atx=0as W (x=
0) = 1 and one of the solutions is x, then the
other linearly independent solution which
vanishes at x = 1/2 is

(@ 1 (b) 1-4x*
© x (d) -1+2x
To change (x3 Vv o+ xy) dx = dy to linear form the
substitution is?
@ x=v (b) y3=v
1 1
© ==V @ 7

xdx+ ydy +zdz =0 is the first order
differential equation of
(a) Sphere (b) Right circular cone
(c) Cylinder (d) Ellipsoid
Match the following and find the correct
alternative
Group- A
I) Cauchy’s equation
1) Bernouli’s equation
IIT) Method of variation of parameters
Group-B
d2
p (x+2f <2
dx

+(x+2)ﬂ+y:5
dx

,d’y d’y
——Xx—=e
dx dx

1) (D2 + a)y =tan x

qQ X

d
s) d—i-i—xy:xzyz

91.

92.

93.

0.9

@ I(p),II(q), I (xr) (b) I(s),II(q), MI(r)
© 1)1 (p), MM (q) (d) 1(q), T (s), MM (r)
What are the order and degree, respectively of
the differential equation of the family of

curves y2 =2c(x+ \/Z)

(@ 1.1 (b) 1,2

(© 13 (d 2.1

The differential equation ydx - 2x dy = 0
represents a family of
(a) straight lines

(c) circles

(b) parabolas
(d) catenaries

The solution of (dy/dx) + 2xy = 2xy>, is
@ y=(cx)/(l+e™)

® y=1/1-ce")

© y=1/1+ce")

@ y=(cx)/(1+e")

SECOND ORDER

94.

95.

The most general solution of the differential

. d’? d L
equation x’ dx;vfhfﬂiy:olsglvenby

@ y= cle3x +czesx

b y= cle_3x +cze_5x
© y=c,x>+cox°
y=q 2

d y= clx3 +(32x3 log x

A moving body is opposed by a force per unit
mass of value cx and resistance per unit mass
of value /»* where x and v are the displacement
and velocity of the particle at that instant. The
velocity of the particle interms of x, if it starts
from rest.

@) sz%_%%ﬁLZb%efsz
(b) sz_ZbLzﬁLZb%efsz
© sz—Tcijzb%_Zb%efzzyx
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0.10

96. The family of conic represented by the solution
by the solution of the DE
(Ax+3y+Ddx+(Bx+2y+1Ddy =0 is
(a) Circles (b) Parabolas
(c) Hyperbolas (d) Ellipses

97. The points, where the series solution of the
Legendre differential equation

_odly 5 dy 33 -

( X)dxz 2xdx+2(2+1)y70

will diverge, are located at

(@ Oandl (b) Oand-1

(c) -land1 (d) éandE

c) -lan S and—

98. Solution of the differential equation
dzy dy 5
—-5—+6y=¢"

dx’ dx r=e

(@) clez" + cze“ +e™
®) ce™ +c,e”
5x

e
© ce’* +c,e” +?

5x
e
(d) clezx + cze3x +—5

99. The particular Integral of differential equation

4
X
—4+4x:cosht

dt
lcosht b lsinht
@ 3 b) 5
lcost d 1—sint
© 5 @ 3

100. The particular integral of the differential

1 x -x d .
equation (D*~D)y =e" +e",D = s

@ (e +e )2 (b) x(e* +e)/2
(©) x*(e" +e™)/2 (d) e“(e" —e™)/2
101. The integrating factor of the equation
_tany
I+x

=(-x)e*secy is

Khanna Publishers

102.

103.

104.

105.

106.

Methods of Mathematical Physics

b it
@ 1+x ®) 1+x

ex d x+1
© 1+ x d e

The general solution of the differential
equation x> (y—px)= yp2 is given by

(a) y2 =ct+x* (b y=cx+1

© y=(c+x)* @ y’ =cx*+c’

If y = x is a solution of xzy”+xy'—y =0,
then the second linearly independent solution
of the above equation is

(@ I/x (b) x*

© x7 (d x"
Two linearly independent solutions of the
differential equation

Ad*y/dx*)+4(dy/dx)+5y =0 are
@ e **cosx,e?sinx

(b) e*'?cosx,e’? sinx

© e“*cosx,e ' ?sinx

d e™**cosx,e”?sinx
The solution of the differential
equation. (D* +4D+4)y = 2sinh 2x is

@ (C, +C,x)e’" - %ez" + e

2
1 x?
b) (Cx+C,x%)e”" +—e > ——e™
®) (Cr+C)e™ o™ =%
X 1 X xz —ZX
(C) (Cl +C2x)€2' +E€2 —7@ 2

1 .
@ (C, +C,x*")e™ +—e™ - X e

8 6
Integrating factor of the differential equation

x(1-x*)dy+(2x*y—y—ax’)dx =0

1S
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107.

108.

109.

110.

111.

1 1
O T O e

1 1
(©) H(1—x2) 2 (d) 2x(1—x2)?
The solution of the differential equation

PUGi—1)y'=3iy = 0 is
@ y=ce" +c,e”

(b) y=ce ™ +c,cos3x—c;sin3x
© y=ce" +c,e”™

(d) y=ce™ +c,co83x—cysin3x

The solution of (dzy/dxz) +y=0
satisfying the condition
y(0)=1,y(x/2)=2,is

(a) cosx + 2sinx (b) cosx + sinx

(¢) 2 cosx+ sinx (d) 2 (cosx + sinx)

The set of linearly independent solutions of the
differential equation

(dy" /dx*)=(dy* [ dx*) =0 is
@ fLr.e'e™} ® Lxe™ xe™]
(©) {l,x,e",xe"} ) {l,x,ex,xe‘x}

Consider the following statements: The
equation (2x/y*)dx+[(y> —=3x%)/y*]dy =0
is

1) exact

2) homogeneous

3) linear

(a) 1and 2 arecorrect(b) 1and 3 are correct
(¢) 2and 3 arecorrect(d) 1,2 and 3 are correct
Consider the following statements in respect of
the differential equation

2xy(dy/dx) = y* —x°.

1) Thedifferential equation is a homogeneous
equation

2) The curve represented by the differential
equation is a family of circles

3) Thedifferential equation of the orthogonal

trajectoriesis dy/dx = (2xy)(x2 — yz) ,
which one of the following is correct one.

112.

113.

114.

0.11

(@) land2only (b) land3only

(¢) 2and3only (d) 1,2and3

If the population of a country doubles in 50
years, in how many years will it treble under the
assumption that the rate of increase is
proportional to the number of inhabitants.

log 3 log 3
25 50
@) log 2 ®) log 2
log 3 log 2
20 25
© log 2 (d) log 3

The solution of the differential equation
(D’ - D)y =2coshx is

@ C +Cye"+Cye™ +§(e~* —e™)
) C,+Ce" +Cie™ +§(ex +e)
(¢) Cix+Cre" +Cie™ —g(ex —e™)

(d) C+Ce™ +Cse’ +§(e’“ —-e)

The solution of d’s/dt> =g. (gis a
constant, s =0 and ds/dt=u whent=0) is

(@ s=gt (b) s=ut+(1/2)gt’

© s=(1/2)gt> (@ s=ut+gt>

Common Data (Q.115 - 116)

115.

116.

Which one of the following equations has the
same order and degree

@ d'y/dx* +8(dy/dx)* +5y=e"
®) 5(d°y/d’) +8(dy/dx+1)* +5y =x°

2/3

© {l+(dy/de) " = 4d*y/dx)

@ y=x*(dy/dx)+{(dv/dx)* +1]”

The number of arbitrary constants in the
differential equation of the form

Kx,y,dv/dx,d’y/dx’)=0 is
(@ 1 (b) 2
(© 3 (d) 4
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0.12

Common Data (Q.117 - 118)
117. A particular integral of the differential

equation (D +4)y = x is

(@ xe** (b) xcos2x
(c) xsin2x (d) x/4
118. The homogeneous differential equation M (x,y)

dx+ N (x,y) dy=0 can be reduced to a differential
equation, in which the variables are separated,
by the substitution of

@ y=w (b) xy=v
() xty=v (d x—y=v

Common Data (Q.119 - 120)

119. ¢ (¢, cos/3x +c, sin/3x) + c,e is the
general solution of
@ (d’y/dx’)+4y=0
) (d’y/d’)+8y=0
(©) (d’y/dx*)-8y=0
) (yldx*)y=2(dy/dx*)
+(dy/dx)-2=0

Which of'the following represents the solution
of the differential equation

d’i (R\di (1 20 5
?WLZE"'EZ— » where R*C =4[

120.

and R,C,L are constants (where C , and C2 are
arbitrary constants )
‘R

@ (C +Cyp)e *
_R
®) (1 +Cyt2)e

tR

© (C,cost+C,sint)e 2*

tR

@ (C,+Cyr)e >
Common Data (Q.121 - 122)

121. For non exact differential equation (1 +xy) ydx
+ (1 - xy)xdy = 0, what is the integrating factor.

@ 1/2x*y?) (b) 1/(2xy)
© 1/2x?) @ 1/(2xy)
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122. The cooling law “ The rate at which a hot body

cools is proportional to the difference in
temperature between the body and the
surrounding medium”,

(a) Ohm’slaw (b) Kepler’slaw

(¢) Newton’slaw  (d) Kelvin’s law

Common Data (Q.123 - 124)

123.

124.

125.

126.

127.

The differentiale quation

dy/dx+xsin2y = x’ cos’ y is reduced to

the linear form dv/dx +Pv = Q, where Pand QO
are functions of ‘x’ alone, by changing the

variable as

(a) siny=v (b) cosy =v

(c) tany=v (d) sin2y=v
Solution of d*y/dx* +dy/dx—2y =0,
»(0)=0, y'(0)=3is

@ e"+e* b) e* —e™

© e —e™ @) e"+e™
Which one of the following curves gives the
solution of the differential equation

dx I
k, =7 kyx = ks, where k,, k, and k, are positive

constants with initial conditions x=0 at #=0.

Consider

the differential equation

dx*[dr* +2dx/dt + x=0.Attime =0, it is
given that x =1 and dx/dt = 0. Att = 1,the value
of x is given by

(@ le (b) 2/e

(© 1 (d) 3/e

Consider the following three functions

mx - _myx

e™", ™", e"™" . These functions linearly
independent if

(@ m, =m, #my(b) m, =m,; #m,
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128.

129.

130.

131.

132.

) m =m, =my (d) m #m, #m,

Consider the Assertion (A) and Reason ( R)
given below.]

Assertion (A) : The curves y = ax® and

x*+3 y2 = ¢* form orthogonal trajectories.

Reason ( R) : The differential equation of the
second curve is obtained from the differential

dx

equation of the first by replacement of by

dx

dy . The correct answer is

(a) Both A and R are true and R is the correct
explanation of A.

(b) Both A and R are true and R is not a correct
explanation of A.

(c) Aistrue but R is false

(d) Adis false but R is true.

The differential equation of the family of circles

of radius » whose centre lies on the x — axis is

dy 2 2 dy j 2
@ ¥ dx Ty =) y[dx :

dy dyY
© yz[dx-i-lj:rz (d) y{(dxj +1J:r2

Let(y —c)”> = cx be the primitive of the
differential equation

2
4x(ﬂj + 2x(d—yj -y=0
dx dx

The number of integral curves which will pass
through (1,2) is

(a) one (b) two

(c) three (d) four

Solution curves of ydx —xdy =0 form a family

of

(a) circles (b) straight lines

(c) Hyperbolas (d) parabolas

The solution of the differential equation
2

isz {+y =0 satisfying the condition
X

¥(0)=1, y@ ~1

133.

134.

0.13
(@) cosx+2sinx
(¢) 2cosx+sinx
The
equation (D4 +8D% + 16)y =0 is given
by

2 -2 -X
@ ce™ +c,e " +cet e

(b) cosx+sinx
(d) 2(cosx +sinx)
solution of the differential

) (¢, +c,x)e™ +(c; +c,x)e™

(¢) (¢, +c,yx)cos2x+(cy +c,x)sin2x

(d) (¢ +c,x)cosh2x +(c; +¢,x)sinh2x
If[,,I, are integrating factors of the
equations xy' +2y=1and xy' =2y =1 then
® 1,1, =x"

@ 1,1,=1

(@ I,=-1,
© I,=x1,

Common Data (Q.135 - 136)

136.

For the differential equation

d’y ,dy
dx’ 2 dx ty=0
135. One of the solutions is
(@ e (b) Inx
(©) e_x2 (d) e’cz
The second linearly independent solution is
(@) e* (b) xe*
(c) x% (d) x%e>

Common Data (Q.137 - 138)

137.

138.

Ordinary points of the differential equation
(1-x?) y"' = 2xp' +2y=0are

(@) +1 (b) except+£l

(c) all (d) no points

The most general solution of the differential

. d’y . dy .
equation 4dx2 +4dx+y—0 1S
@ y(x)= (A + Bx )e‘”2
(b) y(x)=(4+Bx)e"?

© y(x)= Ae*'? + Be™'?
(d) y(x)=A cos h (x/2)+ B sin h (x/2)

Common Data (Q.139 - 140)

139.

The solution of the differential equation for
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2

»(0)

.'6t—2-y=2005h (¢), subject to the initial

b

conditions y (0)= 0 and r | =0 =0, is

(a) % cosh (r)+ ¢ sinh ()

(b) -sinh (¢£)+ ¢ cosh ()

(c) tcosh (¢)

(d) ¢sinh (¢)

Solution of the differential equation

d . ..
Xd%: +y=x", with the boundary condition

140.

that y =1,atx =1,is

4

4 _xT 4x

@ y=5x"-4 (b y=—"+—_—
5 5

4x* 1 x4

@ r=75r5 @ rYTEry

FOURIER SERIES

141. Consider a function defined as

0 —-2<t<-1
f@) =k —-1<t<1
0 1<t<?2

The Fourier coefficients a, b, will be.

0,0 by k 2k
@ o, (®) ko~
k
k,—
© k0 @ ke
. X 0 O<x<c .

142. Given f(x)= which of the

1 c<x<2c

following represents the expansion of f(x) in a
Fourier series of period 2c¢.

@ S =%—%(sin%+sin3—m+..}

Cc

2( . m 1 . 3m
(b) f(x)—;(sm7+§s1n—+...j

C
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(©) f(x) =%—%(Sin%+%sin3—m+..)

c

1 2(. m . 3m
(d) f(x)—5+;(s1n7+sm7+...j

143. Which of the following statements is wrong
(2) Fourier series has sine terms when f{x) is
an odd function
(b) Fourier series has cosine terms when f{(x) is
an even function
(c) Fourier series has sine as well as cosine
terms when f{x) is neither even nor odd
function
(d) Fourier series has neither sine nor cosine
terms when f{x) is neither even nor odd
function
144. Fourier series for the function f{x) is given by
f(x)=1+2x/7n,—r<x<0;
1-2x/7m, 0<x<7m is
8 | cosx cos3x
f(x) = ? l:lz + 372 = e j| by
using the above result deduce
I 1 1
BT + 3 + o
@ b) —
(©) : (d) i
o) — z
4 8
FOURIER & LAPLACE
TRANSFORMS

145. The Fourier sine transform of the function

fH=eis
Fa [
@ -2 ® Vv,
(SR
© T o +a’ @ T o +a’
146. The inverse Laplace transform of
s+4

s(s—l“s2 +4i
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t 1 . t 1 .
(@) e —Esm2t (b) e —Esm2t—l

1 . 1.
() 1—e’+551n2t (d e’+zsm2t

147. The Fourier transform to k-space of a Gaussian
function in x, f(x)= e‘xz is
(a) aGaussian in l/k, like ,~1/#*
(b) apower law in £, like 1/4*
(c) asinusoidal function like sin & or cos k
(d) aGaussian in k like ,~**
148. 1f f(s) =jF(t)e‘S’dt then J tF(t)e™"dt is
0 0
df . df
Q) ——— .
@ Js (b) Js
(© 0 d -1
149. The Laplace transform of a function f{¢) exist if
(a) Itisuniformly continuous
(b) It is piecewise continuous
(¢) It is uniformly continuous and of
exponential
(d) It is piecewise continuous of exponential
order
150. The Laplace inverse transform of \/; is
T 1 |«
@ ® 5 \/Z
Jr z
© T7 G e
151. Laplace transformof f'(¢) = te” sin(at),t > 0.
2a(s —a) a(s—a)
@ [(s —a)’ + az]z ®) (s—a) +a’
S—a d (s—a)2
© (s—a)’ —a’ (d) (s—ay +d’
152. The Laplace transform off(t)z sin 7zt is

F(S):( 2 i 2),s>0. Therefore, the
ST+ ’

153.

154.

155.

156.

157.

Laplace transform of ¢sin 77 is

V4 2
(@) 2 (s? + 72 (b) Sz(sz +7[2)2
27 2
(© (S2+7[2)2 (d) (S2+7[2)2

The value of L[ ¢¢]is( where ‘a’ is positive but
not necessarily an integer )

I'(n+1) I'(a+1)
(a) n+l b) a+l
S N
I'a+1) I'(a+1)
(C) n+l n
S N

L_l p+ 1
—S|=
p +6p+25
1.
(@) e’ [cosdt — Pk 411

(b) e cos 2t

1.
(c) e’ [cosdt — Pl 411
(d) e*sint

0 forx<3,

If f (x) :{x—3 forx >3, then the Laplace

transform of f'(x) is
(a) s2e3s (b) s2e-3s
(c) s2 (d) s2e-3s

Which of the following function is not analytic?
(wherez =x +iy)

(a) sinz

(b) 2

(c) e*(cosy + isiny)

(d) sinx siny — icosx cosy

If 7 is unit circle, |z| =1, then §00t22d2 =0
;

because the function cot z*

(a) is analytic everywhere

(b) is not analytic everywhere but has no
singular point inside »

(c) has only one singular point inside » where
the residue is zero
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158.

159.

160.

(d) has several singular points inside » where
the residue is nonzero such that the sum
vanishes

The principle value of In(i")
@ ir (b) 7/2
© ir/2 d —xz/2

Let Z and Z, be two non — zero complex
numbers. If |Zl +Zz| =|Z1|+|Z2 , which of

the following is true

@ Re(Z,Z2)<0,1Im(Z,Z2)=0

(® Re(Z,Z2)>0, Im(Z,Z2)=0
© Re(Z,Z2)>0,1m(Z,Z2)>0
(d) Re(Z,Z2)<0,Im(Z,Z2)<0

The real part of the function f(z) = ezz s
wherez =x + iy, is
(a) ex2+y2 (b) exz_yz

© e cos(2xy) () e sin(2xy)

TAYLOR & LAURENT SERIES

161.

162.

163.

The Laurent expansion of a function f{z) having
a pole of order 3 at z = 1 is

e R 2
f(z)_; S S I T

The residue of f(z) at z=1is

@ 1 (b) 2/3
© -5 @ 0
1

z

The function f(2) =
l+e

(a) is analytic everywhere
(b) has a branch point singularity at z=0

(c) has poles of order one at
z=%irx,£3ix,£5ix,...
(d) has poles of order two at

z=xx,x3x,+57x,...

COS7Z'Zd _
J. z—1 2= (where cisthecircle [/ =3 )
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®) —i2x
d —i6x?

(@)

© i6r*

2z

2

J. 2 2x 2 2dx
(x"+a’ )(x"+b")

—00

ab m(a+b)
® a+b ®) ab
© 4¥b @

Find the nature and location of singular point

of (z+ 1)sin[z—12j

(a) Essential singularity atz=2
(b) Removable singularityatz=2
(c) Essential singularityatz =- 1
(d) Removable singularityatz=- 1

Common Data (Q.166 - 167)

166.

zsinz

Consider a function f(z) =—— o
(z-7)

a

complex variable z.
Which of the following statements is TRUE for
the function f{z)?

(@) f(z)is analytic every where in the complex
plane

(b) f(z)hasazeroatz =7
(¢) f(z)hasapoleoforder2atz =7
(d) f(z)hasasimplepoleat

167. Consider a counterclockwise circular contour

|z| = 1 about the origin. The integral over this
contour is

(@ -rx
© irm

(b) zero
(d 2i7x

EVALUATION & INTEGRAL

168.

169.

dz
The value of J .2, 42 ) where ¢ is a unit circle
c

(anticlockwise) centered at the origin in the
complex plane is
(a) nfora=2

(c) 4nfora=2

(b) zerofora=1/2
(d) x/2fora=1/2

COS mx

: dx
The value of the integral .([ (x 2, 1)
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T —m —
(@) ¢ (®) ze™

_ T _2m
(© zme™ (d) ¢

4-3z

The value of the integral J‘ z(z—l)(z—Z) dz

170.

where c is the circle |z| =3/2

(@) Zero (b) =i
(c) 2mi (d) -2m
171. Let f'(z) be continuous in a simply connected

domain D and j f(2)dz =0 for every closed

path in D. Then f(z) is
(@) aconstantin D (b) analyticin D
(c) zeroinD (d) apolynomial in D

22

(z—l)2 (z+2)

(where|z|=3) , which of the following represent

172. Consider the function f(z) =

the residues at each pole

(@ 7/9,4/9 (b) 5/9,7/9
(c) 2/9,7/9 (d) 5/9,4/9
dz

2
z° =2z

173. The value of the integral J ,c=lz=1is

@ 0

(c) —7i

(b) 7i
(d —27i

e’sinz dz

174. — around
2n

The value of the integral (j) 5
z

the unit circle in the complex plane is

@ 1 (b) 0

(© oo d i

175. If 7 is the complex conjugate of z, then the

value of the integral.!' 2dz fromz=0toz=
4 + 2i along the curve given by z = + it is
@ 10-8i/3 (b) 5+4i/3

© 0 (d) 5-4i/3

176.

177.

178.

179.

180.

181.

0. 17
T dc
2\5
7 1+x7)
) 107
@ 7 ®) ¢
357 d 267
© 256 @ a8
i COS 71z
The value of the integral _[ PR dz around a

rectangle with vertices 2 £1,—2 i is

(a) Zero ) i
i
(©) 2ri d —
VA
sin7z*
.[ (Z _ 2)(2 _ 1) dZ = 9 Where ¢ is the circle
7]=3
(@ i6x ®) 27
(© idr (d 0
i
Izzezdz =7 wherecis lz|=1
(@ 37 ) —i37
i
(©) ? (d) None of these

7 .
The value of the integral 9§ LI;(Z) dz, where
. z

the contour C'is the unit circle: |Z - 2| =1,is

@ 2m (b) 47m

(©) = (d 0

The value of the integral _[ < dz,
g z°—=3z+42

C

where the contour Cis the circle| z ‘= —is
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0.18

@ 2me (b) e
(© —27e (d) — e

ELEMENTARY PROBABILITY
THEORY

182.

183.

184.

18S.

186.

A card is draw from a pack containing 52 cards
with 4 aces and another card is drawn from a
pack of 48 cards with 8 aces. What is the
probability that both are aces?

4 8
(@) ) (®) a8
32 oL
© S48 @ 75

In a group of ten people, the probability that at
least one person was born on a sunday is

(@) 1/7 ®) 1-(1/10)

© (1/7)° d 1-(6/7)"

The probability that a man who is x years old
will die in a year is p. Then amongst n
persons 4, A, ,..., A, each x years old now,
the probability that 4, will die in one year is

1
@ 7 ®) 1-(1-p)"

© =h-0-p'] @ ti-a-py]
The odds against a husband who is 45 years
old, living till he is 70 are 7: 5 and the odds
against his wife who is 36, living till she is 61 are
5 : 3. The probability that at least one of them
will be alive 25 years hence, is

(a) 61/96 (b) 5/32
(c) 13/64 (d) 64/13
A bag contains 4 white and 2 black balls.

Another bag contains 3 white and 5 black balls.
Ifoneball is drawn from each bag, the probability
that both are white is

4W 3W
2B 5B
1 2
@) 124 (b) 1/4
(c) 524 d) 724
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187. Aman applying for his driver’s license estimates
that his chances of passing the written test are
2/3, and that his chances of passing the driving
test are 1/4. What is the probability that he
passes both tests.
(@) 177 (b) 1/6
(¢) 173 (d 1/4

Common Data (Q.188 - 189)

188. Abagcontains 9 marbles, 3 of which are red, 3
of which are blue, and 3 of which are yellow. If
three marbles are selected from the bag at
random, what is the probability that they are all
of different colors.

(a) 928 (b) 5/28
(b) 3/28 (c) 11/28

189. The probability of hitting a target is 2/5. A
person fires at the target 10 times. What is the
probability that he hits the target exactly 6
times?

o el el

0 2 6 3 4 2 6 3 4
© Cﬁ(sj (sj @ [5] (5]

e m

190. Poisson distribution is given by P, = '
x!

Which of the following is correct.

1) P, =P, 1) P, ="k,

X
m m

m
P,=—""P
III) x+1 x+1 x

(2) TandIIonly (b) I, IandIII
(¢) lTandIllonly  (d) onlyl

191. Consider the following statements and Identify
the CORRECT ONE

I) Kronecker delta is a mixed tensor of
order 2

II) Velocity of a fluid at any point is a contra
variant tensor of rank 1

Ill) A symmetric tensor of second order

1
has 5 n(n + 1) different Components

() LILII (b) 1& I only
(¢) I&Olonly (d) I & Olonly
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INTRODUCTORY GROUP
THEORY APPENDIX

192.

2 30
320
0 1

Consider the matrix the normalized

eigenvector corresponding to the eigenvalue 5
is

L_Ol L]l
@ 72| ® 7| !
1

1(1) 1
© % ° @ 7|,

Common Data(Q.193 - 194)

193.

194.

Apply Runge Kutta forth order method to
obtain v(0.2), v(0.6) from

dy/dx =1+ y*, withy=0atx=0. Take step
size h=0.2.

702)=

@ 02027 (b) 04396
(©) 03846 (d) 09341
104)=

@) 0.1649 (b) 0.8397
(c) 04227 (d) 0.1934

NUMERICAL METHODS

195.

196.

Back ward Euler method for solving the
differential equation %:f(xd/) is
specified by

@) Yo =Yu TS (%,.30)

®) Yy =ru+ hf(xn+1»yn+1)

(©) Vs = Voot 20 1 (%,,3,)

(d) Y1 = (1 + h)(xnﬂaynﬂ )
The formula used to compute an approximation
for the second derivative of a function f ata

point x; is

f(xo +h)+f(x0—h)
2

(@)

197.

198.

199.

200.

f(xo +h)—f(x0 —h)
2h

f(x0 +h)+2f(x0)+f(x0 —h)

h2
f(xo +h)—2f(x0)+f(x0 —h)

h2
The Newton - Raphson iteration formula for
finding 3/c, wherec>0is,

(b)

(©

(d)

L2 P
(a) Xn+1 3x5 (b) *n+1 3x§

N X+ = 2% —c¢
(C) n+l 3x5 (d) n+l 3x5

The Newton — Raphson method is used to find
the root of the equation ,2 _ 7 . Ifthe iterations
are started from -1, then the iteration will

(b) converge to /2

(d) not converge

(a) converge to -1

(c) converge to - /2
3

The value of J.;dx computed using
1

Simpson’s rule with a step size of 7 =0.25 is

(2)0.69430 (b)0.69385
(¢) 0.69325 (d)0.69415

Given a>0, we wish to calculate its reciprocal

1
value o by using Newton — Raphsonmethod

f (x) =0 . The Newton — Raphson algorithm
for the function will be

a >

(b) X4 =X +5xk
2

(©) xpyy =2x, —ax;

a »
(d) Xpp1 =X +5xk
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0. 20
201.

202.

203.

204.

Newton — Raphson formula to find the roots

of an equation f(x) =0 is given by

S (x,
(a) X4l =X, — fl(();n))
(b) Taet =%, + Jﬂ(()j:,,))
S (%,
/(%)

(d) Tne1 = fl (xn )

Match the following and choose the correct
combination

Group-1

E) Newton — Raphson method

F) Runge — Kutta method

G) Simpson’s Rule

H) Gauss elimination

Group-1I

1) Solving non — linear equations

2) Solving linear simultaneous equations
3) Solving ordinary differential equations
4) Numerical integration method

5) Interpolation

6) Calculation of eigen values
(aE-6,F-1,G-5,H-3
(b)E-1,F-6,G—-4,H-3
(c)E-1,F-3,G-4,H-2
(d)E-5F-3,G-4,H-1

Identify the Newton — Raphson iteration
scheme for the finding the square root of 2

12 1 2
(a) X+l _E Xn +x7" (b) Xn+1 _5 Xn _x_

n

(d) x,,,=4/2+x,

The following equation needs to be
numerically solved using the Newton —

Xy =
C n+l
(©) Mni =

Raphson method x* +4x -9 =0.The iterative
equation for this purpose is (k¢ indicates the
iteration level)

Khanna Publishers

205.

206.

207.

208.
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o 2% +9
@) M T3y

P 3x,§ +9
(b) Hiea 2xg +9

(0) Xy =X, =3 +4

4x7 +3

9x; +2

Matching exercise choose the correct one
out of the alternatives A, B, C, D
Group-1

P) 2™ order differential equations
Q) Non — linear algebraic equations
R) Linear algebraic equations

S) Numerical integration

Group-1I

1) Runge — Kutta method

2) Newton — Raphson method

3) Gauss Elimination

4) Simpson’s Rule
(a)P-3,Q-2,R-4,S-1
(b)P-2,Q-4,R-3,S-1
(¢)P-1,Q-2,R-3,S-4
(dP-1,Q-3,R-2,S-4

(d) Xk+1 =

. . . dx -2t
A differential equation i =e “u(t) has to

be solved using trapezoidal rule of integration
with a step size=0.01 sec. Function u(¢)

indicates a unit step function. If x, =0 then

the value of x at #=0.01 sec will be given by

(2)0.00099 (b)0.00495
(c)0.0099 (d)0.0198
Consider a differential equation
dy(x)

———v(x)=x with initial condition y, =0.

Using Euler’s first order method with a step
size of 0.1 then the value of y(0.3) is

(2)0.01 (b)0.031

(c)0.0631 (d)0.1

The following algorithm computers the integral

b
JZIf(x)dx from the given values /f; = f(xj)

at equidistant points x, = a, x; = x, + A,
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Xy =X +2h,....%,,, = X, +2mh = b compute

J = g[so +4(85)+2(S,) ]

The rule of numerical integration, which uses
the above algorithm is
(a) Rectangle rule

(¢) Four — point rule

(b) Trapezoidal rule
(d) Simpson’s rule

INTEGRATION BY TRAPEZOIDAL
& SIMPSON’S RULE

3
4
209. By Simpson’s rule, the value of J. xXdx py
taking 6 sub-intervals is -
(2)96 (b) 98
(©)99 (d) 100
t dx
210. By Simpson’s rule, the value of j? dividing
1
the interval (1,2) into four equal parts is
(2) 0.6932 (b)0.6753
(c)0.6692 (d)0.6319
1
211. Using Simpson’s 3 rule, the value of
x 1 1.5 2 2.5 3
() 2.1 24 | 22 2.8 3
3
jf(x)dx for the following data is
1
(2)4.975 (b)5.05
(©11.1 (d)55.5
212. If %=1, =2.72,6* =7.39,¢° =20.09 and
¢ =54.60, then by Simpson’s rule value of
4
je‘”dx is
0
(a)5.387 (b)52.78
(c)53.17 (d)53.87
213.

Ifby Simpson’s rule
1

| Loax="L[31+4(a+0)]

01+x2 12

214.

0.21
When the interval [0, 1] is divided into 4 sub-

intervals and a & b are the values of W at

two of its division point, then a&b are
1 1
a= b=—
@ =T 0625 125
= b= 1
1.0625 1.5625

(b) @

1
- =1
©4=12s

1

b=
1.5625 1.25

A river is 80 meter wide. Its depth d meter and
corresponding distance x meter form one bank
is given below in table:

(d)a=

0 [ 10| 20| 30| 40| 50| 60|70 |80

0|4 |79 ]12[15/14]8 |3

215.

The approximate area of cross-section of river
by Trapezoidal rule is

(a) 705 m” (b)710m>
©730m" (d) 750 m?

From the following table, using Trapezoidal
rule, the area bounded by the curve, the x-axis

and the line x=7.47,x=7.52 is

X 1747 (7.48 |7.49 |7.50 |7.51 |7.52

SIx) 11.93 [1.95 [1.98 |2.01 |2.03 |2.06

216.

217.

218.

(2)0.0776 (b)0.1096
(c)0.0896 (d) 0.0996
”l;aking four sub-intervals, the value of

1
J 1+ dx by Simpson’s rule, is

0
(b) 0.6945

(2) 0.6035
(¢)0.6145 (d)0.5945

5
dx
If 4 =1 in Simpson’s rule, the value of J.Y is
1

(a)1.43 (b)1.48

(c) 1.56 (d)1.62

A curve passes through the points given by
the following table:

X 1 2 3 4 5
10 | 50 | 70 | 80 | 100
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219.

220.

By Trapezoidal rule, the area bounded by the
curve, the x-axis and the linesx=1,x=51is
(2)255 (b)275

(c)305 (d)310

1
The value of Jx3dx by Trapezoidal rule
0

taking five sub-intervals is

(2)0.21 (b)0.23
(c)0.24 (d)0.26
T
Taking the step size 0 the value of
/2
/ )

_[ 1-0.162sin" xdx py Simpson’s one third

0
ruleis
(a) 1.5058 (b) 1.5759
(c)2.5056 (d) 1.5056

INTEGRATION BY TRAPEZOIDAL

221.

222.

223.

224.

For dy/dx=1+xy,giventhat y=1at x=0.
The value of y(0.1) correct to four decimal

places using Taylor’s series is (h = 0.1)

(2)2.1513
(b) 1.1053
(c) 1.2689
(d) None of the above

For dy/dx:x—y2 giventhat y=1at x=0.

Using Taylor’s series the value of y(O.l)

correct to four decimal places is
(a) 1.4396 (b)0.9138
(c)1.0134 (d)0.9159

For dy/dx=x*+y* given that y=0at
x =0 . The solution of differential equation for
x = 0.4 using Picard’s method is

(2)0.02193 (b)0.02145
(¢)0.02135 (d)0.02199

For dy/dx=y—x giventhat y=2at x=0.
Using Picard’s method up to third order of
approximation the solution of the equation is

2 x3 x4

(a) 242x+ 4
2 6 16
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2 3
(b) 2+2x+ I
2 6

2 x3 x4

©) 242x+ 4o
2 6 24
2 3

X X
d) 242x+—-—
(d) 2+2x+——

For dy/dx=x+y*, given that y=0 at

x = 0. Using Picard’s method up to third order
of approximation the solution of the
differential equation is

2 5 xS xll
@ —+—+—+
2 40 480 1600

2 5 8 11
(b)x—+—+—+ al
2 20 160 4400

2 xS x8 xll

—t et
2 20 160 2400

(©

2 5 8 11
(d) x_ + X_ + x_ + X
2 40 480 2400

For dy/dx=xy given thaty=latx=0.

Using Euler method taking the step size 0.1,
theyatx=0.4is
(a) 1.0611
(c) 1.6321

(b) 2.4680
(d)2.4189

Common Data(Q.227 - 228)

227.

228.

229.

230.

For dy/dx=x*+y* given that y=1at
x =0 . Determine the value of y at given x in

question using modified method of Euler. Take
the step size 0.02.

yatx=0.02 is
(a) 1.0468 (b) 1.0204
(c) 1.0346 (d) 1.0348
yatx=0.04 is
(a) 1.0316 (b)1.0301
(c) 1.0408 (d) 1.0416
Yatx=0.06 is
(a) 1.0348 (b) 1.0539
(¢) 1.0638 (d) 1.0796

For dy/dx=x+y giventhat y=1lat x=0.
Using modified Euler’s method taking step size
0.2, thevalueof y at x=1is

(a)3.401638 (b)3.405417
()9.164396 (d)9.168238
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231.

For the differential equation dy/dx=x- y2

given that
X 0 02| 04 0.6
y 0 0.02 {0.0795|0.1762

Using Milne predictor-correction method, the
» at next value of x is
(2) 0.2498
(c)0.4648

(b) 0.3046
(d)0.5114

Common Data(Q.232 - 233)

232.

233.

For dy/dx=1+y* given that

Using Milne’s method determine the value of
y for x given in question.

X 0 02| 04 | 06
y 0 [0.2027/0.4228]0.6841

»(0.8)=?

(a) 1.0293 (b)0.4228

(¢)0.6065 (d) 1.4396

y(1.0)=2

(a) 1.9428 (b) 1.3428

(¢) 1.5555 (d)2.168

Common Data(Q.234 - 235)

234.

235.

236.

Apply Runge-Kutta fourth order method to
obtain y(0.2), y(0.4) and y(0.6) from
dy/dx=1+y*,withy=0at x =0 . Take step
size 1, =0.2.

y ( 0.6) =7
(2) 0.9348 (b)0.2935
(c)0.6841 (d)0.563

For dy/dx=x+y*, given that y=1 at
x=0. Using Runge-Kutta fourth order
method the valueof ¥ at x=0.2 is(4=0.2)
(a) 1.2735 (b)2.1635
(c)1.9356 (d)2.9468
For dy/dx=x+y giventhat y=lat x=0.
Using Runge-Kutta fourth order method the
valueof ¥ at x=0.2 is(4=0.2)

(a) 1.1384 (b) 1.9438
(c) 1.2428 (d) 1.6389

237.

238.

239.

240.

0.23

The second order Runge-Kutta method is
applied to the initial value problem

y'=,¥(0) =y, with step size 4 then p is
@) yo(h-1)’

(b) %(hz ~2h+2)

© y—6°(h2 ~2h+2)

1+h+hz+h2
(d) Yo 27 6

The Runge-Kutta method of fourth order is
used is used to solve the differential equation

dy/dx= f(x),y(O) = 0 with step size 4 . The

colution at x— s given by
@ 2= 10)+41 (%))

(b) y(h)=%[f'(0)+2f[§]+f(h)}

© »(1)=¢[£(0) .5 +5 ()]

(@ »(h) %[Zf (0)+1 @”—f (h)}
Themethod ¥, +1=3, +4(k +3) n=0,1,..

2h 2
k :hf(xl- yn); ky :hf[xn +?»yn +§k1j
is used to solve the initial value problem
y'=f(x,y):—10y,y(0)=1. The method

willproduce stable results if the step size j
satisfies

(@) 0.2<h<0.5 (b) 0<h<0.2

(©)0<h<1 (d)o<h<02
The Solving the ordinary differential equation

y'=2x,y(0)=0 using Eular’s method, the
iterates y,,ne N satisfy
(d) y, =2x,

() », =2x, +x,

Khanna Publishers
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(a) y, =2x,

(C) Yn = XnXn1
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L.(c)
11. (b)
21. (a,d)
31.(c)
41.(d)
51. (a)
61. (a)
71. (b)
81. ()
91. ()

101. (a)
111. (a)
121. (a)
131. (b)
141. ()
151. (a)
161. (b)
171. (b)
181. ()
191. (a)
201. (a)
211. (b)
221. (b)

231. (b)
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EXPLANATIONS

1. Vectorsare L.D. = determinent =0

= x(xz—l)—l.x:o
= x3—x—x:0

= x(xz—z)z()

X = 09 x2 = 2
x=+2
1 2 3
2.10 0 3|=3(4-4)=0 = Vectorsare lineary dependent.
2 4 -1
3. f(x) — xe—r
d)
f(x) ismaximum = d—i =0
e xe ™ (=2x)=0
= o [-2x21=0
= 2x2 =1
= xz _

l\JI»—t
U
=
Il
+l
-

4. f(x)=x(x-1)
af

—=x-l+x=2x-1
dx



Methods of Mathematical Physics

OE. 2
i203 2)6—1:03)c=l
dx 2
2
%=2:+ve
dx
f(x) isminimum atx=1/2.
1
5 {flg)=a=i=ny=i_y
0

(rlg)=0

1

(Flny==i=Dli|_ ) 5y
2

{/l)=0
= f is orthogonal to g and 4.

1 2 3
2 -1 -5|=0 :>1(—7x+25)—2(—14x+5x)+3(—10+x)=0:>x=%

7.
A5 T

8. According to D’ Alembert’s ratio test.

<1 Convergent

T Divergent
n—wo 1Y
" =1 Test fails
x
11077 [x+x
X =
9' 0 1 _1 2 .X:2 - .X:3

X3
10. F=(yz,xz,xy)
F= yzf+xzj'+xyl€

oF, OF, oF,
=—r4—t+—=

V-F
o o o

V.- F=0

Khanna Publishers
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iJ ok
0 0 0| A .
VxF=|— — —|=ilx—x]-jly—y]+klz-2z]=0

x oy o [x=x]=jly=yl+klz~z]
vz Xz Xy

T

55

11. I ycos xdx +sin xdy
(0,0)
Line equationisx =y
/2

2
dx=dy = J.(xcosx+sinx)dx = [xsinx - (~cos x) - cos x],

. T T
—sin—=—
2 2
12. y isirrotational.
= VxV =0
i ] k
) o |,
Ox oy Oz
x+y+az bx+3y—-z 3x+cy+z
VxV =0=(c+1) -(3-a)j+(b-1)k =0
ctl1=0 a-3=0 b-1=0
= c=-1 a=3 b=1
13.  (@xb)+{(bxc)x(cxa)| =(axb)+{bcalc—[bcc)al

4. F=(x*—y* +x)i —Qxy+y)] (0,0) to (1,1)

ds = dxi + dyj

W= IF -ds
Khanna Publishers
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F.ds= (x* =y + x)dx — (2xy + y)dy
y=x

2dydy = dx

1
W= I(xz - y2 +x)2ydy —(2xy + y)dy
0

1
= j(y“ =" +37)2ydy - (2y° + y)dy
0

1 5 3 30 ! y 1 1 1 1 1
=@y -2y =yyay =|2| L || 2 || 2} 2L LD 1
@y =25 -y {[6} (4}(2}} 322 T3

__2
3
w==
o
15. Vo2 =L o g )]
r r
u=i v=xi
16. Veu=0 Vev=1
17. F=xi+y] dl = dxi +dy]
J-F'-c?l:J.(xdx+ydy) Cixmy
1 2 1
:J2xdx:2(x_j ~1
5| =
0 0
18. V. 4=1+3+1=5
V-B=e"siny—e"siny=0
i J k
Jxi=| 2 2 9| : )
ox oy oz | =i(-1+1)-j3-3)+k(1-1)=0
xX+y+3z bx+3y—-z 3x—y+z
Khanna Publishers
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i ] k
Oxho| 2 o 9 ) )
ox o 0z =i(0—0)— j(0—0)+k(e* cosy—e* cosy)=0

e*siny e'cosy

0

19. Curl Curl Curl Curl F =VxVxVxVxF
Fissolenoidal= V-F=0
=VxVx[V(V-F)-V?F]
=-VxVxV?*F
=—V2[VxVxF]
=-V3[V(V-F)-V?F]

=V*F

20. f(x) = x2e—x2
g _ 2xe™ +x%e (—2x)

dx

4 _ 2xe™ (1-x%)= 2¢ (x—x)

d2 2 2
L 2e (1-3x%) + 200 - x)e (—2%) =2¢7 {1-3x% —2x% + 2x%)

dx?

2
TS e (1426 527

dx?
ﬂ:o = 1-x*=0 x=+I
dx
Forx=1
2
2{=2e*1[1+2—5]=—4e*‘=-ve
X
Forx=-1

2
af 2¢ ' [142-5]=-4e! =_ve

dx

Khanna Publishers
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r r 7 r
V=— VV=V.—=0 =>Vx|—|=Vx|—
21. ” r (r3) (rzj
Fooro rsin6’¢?
9 90 9 |5
or 00 ¢
1
— 0 0
2

a 2 A r
22. Directional derivative of a function in the direction of 7 is ¥/ ~m = Vf =4xi +6yj+2zk H = 7

Vf.i _4x—4z _4x2-4x3 8-12 4
lalla3) V5 NG NG
23. V.F =23
X y z
o0 o0 0O
— — —|=x(5-3)-p(0-2)+2(0-0)=2x+2y
(a)axayaz()y()() y
2z 3z Sy
X y z
o ﬁ:)?(5—1)—)3(0—0)+2(0—O):4)2
(b) [ox oy oz
0 z 5y
X y z
o 0 i:fc(S—O)—j/(O—O)+ZA(3—0):Sfc+32
() |[ox 0Oy oz
0 3x 5y
X y z
o ° 2:fc(S—O)—j/(O—O)+2(0—O):5)%
(d) |[ox oy oz
2 0 Sy
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1. 7
24. V(logr)=—r=—
r

27. A= (i + j+k)

i j k
- 0 0 0 2 xyz N oxyz L _Xyz
VxAd=|— — —|=ie?(xz—xy)+ je"(xy—yz)+ ke (yz — xz)
ox oy oz
PR e PR
Vx4 s = fe® + jeb(=4)+ ke®(3) = e*(i — 4 + 3k)

28. VxA=0,VxB=0; Vx(AxB)=(BV)A—(AV)B+ AV.B—BV.4;
V.(AxB)=B.(Vx ;1) —A(VxB)=0;.. If Aand B are irrotational 4, 3 is solenoidal.
29. IZI:x3l°+y ]’+z3l€

V.A= zi+]i+ki (T4 j+2%k)=3(x>+ > +2z%)=3R>.
0x oy 0z ’

j Ads = j V.Adv

j Ads = [3Rdv=[3R*(47R")dR = % R’

30. g=x>+y"+22-1 = Ve =2xi +2y) +2zk
¢2=x2+y2—z—1 = V¢2=2xf+2y}—/€
Vel =20 +2] -2k
Vb =2 +2] -k

cosg - YAVE 44442 _ 010, 10
Ve IV | Ja+a+4ada+4+1 1249 63 63

31. Visirrotational

. V=V¢ =(y+z)f+(z+x)j'+(x+y)l€
%=y+z;%=z+x;%=x+y
ox oy oz

Khanna Publishers
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32. Let f(r)=r% = f)F =7

33. F'is conservative when = VxF =0=F =-V¢

34, ="

u & (ou)_ & oo P
— futad 2y = 21 %y ex z _9 vz xyz
oxdyez  Oxdy ( azj oy ) T et ) T 36”4+ ()(az)e™ |

a Xyz
= a{e T+ x2yz)} = yze™* (x + x* yz) + 7% (1+ 2xy2)

(1+3xyz+ x2yZZ2

xyz

= (xyz+x2y* 2t +2xpz+1) = e

35 (I = (o + 3+ 2| d LR |2y )
' ox oy~ Oz

= x£+yi+zi (x* +y2 +2%)
ox oy Oz

= x(2x)+ y(2y) + 2(22) = 2(x* + y* +2°) = 2r?

36. AB = (0,1,0)—(0.5+/3,0.5,0) = (—0.5+/3,0.5,0);

Ry, = (%,o.s,%j —(0.54/3,0.5,0) = (~0.5773,0,0.4714)
3 I

ABxBC =|-0.543 0.5 0 |=0.2357x+0.4082y+0.2886zZ
05773 0 04714

|4Bx BC| =0.55269

x2

37. y2=4x and x2=4y :>y=\/§x and y=7

X 343

— =4x x(x*=47)=0

T ( )
=4
x=4,0

Khanna Publishers
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N
ijdxdy = J.[y—;fz dx :l
A 2

2

38. g:x?+)’—z-1
Vé=2xi+2y —k

V¢|(1’m) =2i+2j—k

Vg 2042j—k 20+2j—k

Unit vector =

V| Ja+a+1 3
39. 141 _eax : uz _e—ax
d’ . d’? Cax
?M)—aze“ ; E|u2>:aze “
d? d?
(wl=zlm)=a® 5 (]-=lu)=a’
X dx
d? d?
3(“1|§|”2>:0 5 (”2|?|”1>:0

40. According to D’ Alembert’s ratio test.

d d
<ul|a|ul> (”1|E|”2>

_{a O}
d d 10 —a
<”2|a|”1> <”2|E|“2>

41. Rotation matron R = cos®  sin® :0=30° = R= cos30
—sin® cosO —sin30°

1 23
A=l 4 2
2 6 5

43.

OE. 9

sin30°
= R=
cos30°

o= N&
N|ﬁ N | —

Khanna Publishers
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OE. 10 Methods of Mathematical Physics

|[4|=1(8)-2(1)+3(-2)=8-2-6=0

2 3
4 2

‘:4—12:—87:0

p(4)=2

A_12
44. “l3 2

1-1)(2-1)-6=0
2-A-22+2*-6=0
A*=34-4=0

A+ 1-40-4=0
AA+1)-4(1+1)=0
A+1)(A-4)=0

A

A=-1,4

. . . j— 4 O
Similar matrix =| - _

45. g4/ =1 =4 =4"

e f| 1 d -b| 1/d -b
g h “ad—bc|l-c a| D|-c a
4
e

cosa sina cosf sinpf
46. Aa{ } ;A —{ }

—sina cosa £ —sinf cospf

5 cosa sina || cosa  sina
AIZ = AHAOI = . .
—-sina cosa || —sina cosa

2

—sin @ cosa — cos o Sin o —sin® @ +cos’ &

Khanna Publishers

{ cos’ o —sin’ a cosasina+sinacosa} {

cos2a sin2a

—sin2a cos2a

|
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cosa sina}{ cos B sinﬂ}

A, Az =
a”p {—sina cosa || —sin B cos

{cosacosﬂ—sinasinﬂ cosasinﬂ+sinacosﬂ}

B —sinacos f—cosasin f —sinasin f+cosacos

~ { cos(a+f) sin(a+ ﬂ)}
- — HYa+p

—sin(a+ ) cos(a+ f)

2 3 4|3 4] [9-4 -12+4] [5 -8
1 -1t -1 |3-1 —4+1| |2 -3
a+iy —-p+io N a-iy p-io
48. A= . . ;A= . .
pL+id a-iy -p-io a+iy
A=4" - Aisunitary = |4=1
= a+iy=a—iy = (a+iyla—-iy)-(-p-io)f-id)=1

>+ +pr 8% =1

10 0 1+2i 1 1+2i
49. I-4= - . = .
0 1| |-1+2i 0 “1+2i 1

1 0 0 1+2i 1 1+2i
I+4= + =
[O 1} {—1+2i 0 } {—1+2i 1 }

T4yt =) { 1 —(1+2i)}

1+5]1-2i 1

(I—A)(I+A)‘1:{l —1—21}1{1 —1—211

1-2i 1 |6[1-2i 1
1 1-5 —1-2i-1-2i] 1] -4 -2-4i
6| 1-2i+1-2i —5+1 C6|2-4i 4
50. |4 =1(-4)+2(2)=0
0 2
B e = p(A)=2

Khanna Publishers
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1989 1990 1991 1989 1990 1991 1989 1990
51. 1992 1993 1994 =| 3 3 3 =| 3 3
1995 1996 1997 6 6 6 3 3
KRR RS
52, 4B :{ cos’@  cosfsin 6’1 { cos’¢  cosgsin ¢1
) cos@sin@  sin’ 0 cosgsing  sin’ ¢

1991

3 | =40
3

4.Be [cos2 Ocos® g+ cosfsinBcosgsing  cos” Ocossin g+ cos Osin Osin® ¢ }

cos® ¢cos@sin @ +sin” Ocosgsing  cosOsin @ +sin® Osin® ¢+ cos gsin g

| cos@cospcos(0—¢) cosbsingcos(d—¢)
| cos gsin@cos(0—¢@) sinfsingcos(d — @)
B

A-B=0 =cos(@—-¢)=0

T
o-¢="2
7=

53. We have A(adjd)=|A|1,, wheren is the order. Here,

1 0 0 2 .0 0
s A(adj A)=21,=2/0 1 0|=l0 2 0
0 1 0 2

0 0
PEL
54 4= |

-4 1
1 -1-4

(1-A)(-1-2)-1=0
~(1=-)(1+4)-1=0

U U 0l

= A=+2
55. Tr (ABC)=Tr (CAB)="Tr (BCA)

N

I
- o o
© o =

0
0
0

Khanna Publishers
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57.

-2 1 0
0 -4 1]|=0
1 0 -2

(A -1(-1)=0

= 22 +1=0

= =1 =244 =1
Tr(A)=0=>4+4L+4;,=0

|Al=1= 44 =1

e cosd —sinéf
| sin@ cos@

sin @ cosd—A

cosd—-A4 —sind ‘

(cos@—A) +sin® @ =0
cos® O+ A% —22cos@+sin® @ =0

A2 —2cosO1+1=0

B 2cos@++4cos® 64

2

A

= A=cosf+isin@=e*"’

59. Tr(4)=6
|4]=3(0)+2(3)=6
Sh+h+h=6, Lihlk=6
=1=1,2,3

60. Tr(A)=3 =4+, +1, =3

61.

|[4|=0= 444 =0 = 1=3,0,0

, 1 271 2] [5 4 )
=1L 1ElL 5| Teh=10

62. EF-FE=0 = EF=FE

Tr (EFGH)= Tr(HEFG)= Tr (GHEF)=Tr (GHFE) = Tr (EGHF)

OE. 13
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1
=0 = (1-2)°-1=0=>1=20
1 1-2

=0 = (2-2)%-4=0=1=4,0
2 2-1

64. Eignvaluesare o*? — cog@+isin @
Let 9=30" = gt;(%] = %(ﬁii}

65. If 4 is a real matrix, its eigen values are real or complex conjugate in pairs.
66. L+, +4=5; LZLA4h=-5
Lh=5 = 4L+4=0

Ay =-1
h=l, A=-1
-2 1
67. |, 70 > A -1=0= A=+l
-2 2|, ,
2% —al” > A -4=0=1=%2
69. A+, +A;=3 D Ay =0 = 1=0,1,2

70. The products of the unitary matrices are also unitary, if4 and B are unitary matrices, then AB and B4 are
also unitary.

71. p(A)=2=]4=0

2 -1 3
7 Al=0

5
- 2(35-42)+1(20- 1) +3(16-7) =0
- 70-84+20—A+48-21=0
- —94+117=0

117

N A=—L=13
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111 6 11 1 6
12 310 =01 2 4
12 21 12 01 A-1 6
R,—>R,—R,
R, —>R;—R
If 1=3 p(d)=2 p(AB)=3
p(A4) # p(AB)

= System is inconsistent.

Ry —>R;-R,

It
(=R

O = =

[\
NS SN

74. | A|=8(21-16)+6(—18+8)+2(24—14) =40-60+20=0
A+ +4;=18
Ao =0
= 1=0,3,15
75. | adj(adjd) |5 A" 54 = 4

76.

78

79.

t?  cos t dA 2t —sin ¢
A= , ) = — = .
e sin ¢ dt e cos t

. For the rotation through an angle @ about x axis in the counter clockwise sense.

cosd isinf 0
isind cosd O0|=
0 0 1

1 2 3
—+——-——+4=0
A2 2

i

1
2
3
2
0

A—> 1 = A‘1—>%

1+24-322+42° =0

423 322 +22+1=0

312

poA AL
2 4

4

=0=60°

OE. 15
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3 4 5 6 7 3456 7
80. 4 5 6 7 8 o
5 6 7 8 9 1111
10 11 12 13 14 55555 ,
R,—>R,—R, Ryt
Ry —>R;-R, 5
R,—>R,~R,
3456 7
L1 11 3 45 6 7
1111 :(1)(1)(1)(1)(1)
11111
R->R-R, [0 0 0 0 0
R,—R,-R,
s p(Ad)=2

81. |A|=O:>‘i _11‘:—2;&0

82. [A-A|=0 = 2 +Ad’+b*+c*)=0,
83. (D> +2D+5)x=0

m?> +2m+5=0

;e —2+4-20
2
2+
m= 2E4i =—1+2i
2

x =e '[c cos2t+c, sin 2t]

d - . - .
d—: =—¢'[¢; cos 2t + ¢, sin 2t]+ e [2¢; sin 2t + 2¢, cos 2]
=—e'[(2¢c, — ;) €082t —(c, +2¢;)sin 2t]
x:5;d—x:—3 at t=0
dt

q=5=>-3=2¢,-5=-3

2¢,=2=¢, =1
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Methods of Mathematical Physics OE. 17

dx 3x+y* dx 3 3

84. d = 3 + 4 d 3_:—7___x:y
yx=Gx+y)dys =T T
1 1
1.F=e_3j;dy=e’3‘“y :eln?=%;
y
1 X X
"'x'(I'F)=Jy37dy+c;7=de+6;—3=y+c

8s.

86.

87.

88.

89.

91.

Given equator is, y = y"> +xy'—x (1) but y = P> +xP-x (2);
Differentiating ern. (2) w.r. t. P,

@:2P+x+Pé—@ :de:aP+x+de('.'ay:aﬁj.dsz.dszHc—dx:Oj = ﬁ =2P+x
dP dP dP dpP dP\ dP dx dP dP dP
Given  that, xP(x)=4+x+x>+.x°g(x)=2+3x+5x> +...indical  equation s,
k*+(P,—Dk+q,=0;
kKB -Dk+2=0 kK +3k+2=0;(k+2)(k+1)=0;k =—1,-2
‘ 1
ylzx;yzz?wronskm,W:yl, y?:x y% =xyy—yatx=—,y, =0
yionl Iy 2
u;W=ly§:>dy—2=2Wy2=2Wx+C~
2 dx ’
1 1
£ x=230,=0,0=20_+C; C=—W; -y, =2Wx—IW =W (2x-1)
d d 3d _
3.3 y _ 3.3 y 33,34 2_ 3 _
Xy +xyldi=dy;——=x"y  +xy; ——xy=x"y";y  —— =X put y 2=
(¥ +w) =Xy Ry oy =y y Ty put y2 =y

2

X z
xdx + ydy + zdz = 0 By integrating, we get; + y? +— = constant;

x*+ y2 + z? = C which represents the equation of a sphere.

2 N - . s
v =2c(x+ \/Z) — (1); Differentiating (1) with respect to ‘x
2yt =2ec= = )=y =2 x+ ()"}

y4 _4xy3y1 +4x2y2y12 = 4y3y13 .Order is ‘1 degree is 3.
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OE. 18 Methods of Mathematical Physics
92. ydx =2xdx = —ZZI—+C = Inx=2lny=Inc = x:cyZ.

d L d _
93. >+ 2xy =2xy” . Dividing throught by yroy? Dy 2xy T =2x;
dx dx

out y' =v; —yfzd—y:ﬂ; —ﬂ+2xv—2x ﬂ—2xv:—2x
dx dx dx dx

j(—Zx)dx 3 e_xz

I.F=e
= V(I.F) = [ (-2x)(I.F)dx+C

2 2 2 x? 1 x? 1
e :J‘—2xe’x dx+C=e ™ +C;v=1+ce ;=1+C‘3 5 .'.yzl—xz
+ce

d’ d
94. x° R y —-T7x dy +15y =0_(1) which is in the form of a cauchy’s homogeneous linear equation
X

d
putxze’:tzlogx:x;l—ysz; 2dy—D(D 1)y where D =—
X

dt’

Then equation (1) becomes,[D(D-1)-7D+15]y=0(D*-8D+15)y=0 (2) A.E.

=m’-8m+15=0=>m=53y=ce’ +c,e” =c,e’* +c,e’*y=cx’ +c,x°

d’x ) dx dvdx dv
95. From Newtons 3¢ law,mW:—Cx—bV ; butd 3 :—( d_E:vd_
X X

= vﬂz—cx—bvz(‘.' m=1)= vﬂ+bv2 +ex=0
d dx

x
dv dz 1 dz
Put V° =z;2v—=—=>——+bz=—cCx
dx dx 2 dx
dz IZbdx 2bx 20 2b
= 42bz=-2ex LF=e " =¢™ e = 2c[xe™dx+c
x
=z = D¢ xe%x e +c = cx+_c +cle?
=— - z=——
2b  4b? b~ 2p?
Appl I condition ' (x = 0) = 0 T T P
t t = N0 A~
pplying initial condition V' (x = 0) b b2 2p?
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Methods of Mathematical Physics OE. 19

96.

97.

98.

99.

101.

2M 2
(4x+3y+1D)dx+Bx+2y+1)dy =0= Mdx+ Ndy = 02— 3= Z—N = the given equation is
y X
M = 4 1 2y+1 =
exact . the solution is, J. dx+ I C.[( X+3y+ )dx+I( y+Ddy
y=constant terms excluding x terms

2% +3xy+x+1y’+y=C=2x"+3xy+y° +x+y+C=0. Compare with standard form,

9 1
ax® +2hxy +by’ +2gx+2fy+c=0;,h> —ab = 2—2 =1 >0 It is parabola condition

dzy 2x dy 3
ar 1- xzdx 2(1-x?)

d? d
Given equation.is, (1 - x )dy 2x dy+ 3/2+)y=0=
x

dy 2 dy 3 —(3/2+1)=0

(B/2+1)y=0="= =
dx®> 1-x?dx 2(1-x%)

1—x2 =0 = x = +1; The solution will diverge at 1 and -1.

2
TV S 6y e = (D*—5D +6)y = ™ AE
dx? dx

is,m*—5m+6=0=m-3)(m-2)=0=>m=3,2

1 1

2x 3x 5x 5x
=ce " +c,e’Pl=——¢" " =—¢
CE=a : D>-5D+6 6

1
L y=CF+PI; Yy=¢e" +c,e” +ge5"

4
%+4x =cosht = (D* +4)x =cosh ¢

t —t
PI= 41 ¢ re 1[ 41 e+ 41 e’jzl € e =lcosht
D +4)| 2 2D 4" " D4 2055 )75

100. (D*-D)y=e* +e *P.I = T (e“'+e’x)=x3D£_l(ex+e"")=%(ex+e"")
. .., tany x o . :
The given equation is,) — I+ =(1-x)e"secy Dividing the above equation with
X
dy siny dy dv dv % .
sec y,cos y — — =(1- sin y=v = cos y—=—; —— =(1-x)e
d 7 dx 1+ x (1= x)e” . Put r 4 dx de  dx 1+ x ( )

1
—dx ) 1
IF _ e.[ 1+x — e—log(1+,\) —

l+x°
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OE. 20 Methods of Mathematical Physics
. . . fe 2 2 2 _ 2 _ —
102. The given differential equation is x“(y — px) = yp~ Let x° =u,and y~ = v, then 2xdx =du,

ydy _dv _xdv

and 2ydy =duv, dv  du r,p Vv du Substituting these in the given equation, we get

x* do x* (dvY dv dv\’ dv (dv\’
Cly-—— =y 5| sor,y’ —x*——=|—1 or, 0 =u——+| — | Which is of Clairaut’s
Y du y- \du du du u

forms. Hence the required solution is v = cu + ¢*or, y2 =cx? +c¢?.

d’ d .
28 Y Y v =0, which is a Cauchy’s homogeneous linear eqation, put

103. x
dx? dx

zdzy

=
X

d
xzet:>t:10gx andﬁ=Dy,x D(D-1)y..

-.D(D=1)y+Dy—y=0=>(D*—1)y =0, where D:%AE, is,

- _ . .1
m* —1=0;m=4=I; y:clet +c,e ! =cx+e,x ! =cx+c, / x; .. The others solutions is T

d’y  dy

104, 4—=+4—+5y=0= (4D +4D+5)y=0;
dx dx
X
. -4+416-80 —4+i8 1 ) .
A.E.is, 4m® +4m+5=0;m = =B 4y y=e (¢ cosx+c,sin x)

8 8 2

105. (D* +4D+4)y =2sinh2x AE.is,m* +4m+4=0;m =-2,-2; Y., = (¢, +¢,x)e .

1 1
P]=———2sinh2x=———(e* - >
D’ +4D+4 D2+4D+4( )
_ 1 2x -2x\ _ 1 2x X -2x 1 2% x2 _2x
- 2( - )_7 =—€ ——¢€ 5
(D+2) 16 2(D+2) 16 2 >
2
LY=Yertyer=(c+ sz)eizx +i62x _Le,zx

16 2

106. GivenD.E.is, x(1—x*)dy +(2x°y—y—ax’)dx =0;

1 2 d _ 2 2., 3 d .d_y+ (2X2—1)y: ax’® .
x(1=x")dy =—(2x"y—y—ax’)dx: ot 02 T Tao o)
I%‘” 2x% -1 x? -1+ x? -(1-x%) x?
= ¥ dx = dx = d
LE=e (- xY) x=] x(1-x?) * Ix(l—xz) +jx(1—x2) *
1
_ 1 1 lnﬁ
=—Inx+ 1 [ 2)62 dx=—Inx——In(l-x*) =ln—————5; [.F.=e "™
2)1- 2 x(1-x7)
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Methods of Mathematical Physics OE. 21

107.

108.

109.

110.

111.

112.

1
x(1- x2)1/2

1.F =
Y+ Gi+1)y' =3i=0[D* + Gi+1)D-3ily = 0; 4 Eis,
m® +(3i = )ym—3i = 0(m+3i)(m—1) = 0 = m = 1,-3i

y=¢e" +c,co83x—c;sin3x

2
4y L y=0= (D +)y;D*+1=0= D=ti;
X

. T
Ly=c¢ceosx+csinx; y(0)=1=1=c; y(zj=2:>c2 =2. S y=cosx+2sinx

d4y_d2y

e 0= (D*-D*)=0;D*(D*-1)=0=D=0,0-11;

y=c +c,x+ce’ +c,e ;. the set of linearly independent so equations, {1, x,e’, e’x}

3
(2x/y3)dx+[(y2—3x2)]dy:()dl:_ 2x/y

dx (yz—?)xz)/y“;1

dv 2x/vx? 2xvix? 2vx 2v .
vt XE T (vix* =3x%)/v'x* T vix . (vix? =3x?) T vix? = 3x? T vi-3 the given ern
‘ dy _ 2w
is homogeneous - (y2-3x%)"
dy (y/x)* -1 y dy dv dx 2V y o .
i —=——(); —=V=>—=V+x—; H)=>—+ dV=0=x"+y =cx i
Given & 207 )] . i = ) T y which is

dy _dx, dy _ (2xy)
circle. The differential equation of the orthogonal trajectoriesa = _d7y’ 0= e 2 —y%)

Let the population be'y' at time ‘¢’ (in years) and'x," be the population at time f=().

i—jax = i—j = kx; @ _ kdt . By integrating, we getlogx =kt +logc = x = ce’ (1) at
. _

1 1
t=0,x=x,=>x,=c; .. x=x,e" :tz—log[iJDkz—log(ij
k X, t X,

2
fort=50,x=2x0:>k=

.at =1

log3

x=3x, = kt' =log3,t' =llog3,t’ =5—010g3,t’ =50
k log?2 log2
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OE. 22 Methods of Mathematical Physics
113. (D’ - D)y =2coshx = D(D*>—1)y =2coshx A.E:
=mm -1)=0=>m=0,m=1-1
Vop =¢ +ce’ +c e”"PI—;Zcoshx
CETGO TG 3¢ L (D —D

(e"+e™)

1 -
=——("+e ) =x

1
(D*-D (3D*-1)

1
Vop =¢ +ce +ce ¥y P =————2coshx
CETOTG 3 (D’ D)

(e +e™)

:(DS;—D)(eX +e)=x

1
(3D*-1)
- x X —X
=—e +—e =—(e +e
2( )

X _
- The complete solution is, ¥ =Vep+Vp =€ +C€ +ce™ +5 (e"+e™)

d?s
114.

ds ds ds
> =8 Integratlngidf—gﬂrc Againat =0, v TP usce s =gl +u _(1);

1 1
Again integrating, § ZEgt2 tut+c’ =s =ut+5gt2 (attzO,s =0=>0=c> c'zO)

dy yi+1 dy dx
x +1 + +1)=0=> —=- = + =0
(+7 ) 7+ = dx x*+1 y i+l x?+1 ’

Integrating by applying the method of variables
tan”'(y)+tan"'(x)=c;tan"'(y)=c—tan"'(x); y = tan{c =tan”' (x)};

tanc — x
= ——— |+ expansion of tan(4 - B) |-
7 1+tanc(x)[ P ( )]’

tan ¢
i 0)=1,> 1=—————=tanc .
Given ¥ (0) 1+ tan c¢(0) ’

=17 = = oy=(+x)=1-x y+2y=l-x=>y+x=1-xp

115. Option (a) order =4, degree = 1; option (b) = 3, degree =4; option (c)

el (2]

dx
Khanna Publishers

d3y ’
dx’

d3
dx’

=4 = order = 3 = degree
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OE. 23

dy d3y

116. ¢[x, Vo= J =0 ;@ representa 3" order D.E = 3 arbitary constants.

dx ’ dx?

2 2
117. (D2+4)y:yp:#x:1 FITIEZAG (RS Ny (PO SN 4
4[ DZ] 4 4 4 4 4~ 4

[ (I+x)" :1—x+x2...]

_M(x,y) dy dv

dy
N =0—= == ——=v+x—
118. M (x,y)dx+ N(x,y)dy =0 & Nixy) Put ¥ p I Now we can represent

119. From option, (c)(D* —=2*)y =0= (D -2)(D*+2D+4)=0=D=2,D =

120.

121.

123.

X

the variables V' and x .

—2+4/4-16

2

=:2%;5§=—kud§

= y=e (¢, cosv3x+c, sin/3x) + ¢y

d’i R di 1 , R 1 d
+——+|—i=0{D’+—D+—1i=0; D=— .
di® L dt (Lc jl [ L Le )’ ; where dt AE.is,

.. Solution is, y = (¢, + Czt)e_R”zL

Given D.E. is, (1+ xy)ydx +(1—xy)xdy =0 = Mdx+ Ndy =0;
1 1 1

My ~Ny =0, [.F=—— .- [F= =
7 Mx — Ny > o+ x7yr—(xy —x*y?)  2x’y?
. . dy . 3 2 R 2 2 dy 3
Given D.E. is, E+XSIH 2y =x"cos” y dividing throught by cos” y, sec ya+2xtany:x _(

Put  — tan y = ‘Z_V =sec’y A then equation (1) can be written as,
X X
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OE. 24 Methods of Mathematical Physics

dv dv
— t2w= x* (2) Which is of the linear form - tPv=0

124. Given equation can be rewritten as ( D>+D— 2) y= 0,
d o,
where D =—— AE.is, m"+m=2=0=(m+2)(m-1)=0=>m=-2,1;

. -2 -2 .
Ly=ce T +ce’ Yy =-2ce " +ce;

y(0)=0=0=c +c, = "y (0)=3=-2¢c;+¢c, > ¢, =land ¢, =—1 ;.. y=e' —e ™"
k k
. . dx  ky 3 Jf‘” o
125. Given D.E can berewrittenas, — +—x=—[F=¢ " =e"
d k k
k k by
% i ky e" k
.. Solution is, xe" = I—3ekl dt+c=—, +o=-3 kMt 4 o
k, k, k,/k k,
k3 —ky [ kit k3 k3
xX=—+ce " ;x(t=0):0:>0=k—+c:>c:—k—; _..x=k3/k2(1_ekz/klt)
2 2 2

2
126. Lf+2jl+x:0:(D2+2D+l)x=0
t t

AE.is,m* +2m+1=0(m+1)(m+1)=0

m’ +2m+1=0m+)(m+1)=0=>m=—1-1

=x=(c +c t)e_’@:—ce_’ +ce —cyte!
1 2 dt 1 2 2

_ ~t dx _ ~t ~t ~t
= x=(c,+ct)e —=—ce +ce —cte
dt

x(t=0)=1:>126‘1%(120)20302—01+0236120221

sx(@)=((+0)e" s atr=1 x=2¢"'=2/¢

127. The function are linearly independent if |7 = ()

em, emzx em3x

W=\me™ me™ me™"
2 X 2 _my 2

mye™  mye™  mie™”
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128.

129.

130.

131.

132.

133.

134.

m,xe(m2+m3)x mzxe(m1+m2)x

2 2 2
=e (mymym;)+e (mymy —m,m;’)

= plmtmatms)x {m2m3 (my —my)+mmy(m, —my) +mm,(m, —m, )}

d 3
y=ax’...(1) =a= xl} . Differentating equation (1), d*i =3ax’ = 7)} for orthogonal

LAy x . . . .
tranjectories, -~ 5 = 3ydy + xdx =0 integrating by the method of seperation of variables.

.. The curves (1) and (3) form orthogonal trajectories.

The equation of the circle with radius » and centre on x-axis is, (x—a)’ +y* =r"...(1)

d d
(1):>x_a=(r2_y2)1/2 2(r2_y2)l/2+2yl=03(r2_y2)1/2:_yl;

dx dx

2 2 2
On squaring, ,* —y? = y? (jlj =2 =y +y? (dl] i =7 {H(dyj }
x dx dx
dy : dy
' ion i ax L] o E-y=0

The given equation is x[ dxj + x( de y (1)
Also given primitivesis (y — c)2 =cx 2)

The curve passes through (1,2) (2—-c)* =¢ = (c—1)(c —4) =0 = ¢ = 1,4. There are two integral

curves(y—1)° = x and (y—4)* =4x

ydx—xdy=0:ﬂ=ljﬁ_ﬂ=0
dx x Xy

By integrating we getlog x —log y +logc =0 log(cx) =logy = y = cx u;
A family of straight lines.
The given equation can be written as, (D2 +1)y=04.E > m*+1=0=m==i;
S y=(c cosx+c,sinx); y(0)=1=1=¢
and y(r/2)=1=1=c,;.. y, =cosx+sinx
Given, (D* +8D* +16)y=0= (D> +4)’y =0
= (m* +4)’ =0 = m =+2i,22i; = (m*> +4)> =0 = m = +2i,+2i;
The given equations are xy' +2y =1— (1) and xy' —2y =1— (2); Both differential equations are
=e

2 -
linear ..F of (1) 7 _ ejf“" 2eex _ 2. (3)and LF of (2) 7, = efj;d'x = 2loex Lz (4) From (3) and (4),
X

LL=1.
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OE. 26 Methods of Mathematical Physics
135, 136. Given D.E. can be written as, (D* —=2D +1)y =04.E. = (m* —2m+1)=0= m =1,1;.". Solution

is, y=(c, +c,x)e”.

14 ! ” 2x ! 2 2
137. (1=x7)y"=2xy'+2y=0=)" -y +—"5p=0  where P(x) = - ——— and
I-x I-x l1-x
2
O(x) = 75 o 5~ The given equation is not analytic at y = %] . Ordinary point means the point at

which the function is not analytic.
138. (4D +4D+1)y=0= (D*+D+1/4)y=0;

AE= (m*>+m+1/4)=0=,=-1/2,-1/2 - y = (A + Bx)e

d
139. Given equation, is (D? —1)y = 2 cosh ¢ where D :EA.E': m’=1=0=>m==l1;

S yop =ce +ce” P =

1 1 1
2cosht = d+e’y=t—(e'+e')=—(e'—e ") =tsinh ¢
Dz—l( ) 2D( ) 2( )

y'=ce —ce +tcosht+sinht; y(0)=0=>0=c +c,; Y'(0)=0=0=c¢, —c,

Which implies that ¢, = ¢, = 0; .. The solution of the given D.E, is y = ¢sinh ¢
dy = x* dl l — y3 — J‘%dx_ logx _ (3 _xs 4 _X4 4
140. xdx+y_x Ddx+xy—xI.F.—e =e =X :>)W—Ixxdx+c:xy—5+53y—5+5x,
0 -2<t<-1 it
141. f(t)=4k —1<t<1 .Wehave f(t)= a0/2+2a COST+Zb smT
0 1<t<2 n=l
ll 1 2 1 1
ao=—ff(f)df=—ff(l)dt=5jkdt=5 H=k/2)2=k .
I 27 I
_cog "*
11 . nt 1 nt k 2 ) k
bn :_If(l)SIH_dt =—J.ksin—dt :fT‘—l :—0:0
[ / 27 2 2 (j nr
2
) f) = 0 O<x<c
142. Given, J (X) = 1 c<x<ac’
By Fourier theorem, f :70 Z COS—+ZB Sll’l—

n=1
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27 2 y
Where, 4, = E _([f(x)dxo 4,= 2% _([f(x)cos(}?xjdx &B, = 2% -([f(x)sin(n;“jdx

1% nm 1% nm
Here,;An :_J-f(x)COS—dx:—J-COS—dx
C 0 C C . C

A4, = %Zf f(x)cos(n;m jdx &B, = % | f(x)sin(”;“jdx

0

1 .
2¢ :7(_1+Cosnﬂ): 0,if niseven
niw -2 /nr,if nisodd

1 2. 1.3 1.5
.. The fourier series for given function will be, f(x) =——— [sm 2o —sin 22 4 —sin 22y }
2 c 3 c 5 c

143. The fourier series is a series of sines and cosines in the form,

f(x):%+ian cosnx+ibn sin nx

n=1 n=1

If f (x) is an even function, the corresponding series is a cosine series and if f (x) is as odd function,
the corresponding series is a sine series.

8|11 1
144. Atx=0; f(0)2¥{1—2+3—2+ ......... } and f(0)=1

2% .
145. f(t)=e* the Fourier sine transform of the given function is, g, (@) = \Ejf(t) sin wtdt
0

127 _a . |2 w R b
w)=.—|e *sin wtdt = \|————| " | e * sin bxdx = ——
g, (o) ”l‘ ira2+a)2( I a2+b2J

0
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146. L

147.

148.

149.

150.

151.

152.

153.

] s+4 s+4 As+B ¢ D
> == +—+
(s=D(s*+4)| s(s=1)(s°+4) s +4 s s-1
Multiplying throughout by s(s —1)(s* +4),
We get s+4=(As+B)s(s—1)+c(s—1)(s> +4)+ D(s*> +4)s
s+4=>4=c(-4)=>c=-1s=1=5=5D= D=1
Comparing the coefficient of s on both sides, comparing the coefficient of §3 on both sides.

. s+ 4 1 -1 1
O=A+c+D=>A=—c-D=1-1=0 - /)= nra = g+

K s—1
. -1 _ —1L_l 1 2 gl s+4 _711 =z_l~ _
S fOL{f(s)} =L {S_l} 2L {S2+4} L PR L {S} e 2s1n2t 1

The Fourier transform of a gaussian function is a gaussian in.

T —st dn =S d
)= [FOedt weare L ()= (<)<= F(s) = [tF (e "dt = Ly (1)} = -4

0 ds”" ds
The Laplace transform of a function f'(x) exists only if the function satisfies the following codition:

1) The function f'(¢) should be as arbitrary continous function in every finite internal and that f(¢)=0
for all values of «.

ii) The function f'(¢) should be of expontial order.

L[\f] L{tl/Z}_ () — \/;

S3/2 2S3/2

L]re” sin at] weare Lisin at}m— AsoLit" £} = (-1 L)

a 2as

ds (s> +a’) (S2+a2)2

where f(s) = L[F(t)] Litsin at} = (- )

2as—a

We know that L[e‘”F(t)] =f(s—a) .. L[te”t sin at} - m
s—a) +a

T

S*+7

2}; .'.:{tsinm}z(—l)js[ il 2}— 275

S*+72 | (S*+7°)

f(t)=sinm and F(5) ZL[f(f) =

Given functionis J ()= t”L[f(t)]:j “dt =t
0
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© —st
m—jat"'e dt =<
o 9 s S

—st

e

Ttal st gy = a(aS_)Ita—ze—szdt;
0

0

a9 —1)(a-2)a-3)..32.1 Ta+l
Sa - Sa+1

As proceeding like this we get L{r"} =

p+1 p+3 3 2

(p+3)°+16  (p+3)+4> (p+3) +16

_ +1 _ 1 4
! - P | = 2p PR — :e_3t[cos4t—lsin4t}
pP+6p+25 p +4 2p +4 2

0, x<3
x=3,x>3

154.

155. Given S (X) = { L[f(x)]= Ie’”‘f(x)dx
0

3 ®© ®© ) ©
- Je_sxf(x)dx + I e ¥ f(x)dx = I(x —3)e Fdx = Jxe_”dx - 3I e Ydx
0 3 3 3 3

o0

— Ee—?;s _Lze—sx
3 S S

3 —3s 1 -3s _ -2 _-3s

=X

© 1 0 B 3 B
+— J.e Tdx+—e™™
S
S

3 N

ou 8\/ 8u Gv

156. A function is said to be analytic 1Sa - 5y =

(cauchy’s Reimann condition) and the function must be conditions

f(z) =sin z =sin(x +iy) = sin x cos iy + cos xsin iy =sin xcosh y+icosxsinh y =u +iv

ou ov
— =cosxcosh y=—

0 0
* Y f(z)=sinz
Ou ov
— =sinxsinh y=——
oy ox

(a) isanalytic.
b) f(z)=2=(x+iy) =x iy’ +i3x’y-3xy”> = (x’ =3xy*)+iBx’y =y ) =u+iv

Ou 2—3)/2@

o P

y Vo=
ou ov is analytic function.
= bxy=——
oy oy
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© f(z)=2"f(z)=e"(cosy=isiny)=e" cosy+ie siny=u-+iv

ou ov
—=e'cosy=—
ox Oy N ..
= f(z) =e"(cos y +isin y)is analytic function.

o _ —e'siny=——
oy 7 ox

(d) f(z)=sinxsin y—icosxcosy=u+iv, say

Ou . ov ou ov Ou . ov ou Ov _Ou ov
—=cosxsmy=— —=——_—=8SIMxcosy=—, —=—=>—_—+——.
Ox oy Ox 0y Oy ox o0y ox Oy @ ox°

2. f(z)=sinxsin y—icosxcos y is not analytic

2
cosz
157. | Z |=1=> unit circle centred at the origin f'(z) = §c0t22dz = § ——dz z=0isapole.
sin z

.. The function has only one singular point inside » where the residue is zero

158. l-i — eilogi _ ei(2inﬂ+logi) — e—2n7r+ilog(e[”’2) — e—2n72+i(i/r/2) — e—2n/r—/z'/2 — e—(2n+1/2)/r;
s In@@i") =Ine ®"?7 = —(2n+1/2)x principal value is obtained by putting n=0 11; — 77 /2
160. Given that f(z)=¢"
22
z=x+iy=>z2 =x" =y +i2xy = f(z)=e" Y

2

= f(2)= eV e = o [cos(ny) +i sin(2xy)]

e 2
161. f(z)_,,z:(; Y o1 (=1 3Gy

.. Theresidue of f(z)atz=11s, 2/3

1
~ Poles of f(2)=
I+e l+e

162. f(2)= are found by equanting to zero, i.,e., 1 + ¢ = 0

z

— of = —] = T = 7 = ii(2n + 1)7[ ,Wheren=0,1,2, ........ . f(z) has poles of order 1 at

z=*ix,*3ix, £5ix,.....

COS 7z
163. f(2) =J‘ (Z _ 1) dz ; Polesof f(z) = z-1=0—= z=1isapole oforder 1 and which lies inside the circle

whose radius is 3, centred at the origin. Now, by cauchy’s integral formula,
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f(zo):%_[%dz = J'Zf—LZZZdZ = 27a'f(zo)

COS 7z
Taking f(z) = cos (7 z)and z, = 1, we have ; J. z—1
z|=3

dz =27 cos(rz, 1 1= 27

2
z

f zldz :j dZ, . .. ..
164. Let_!‘ ( ) (Zz + azxzz i bz) where c is the contour consisting of the semicircle C, of

radius R together with the part of the real axis from -R to R as shown in figure? The poles are given

by.(z* +a* 2> +b*)=0 = z =*ia, +ib of whichz=ia, ib onlylic inside c.

f(2)dz = 27i{Res /() _, +Res /(=) -}

*. By residence theorem, j

2m{hm z—ia) )+lim(z—ib)f(z)}

z—ia z—ib

li z
=2 li
& ZEB Z+1a 22 +b? )+zgg(z2+a2XZ+ib)}

{
27”{2“1 ) (@ —_blzzxm'b)}

o b’ . a-b \ &
21a ( ~b’ leb a’-b*) a+b
R y
C
Also, [ @)z = [ f(x)x+ | f(z)dz
¢ -R Cp
Now, let R — oo . For any point on CR as |Z|—>oo, -<oo R > D};J
21 oz _plesl g
. _cj 2 a57)” <C{zmz\z asa>0,b>0 CIR|Z| VS
. 7R 7 x2dx z
-.» On semicircle ¢, , Z|=R =RIC ;—) 0Oas R —> o .. ;[C(xz a1 D) =
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165. /(2 =(z+1)sin(zi zj

Let Z—2=t=>t+3=z+1=(z+D)sin

(1 1 1(1yY 1(1
=(t+3) s1n(tj =(t+ 3)|:t —?’!(J + y(tﬂ

o+ - — +..
z-2 6(z-2)° 2(z-2)

.. f(2) has essential singularity at 7 =2

T N

~zf  (z-zf (z-z) 3 5!

:Z{( I _(r=2) (z=2)

p 3 5 _"'}; = f(z)hasasimplepole atz= 1.

167. |z] =1 — radius of contour = 1, centred at origin. Then the pole z = 7z lies outside the contour.

~§rz)z=o.

I
168. Poles z = +4; ifa=2 then z = +24; lies outside the contour; if z = iE i.,e. a =1/2 poles lies inside

the contour.
Res=2n

©

cos mx t cosmx
169. Let 1 =I 2 1dx let_[ 21 dx poles of f(z) are+j onlyz = lies within the contour
0 (x"+ o (x“+1)

imz —-m —m
cosmz . (e e .h € -m,
(™) - c 2. =me "

=l1m A
(z+i)(z—i) =i z+i 2i 2

Resf(z)| _ =lim(z—i)
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170. f(z)=— 2732 oles=s 2(z—1)(z—2)=0=> z =012 of whichz=0,z=1 lic inside the

z(z-1)(z-2)

circle of radius 3/2, centred at the origin Re sf'( Z)|z:O = 111% ZZ(Z(4;)§;)2) = % =

4-33) 1 _ .-_J‘&dzzzm'ZR:ZH(l):Wﬂ'

Reof (2) ZZ-)Z-2) -2 Tilzz-1)z-2)

=lim z
z=1 z—1

172. Poles of f(z) are z=1 (second order) andz= - 2

. . =4 (z-1)°~ =5/9;
(Simple) Residue off(z)(atz=1)= /| (z=1)ldz (2_1)2 (z+2) 7
(Z+2)22

Residue of f(z)(atz=-2)= Zﬁfzm =4/9

dz 1 1
=5 z)= = z=0 = =0i i
173. Let/ £222z ~here f(2) 22z 2(z-2) and z =2 arepoles. But z =0 is the only pole which

- —1/2;:.]' E o ori-1/2) = —mi

. 1
lies inside the contour " Re/ (.o = lim 2 2(z-2) Ry
e’sinz e’sinz
174. Let1=§ -—dz f(z)=———,2z=0 isapole of order 2.
2z 2z
1d e“sinz 1 1 1

.. Re =——|limz’ =— (e cosz +cos ze’ =—({+D)=—

SOl 32 [HOZ 272 ] 4 Coszreosze) ==

QjS CSNZ o iSR = 2mi =
2122 2n

r 2 4 2 372 .
2 _ . . N 3 . _ L L_L _ _&
175. !(r zt)dt.(2t+z)—£[(2t +1 lt)}dt_{2+2 ,3}0_10 :

Todx 1
176. !; (1+ xz)s consider the function, f2)= (HT)S poles,= z = +j of order 5. of which only z =1 lies

inside the contour - i”’i P S
Re/ (). 41 dz* {(Z ) (+i -],
1 d* s (-5 d° 6
=——(z+1 =————(z+i
4 dz* ( ) . 4! dz? ( ) .
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5x6 d* ~? S5x6x—7 d
w | T w
S5x6x8 0 S5x6x7x8 1 70 35
(z+19) = = =
41 4 (20 22% 256i

By cauchy- Residence theorem, If (2)dz = If (x)dox + jf (2)dz

Cr

. [ f(2)dz

dz dz| _¢ldz]
:‘!(1+22)5§_J‘|1+22| f| |(as1>0) f' IO( 0 n" semicircle | z |= R)

G dx . 35 T dx 1707 35«
.1725=2m. :‘[ = =
J(d+x7) 256 i o l+x7) 2 256 256

cos 7z 1 1 coS 71z cos 7z coS 1z
=1/2 - cosz .. dz=1/2 dz — d.
177. 27 -1 (z—l Z+1j = J‘22—1 ‘ {I z-1 ‘ I z+1 Z}

cosm . COS 7z
—/Zm{lzlg}z 1)——= — 21er11(2+1)(2+1)}

= 7i(=1+1)=0 [+ cos(~ 8) = cos 6]
178. Letf(Z):m

z =2,z =1 aresimple poles lying within the given circle of radius 3, centred at the origin.

. 2 : 2 1 2
- f (Sm—”z dz = 27ri{lim(z —1)E L fim(z-2) SR

z—l)(z—2) 251 (Z—l)(z—Z) 22 M}=27d(0+0)=0.

1/z
179. .[f iz J- dz ; Where ¢ represents a circle of unit radius centred at the

c

origin. f(z)=z%"" = 22 (1+1/2+1/211/ 2% +1/311/ 2 +1/411/* +...)
(2 1 11 11 j
=z +z+—+——+t——+..
20 3z 4z

Res f(z)o=1/31=1/6 ; . [ €' *dz = 27i.1/ 6 = 7i /3.
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180.

181.

182.

184.

18S.

186.

7 -
e” Sin(Z2)
Letl= § ) dz , where C is ¢ unit circle contour at (2, 0); Z= 0, is a pole of order 2, which lies

. _resinz
outside the contour. .. §—2d2 =0.
z

. B eZ _ eZ
Given,, f(z)— z2—3z+42 (2—2)(2—1

pole which lies inside the contour.n

) — Polesarez=2,z=1, out of which z= 1 is the only

z 1

eZ ) - ez ' e 0 .
J‘mdz =2 ReSf(ZX sl 27 LIH}(Z_I)m =27 111'1'172: 272171 =2 ie

Probability that the card, which is drawn from a pack containing 52 cards with 4 aces, become are

4c, 4

is, 11 = 3¢ = 5 Probability that the card, which is drawn from a pack of 48 cards with 8 aces, become
1

8¢, 8

1 4 1
ace is, P, = 48¢, = 78 = g . The probability that both are aces is, P = F.P, = 5 =—

13

_ 1
=

|~
|-

n

The probability that no one die, P = (1— p)(1— p).......(ntimes) = (1 - p)

The probability that at least one dies=1 — (1 — p)” .. The probability that 4, will die in one year is ,

P(4, dies) = %{1 ~(1-p)'}.

Let E = Event that the husband will be alive 25 years hence and F = event that the wife will be alive 25
5 3 - 7 - 5
years . Then P(E) = o and P(F)= % ThusP(E) = o and P(F)= o> The probability that at least
. . = = 0l
one of them will be alive 25 years hence =1- P(E).P(F) = %"
Probability that the ball which is drawn from bag 1 become white is, P, = ? = g
€
Probability that the ball which is drawn from bag 2 become white is, P, = % = %
G
43 1
.. The Probability that both are white is, P= gg = Z .
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. . . . .2
187. Since these two events are independent, the probability of passing both is

Methods of Mathematical Physics

1
x—=—,
3 4 6

188. Total marbles of ways of selecting 3 marbles out of 9 is 9¢, =84 .

.. The probability that all are different =

189. If n independent trials constitute one experiment and this experiment be repeated N times, then the

frequency of r success is, N"c,P'q

2 2 3 6, 4
Here,P=g q= 1—g=g ,n=10,r=6. -, Theprobability = ‘Ocﬁ(zj (E) .

3><3><3_£_2
84 84 28°

n-r

5) s
-m_ x -m__m-1 -m_m_—1 -m_m
e "m e "'m e "'m'm e 'm
= . P = = - =P, .
190. P, o om-l (m-1)! m! " m! "
—-m_ x—1 -m_x_—1 -m_ X -m_x+1 -m_ X m
p _em B m-m_x _e izx/me-P 1=e m _e .mzpv.
x—1 (x_l)l x! x!' m > X+t (x+1)! x!(x+1) . (x+l)
2-A 3 0
191. 3 2-1 0 |=0 = A=5
0 0 1-1
-3 3 0|(x 0
=3 -3 0 =0
0 0 4z 0
3x+3y=0=>x=y
—4z=0=2z=0
193. X, =0 Yo=0
fxy)=1+y

Vsl = Vn +%(K1 +2K, +2K;5+K,)

Ky =1 (3. 79) = (02)(1) = 0.2

K, =hf

Ky =hf

Ky =hf

Khanna Publishers

X, +g, Yo +%} =(0.2) £(0.1,0.1) = (0.2)(1.01) = 0.202

X, +§, Yo +%} =(0.2) £(0.1,0.101) = (0.2)(1.010201) = 0.20204

X, +§, o + KJ =(0.2) £(0.1,0.20204) = (0.2)(1.0408) = 0.20816
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=0+ é[O.Z +0.404 +0.40408 + 0.20816]

194. Y2y = 0.2027

Let x,=02, o =0.2027, h=02
K, = hf (x4, vy) = (0.2)(1.041) = 0.2082
K, = hf(0.3,0.3068) = 0.2188
Ky =(0.2)£(0.3,0.3121) = 0.21948
K, =(0.2)£(0.3,0.42218) = 0.2356

1
Y0.4) = Y0.2) +g[K1 +2K, +2K;5+ K4]

Yoa) = 04227

195. Back ward Euler method is given by y,.,; = v, + A/ (%1, V1)

OE. 37

196. The finite difference approximation for the 2™ derivative of a function f at a point x, is

Xg+h)=2f(xy)+ f(xg—h
(=L B2 ) o)
197. Let x=3/c then 3 _c=0 = f(x)=x"—c=0and f'(x)=3x>
Newton — Raphson method is given by

3
/(%) (xn _C) 3 —x+c 23 +¢
Xl =X =Xp D - 2n > Xp41 = . 2
f(x,) 3x, 3x; 3x;

198. Let f(x)=x"-2 and x,=-1

o) (672) (6+2)  cien)
X+l =Xn =71 =Xy~ = Xl =
f(xn) zxn n 2xn
9
_ox@e2 1+2 3 @ (15742 42 17
Yoy, 20 20 TP a2y 2(-15) -3 -3
2 _ 2
x3=x2+2=( 1.4166) +2 _2.0067+2 _ | 410
2v,  2(-14166)  -2.8332
2 _ 2
. _xi+2 _(-1414]) +2_19996+2 _ | 4

T oox, 2(~1.4141) —2.8282

. The iteration will converge to _\/_:_1,4141

=—1.4166
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199, f() =L, a=1, b=2, h=025
X

X 1 1.25 1.50 | 1.75 2

1
f(x):; 1 0.8 |0.6667|05714| 0.5

—_——

1. h
—dr=— [(vo+34)+4(n +33)+2(3,) ] =0.69325,

2

1. h
J;dng[(yo +34)+4(31+23)+2(32) ] =0.69325
1

1 1 1 1
200. Let x:; (or) ;—a=0Then take f(x):;—a and fl(x)Z—x—z Now the Newton’s formula

; 2 -
givesx,,; =x, — =X, — X, X, =2x,—ax, forn=0,1,2,3,..

(3,) [1]( L)

S (%)
201. Newton — Raphson formula is ¥n+1 = %z ~ Iz (x ) n=0,1,2,3,.........

202. E-1,F-3,G-4,H-2
203. Let x=v/2 (or) x>_2—0Taking f(x)=x-2 and f'(x)=2x Newton — Raphson’s

_ 7(,) (-2 22-242 w242 i 2
formula is Xp+1 =X, — 1(xn) =X, ~ 2%, = 2, 3Xpel = xn Xntl =5 | Xn +Z
204.Given f(x)=x"+4x-9=0 = f'(x)=x"+4 Newton — Raphson formula is
N _f(xk) B (x13+4xk_9):3xi+4xk—x,§—4xk+9 . :2x,§+9
k+1 k fl (xk) k (3x1§ +4) (3)613 + 4) k+1 3x]§ +4

205.P-1,Q-2,R-3,S-4
1. Simpson’s Rule is one of the numerical integration technique (method).
2. Gauss — elimination method is used to solve only linear algebraic equations.
3. Runge — Kutta method is used to solve the ordinary differential equations.
4. Newton — Raphson method is used to solve the linear and non — linear algebraic equations.
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OE. 39

dx  _
206. Given m = u(t ), where u(¢) is an unit step function.

By the definition of unit step function, we have u(7) 2{ 0 2

x(0)=0 and x=? att=0.01sec
1=0.01
ﬂ =2y (l) = dx=e 2 u(t)dt = x = I e 2lu(r)dt
dt 2o
-2t {0,

=c {1, 0

_ {0, 1<0

I e~}

h

1, 20

t=0.01
== |
t=0

g(0) dt where g()=e u(?)

0.1
By TrapEzoidal rule, we have = x = I g dt :E[g (a)+g (b)}
0

(0.01)

== [ 5(0)+g(0.01)] =%[1 +e,2(0_01)}

0.01

:'T[1+e*°<°2];x=o.oo99

d
207. Given d—z—y = Xeveoerereens (1) and y(O) =0
Also given ;=0.1 y(0.3)="?
From (2), we have
Xo=0, y,=0 and

X =xy+1h=0+0.1=0.1

X, =% +2h=0+2(0.1)=0.2
% =% +3h=0+3(0.1)=03

Euler’s first order method is given by

d
N =X +hf(x03yo):yo +h(_yj
dx )p

¥ =0+(0.1)(xo +,) =0.1[0+0] = 0.0

d
f(x,y)=d—i=y+x

)
v2 =y +hf (1, 1) =0.0+(0.1)[0.1+0.0] = 0.0+0.01=0.01
¥3 =y, +hf (32,7,) =0.014(0.1) [0.2+0.01] = 0.01+0.021 = 0.031
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209. The Table of x and corresponding value of f (x) are as follows :

. 4
i X y=x

0| 3| y=81

1 21 y=16

6| 3| =81

3
Using Simpson rule, we have J xtdx :g[)’o +4(y1 + +y5)+ 2(y2 + J’4)+J’6]
-3

:%[81+4(16+0+16)+2(1+1)+81} :%[81+128+4+81]:98

2-1 .
210. Hereh= e =0.25 ;The table of x and corresponding value of f(x) are as follows

i X, Y
0 1 1
1 1.25 | 0.80
2 1.5 0.667
3 1.75 ] 0.571
4 2 0.5

Using Simpson rule we have

h dx 0.25

h
=3 Lot 40 n) 2040 | = 222 144(0.8+0.571)+2(0.667)+ 0.5] — 06032

1 3

211. Here j = 0.5 Using Simpson’s rule
h 0.5 0.5
[ £ (x)ax =0 [21+208+4.443] =>[214208+44+3] =505

212. Here j =1;By Simpson rule we have

4

w1 _1 -
J'e dx :5[1+4(2.72+20.09)+2(7.39)+54.60] =3 [1+91.24+14.78+54.60] = 53.87
0
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213, a=y-—t =1 ! L 1

= b: — — —
1+(0.25)>  1.0625 & l+x7  1+(0.75)  1.5625

214. Here h =10 Using Trapezoidal rule

A=%[0+3+2(4+7+9+12+15+14+8)J = 5[0+3+130] =705 m?

7.52
215. Using Trapezoidal rule I f(x)dx =§[y0 +2(y + 32+ ;3 +y4)+y5J
747

:%[1.93+2(1.95+2.01+2.03)+2.06] — 0.005[1.93 +15.94 +2.06] = 0,096

216. Taking four equal part between 0 & 1, 2= 0.25.Using Simpson’s formula

. 1
l X; Yi=—
xi
0 |1 |x»=1
1 |2 |»=05
2 3| »=033
3 4 | »=025
4 51 =02
1k 0.25
Omdx —g[yo +4(3y+23)+ 205+ 2y | =T[l+4(o.8+0.571)+2(0.67)+0.5] —0.6945

217. The Table of x and corresponding f (x) are as follows :Using Simpson’s rule we have

5
dx _h
| 7)‘ =3[0+ 40+ 0s) 4205404 ] =%[1 +4(0.5+0.25)+2(0.33)+0.2] =1.62

5
h
218. Herep=1 Jydng[yo 2y + )+ s ] =%[10+2(50+70+80)+100] =255
1

1-0
219. Hereh= = 0.2 Calculating all values of f(x)

x 002 |04 |06 |08 |0.1
fx)=x"| 0 |0.008 0.064|0.216] 0.512] 1

1

h
J.x3dx =2 Loo+ (ot o+ w5+ 0+ 5] :%[0+(0.008+0.064+ 0216+0.512)+1] Z 026
0
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1—cos2x
220. f(x) =«/1—0.162sin2x :\/1—0.162£Tj :\/0.919+0.081c052x Here Where

h=rn/12
when x, =0, yy =1when x; =7/12, Y :\/O.9l9+0.081005300 ==0.9795

when x, =7/6., 3, =400.919+0.081c0s60° = 0.9795

when x; =7/4, p; =1/0.919+0.081c0s90° =0.9586

when x, =7/3,y,=0.9372
when x5 =57/12, y5;=0.9213
when x, =7/2, y,=09154

/2
f f(X)dx=§[(yo +36)+4(31+ 3+ y5)+2(3 + 34) | =1.5056

0
d d’y _ d
221. We have h=0.1,x0=0,x1:x0+h:0.1Nowd—i=1+xy0rg§=xd—i+yor

d? d*y .d d* d’ d’y
Y &V & or—3:= y 3d From y(O)zlwehave

? dx? dx

d d’y . d° d*
L4 -, 42 =2, 2rY_3 and so on
dxt

1_

dx a’ dd

dy *d’y wdy hd
Taylor series expression gives y(x+4)=y(x)+ d_ﬁ 2! dxf " 3! dx); ’ 4! dxi}

0.1y’ 0.01  0.001

2
0.1 .
y(O.l):1+01><1+—( 2!) 1+—( 3 2+... =1+0-1+T+T+

=1+0.1+0.005+0.000033................ =1.1053

222. Let p=0.1, givenx, =0, yozl;xl:x0+h:0.1,Nowa=X—y and

dy e d d”y &’ dyY . d?
2 =—1.9Y _ 5, =3.8YV_ HY| _,, 4V
(dxjm > d? =1-2y dx and (dx > 2(dx) 2 dx? and

FE 4 2 3 A
CV =3 4y 53 @dy, dy) ST =34
ax’ )| > dx dx dx dx’® dx* 0l

dy W*d’y K&y htdly
The Taylor series expression gives y(x+4) = y(x)+4 dic/ 2! dxy " 3! dxy " 41 ax*
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Y(0.0)=140.1(-1)+ (0'21')2 3+ (0'31')3 (-8)+ (041')4 3.

=1-0.1+0.015-0.001333+0.0001417 =0.9138

223. Here f(x,y)=x"+y",xy=0 y,=0.We have, by Picard’s method

y=yo+ [ £(xy)dx (D)

Xo

The first approximation to  is given by y!!) = Yo+ J £ (x,y)dx ,where

y0=0+jf(x,0)dx=Jx2dx . (2)
0 0

The second approximation to y is given by y(z) =Y+

& C—
~
—_—
=
'\</—\
_
&

Il
(=}

+
S ey
\
VR
=

| %o
N—
=

x 6 307
=O+I P =
o 9 3 63

(0.4 (0.4)

Now, y(04)="—+ =0.02135

224. Here f(x,y) =y—x;x,=0,y, =2;We have by Picard’s method V=V + jf(xny)dx

Xo
The first approximation to y is given by

X X X 2
y(l):yo+If(x,y0)dx:2+jf(x,2)dx =2+J.(2—x)dx=2+2x—x7 (D
0 0

Xo

The second approximation to Y is given by

y(z) =yo+]£f(x,y(l))dx =2+If[x,2+2x—§]dx

RY) X

h X o2 X
=2+j PP TS N S SN ST S )
0 2 26

The third approximation to Y is given by

y(3) =% +]£f(x,y(2))dx =2+]£f[x,2+2x+§—x—63}lx

Xy Xo
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225. Here f(x,y)=x+y2,xo =0y,=0;

We have, by Picard’s method y =y, + jf(xa Yo )dx

X0

x 2
The first approximation to y is given byy( =y, + '[f X, yo)dx 0+J.f X, 0 dx —0+J.xdx_ >
0

Xo

The second approximation to y is given by

)yt If(xy s = 0+jf(x—J =I(X+x7] x=x72+§_;

The third approximation is given by

_y0 vff()cy )dx_0+jf(x—+;—:)jdx

i 10 2 5.8 1
I[x+—+— 2x" ]dx _r L r X
. 4 400 40 220 160 4400
226. Wehave x : 0.1 0.2 0.3 04
Euler’s method gives
Vst = Vn+0(X,,9,) <o (D)
By putting =0 in (1) gives
N =y0+hf(x0,y0)
Here x,=0,y,=1h=0.1
» =1+0.1/(0,1)=1+0=1

n=01in(1) gives J’2=y1+hf(x1aJ/1)
=1+0.1/(0.1,1) =1+0.1(0.1)=1+0.01

Thus V2= Yo =101
n=2in (1) gives V3= v, +hf (32,3,) =1.01+0.17(02,1.01)
Thus V3= Yo =1.01+0.0202=1.0302

n=3in (1) gives va =3+ hf (x3,05) =1.0302+0.1/(0.3,1.0302)
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=1.0302+0.03090
Thus V4 = y(0.4) =1.0611

Hence y(0'4) =1.0611

227. The Euler’s modified method gives y; = y, +f (%, %o ),

h %
B2 :J’0+E[f(x0ayo)+f(xlo)ﬁ )J
Now, here

228. y, =y +hf (x, ) =1.0202 + 0.02[f(0.02, 1.0202)] =1.0202 +0.0204 =1.0406

Next Y2 =0 +§[f )+ f (xzayE)J

=1.0202 +%[ £(0.02,1.0202) + £(0.04,1.0406)]

=1.0202 + 0.01[1.0206+ 1.0422] =1.0408 Thus
Yo = Y0.04) = 1.0408
229. y; =y, +hf(x,,y,) =1.0416+0.024(0.04,1.0416) =1.0416+0.0217 =1.0633 Next
h * 0.02
V3= +E[f(x2’y2)+f(x3’y3)] V3 :1.0416+T[(f(0.04,1.0416)+f(0.06,1.0633)]
= 1.0416+0.01[1.0865+1.1342] =1.0638 3 = ¥(g.06) = 1.0638
230. Weassumethat x : 0 0.2 04 0.6 08 1
* h *
Euler’s modified method gives y; =y, + hf (x,, ) Y1 = Yo +E[f (x0:¥0) + /(x> 11 )}
Here y, =1,x,=0,A=0.2
# 0.2
Y =1+02£(0,1)=1+02(1)=1.2; 1+7[f(0,1)+f(0.2,1.2)]

=1+0.1[1+1.4], 5, =124 = p(0.2) Now y; =y, + hf (x,3) =1.24+0.2/(0.2,1.24)
h .
=124+02x1.44=1528 =y1+5[f(x1y1)+f(x2,yz)]

0.2
= 1.24+7[ £(02,1.24)+ £(0.4,1.528)] =1.24+0.1[1.44+1.928] = 1.5768

¥, =(0.4)=1.5768
Now
y; =y, +hf (x,,,)=1.5768+0.2 £ (0.2/(0.4,1.5768) =1.5768+0.3953 =1.9721
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V3= +ﬁ[f(x2,y2)+f(x3,y;‘)] -1. 5768+—[f(0 4,1.5768)+ £(0.6,1.9721)]

=1.5768+0.1[1.9768+25721] =2.03169, y; =2.03169 Next
Va =3 +hf(x5,5) =2.0317+0.5£(0.6,20317) =2.0317 +0.5263 = 2.558
yo= w2 £t £ )]

=2. 0317+—[f(0 6,2.0317)+ £(0.8,2.558)] =2.0317 +0.1[2.6317 +3.358] = 2.63067 Next
Vs =4+ hf (x4, 94) =2.63067+0.2(0.8,2.63067) =2.63067 +02(3.43067) =3.3168
Vs =V4t

[f(x4,y4)+(x5,y5)] 2. 63067+—[f(0 8,2.63067)+ £(1,3.3168)]

=2.63067+0.1[3.43067 +4.3168], ys =3.405417

231. Wehavex: 0 0.2 04 0.6
S(xX)=x-y,
On calculation we get  f1(x) =0.1996  f,(x)=0.3937 f;(x)=0.5689
4
Using predictor formula ¥ =y + Eh(zﬁ —f+2f3)

h02 = 0+%[2(0.1996) —(0.3937)+2(0.5689)]

S 3= 4+ 13) f7 = f(xp ) = £(0.8,0.3049) = 0.07070
¥ =0.0795 +%[0.3937 +4(0.5689)+0.7070] = 0.3046

232. We have f(x) =1+ y* On calculation we get f, =1.04108, f, =1.17875 and f, =1.46778

4h 8
By predicated formula ¥§” = ¥y +?[2 fi-f+2£];0 +£[2(1 .04108) —1.17875+2(1.46778)]
VP =1.0237, y{P) =1.0237, ¥ =y, +§(f2 AL )

* * 2
£ = ) = £(0.8,1.0237) f; =2.0480 5 =0.4228 +§[1.1787 +4(1.4678) +2.0480]
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233. P =y +%(2f2 — f1+2f,) =0.2027 +%(2x1.1787—1.4678+2(2.0594) =1.5382
. » © 0.2 ;
15 = (x5, 8 = £(1,15382) =3.3660; Vs~ =3 +T[f3 +af+ /5 }
= 0.6841+%[1.467+4x2.0594+3.3360] =1.5555
234. We now to find Y3 = Yo : k; = hf (x5, 1,) = (0.2) /(0.4,0.4228) = 0.2357
ky = hf(xz +%h, ¥, +%k1j =(0.2) £(0.5,0.5406) = 0.2584 .
1 1
ky = hf(xz +5h, Vs +§k2j =(0.2)£(0.5,0.520) =0.2609 k, = %[k1 +2ky +2ky +hy |

= %[0.2357 +2(0.2584) +2(0.2609) + 0.2935] = %[0.2357 +0.5168+0.5218+0.2935] = 0.2613

V3= Yoe) = 2 +h=0.4228+0.2613=0.6841

235. Heregivenx, =0 y,=1Lh=0.2; f(x,y)=x+ y* Tofind » = ¥02);
ky = hf (g, v5) = (0.2) £(0,1) = (0.2)x1=0.2

k, = hf(xo +%,y0 +%) =(0.2)/(0.1,1.1)=0.2(1.31)=0.262 .

ky = hf[xo +§, Yo +k—22] =(0.2)£(0.1,1.131) = 0.2758

1
kyhf (xo +h, vy + k) = (0.2) £(0.2,1.2758) = 0.3655 ; k = g[kl +2ky +2ks + 2k, |
= %[0.2 +2(0.262) +2(0.2758) +0.3655] = 0.2735 Here ¥, = ¥(02) = Yo +k =1+0.2735=1.2735

236. Here f(x,y)=x+y, h=02Tofind ¥ = Y02 k =hf (xy,7,)=0.2/(0,1)=02

ky = hf[xo +§, Yo +k—22j(0.2) £(0.1,1.12) = 0.244

1
ky =hf (xg+h,y, +k3) =(0.2) £(0.2,1.244) = 0.2888 k = g[kl +2ky + 2k; + ky]

1
= g[o.z +2(0.24)+2(0.244) + 0.2888] =0.2428 . y, = Y02y =Yo +h=1+0.2428=1.2428
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d
S =y = f(x)
dx

Thus y(0) =y, ki =—hyy s ky = hf (h,yo + k) = h[—l(J’O + k1)]= h[‘)’o + hyo}: ~hyy(1-h)

1
237. Here ) =Yy+k wherek = E(kl +hy) sk = hf (X9, 10) s ky = hf (xo + . Ky)

2 0 0 2 0 0 2 0 0>

K’ _Yo[;2
Thus yl—y0+7y0—hy0 _T[h —2+2]

= f(x) Step size = h,y, =0, x, = 0 ;By Runge-Kutta of the fourth order

dy
238. We have—x

d.

1 1 1 h
by = hf (x0,70) = H £ (x0) |= 1/ (0); K2 :hf(xo +§h’y(>+§klj:hf(xo :Ehj:hf(gj;

1 1 h
ky = hf[xo 5o +5kzj = hf(;j sy = hf (g + I, yo + ky) = hf ()

1
Hence bu fourth order Runge-Kutta formula the solution atx = &; ¥ = Yo + g(/ﬁ +2ky +2ky + ky) ;

1 h h h h h
y(h)=0 +g{hf(0) + 2hf(5) + 2hf(5] + 2hf(5j + hf(h)} = g{f(O) + 4f(5j + f(h)}

1 2h 3k
239. Vp =V +Z(k13k2) n=0,1,2.3,.... knf(x,,v,); k =hf(k, T30 +71) and

y'=-10y = f(x,y) x,=0,y, =1. We can take step size, #=0.10r 0.2 Thus0< /1 <0.2

240. % =2x= f(x,); Initially x, =0.1,y, =0 taking h=1;
YD) =y =y +hf (xg+3) =03 y2) =y, =y +hf (xg +h, ») =2
YB3)=y3 =y +hf (xg +2h,y,) = 65 y(4) = y4 = y3+ hf (xg +3h,y3) =12
V(5)=p5 =y, +hf (xy) +4h,y,) =20 ;Clearly

(1) =0.1,(2) =12, y(3)=2.3; y(4) =34 y(5)=45. Thusy, =x, ,.x

n
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